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Summary. We consider products of a random number of partial sums of independent,
identically distributed, positive square-integrable random variables. We show that the
distribution of these products is asymptotically lognormal.

1. Introduction. Let (Xn)n∈N be a sequence of independent and iden-
tically distributed (iid), positive and square-integrable random variables. Let
us define the partial sums

Sk =
k∑

i=1

Xi, k = 1, 2, . . . .

Asymptotics for products of such sums have been studied by several authors.
Arnold and Villaseñor [1] obtained a limit theorem for a sequence (Xn) of
iid exponential variables with mean 1,∑n

k=1 log(Sk)− n log(n) + n√
2n

d→ N

as n → ∞, where d→ stands for convergence in distribution and N is a
standard normal random variable. Their result can be equivalently stated,
in terms of products of partial sums, as

(1)
( n∏

k=1

Sk

k

)1/
√

n
d→ e
√

2N .
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In [6] Rempała and Wesołowski proved, without assuming any particular dis-
tribution for Xi’s, that if (Xn) is a sequence of iid positive square-integrable
random variables with µ = E(X1), σ2 = Var(X1) > 0 and variation coeffi-
cient γ = σ/µ then as n→∞ we have

(2)
( n∏

k=1

Sk

kµ

) 1
γ
√
n d→ e

√
2N .

They also extended (2) to U-statistics. The result (2) was further generalized
in [3, 5, 7]. In the latter paper, the authors applied their generalization to
calculating the asymptotic distribution of Wishart determinants.

The purpose of this note is to generalize (2) to the case of products of
a random number of partial sums. Such products, with a slightly different
normalization, have also been analyzed in [4].

2. Main result

Theorem 1. Let (Xn)n∈N be a sequence of iid , positive and square-
integrable random variables with mean µ = E(X1), σ2 = Var(X1) > 0,
variation coefficient γ = σ/µ and Sk =

∑k
i=1Xi, k = 1, 2, . . . . Further , let

Nn denote a positive integer-valued random variable such that Nn/n con-
verges as n→∞ in probability to a constant c > 0. Then

(3)
(Nn∏

k=1

Sk

kµ

) 1
γ
√
Nn d→ e

√
2N .

We prepare the proof of Theorem 1 with two lemmas.

Lemma 2. Under the assumptions of Theorem 1,

1
γ
√

2n

n∑
k=1

(
Sk

kµ
− 1
)

d→ N .

Proof. For the proof see [6].

Lemma 3. Under the assumptions of Theorem 1,

(4)
1

γ
√

2Nn

Nn∑
k=1

(
Sk

kµ
− 1
)

d→ N

The proof of Lemma 3 is based on the method described in [8].

Proof. Let Yi = (Xi − µ)/σ, i = 1, 2, . . . , S̃k =
∑k

i=1 Yi, k = 1, 2, . . . .
Then (4) can be expressed as

1√
2Nn

Nn∑
k=1

S̃k

k

d→ N .
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Let ε > 0 be an arbitrary number. By the convergence of Nn, we can choose
n1 > 0 such that for n ≥ n1,

(5) P (|Nn − nc| > cnε) ≤ ε.

It is clear that

(6) P

(
1√
2Nn

Nn∑
k=1

S̃k

k
< x

)
=
∞∑

m=1

P

(
1√
2m

m∑
k=1

S̃k

k
< x, Nn = m

)
.

From (5) and (6) we see that for n ≥ n1,
(7)∣∣∣∣P( 1√

2Nn

Nn∑
k=1

S̃k

k
< x

)
−

∑
|m−cn|<cnε

P

(
1√
2m

m∑
k=1

S̃k

k
< x, Nn = m

)∣∣∣∣ ≤ ε.
If we define M1 = [(1− ε)cn] and M2 = [(1+ ε)cn], where [. . .] is the integer
part, then for |m− cn| < cnε we get

(8)

P

(
1√
2m

m∑
k=1

S̃k

k
< x,Nn = m

)
≤ P

(M2∑
k=1

S̃k

k
< x

√
2M2 + ρ,Nn = m

)
,

where

ρ = max
M1<m≤M2

∣∣∣∣ m∑
k=M1+1

S̃k

k

∣∣∣∣.
Similarly

(9)

P

(
1√
2m

m∑
k=1

S̃k

k
< x, Nn = m

)
≥ P

(M1∑
k=1

S̃k

k
< x

√
2M1 − ρ, Nn = m

)
.

By the Kolmogorov inequality, we have

P (ρ > (2M2)1/2δ) ≤ P
(

max
1≤k≤M2

|S̃k| max
1≤j≤(M2−M1)

j∑
k=1

1
k +M1

> (2M2)1/2δ

)

= P

(
max

1≤k≤M2

|S̃k|
(M2−M1)∑

k=1

1
k +M1

> (2M2)1/2δ

)
≤ 1

2δ2M2
[log(1 + ε)]2Var(S̃M2).

From the assumptions we know that Var(S̃M2) = M2 and finally we get

(10) P (ρ > (2M2)1/2δ) ≤ 1
2δ2

[log(1 + ε)]2 → 0 as ε→ 0.



166 M. Przystalski

From (7)–(10), it follows that

P

(
1√
2Nn

Nn∑
k=1

S̃k

k
< x

)
≤ P

(
1√
2M2

M2∑
k=1

S̃k

k
< x+ δ

)
+ o(1)

and

P

(
1√
2Nn

Nn∑
k=1

S̃k

k
< x

)
≥ P

(
1√
2M1

M1∑
k=1

S̃k

k
< x− δ

)
+ o(1).

By Lemma 2 we get the assertion.

Proof of Theorem 1. By Taylor’s expansion

log
(
Sk

k

)
= logµ+

1
µ

(
Sk

k
− µ

)
+
(
Sk

k
− µ

)
r

(
Sk

k

)
,

where r(x)→ 0 as x→ µ, and we have∑Nn
k=1 log(Sk/k)−Nn logµ

γ
√

2Nn
=

1
γ
√

2Nn

Nn∑
k=1

(
Sk

kµ
− 1
)

+
1

γ
√

2Nn

Nn∑
k=1

(
Sk

k
− µ

)
r

(
Sk

k

)
By the convergence of Nn we have

1
γ
√

2Nn

Nn∑
k=1

(
Sk

k
− µ

)
r

(
Sk

k

)
≤ 1
γ
√

2nc

[nc(1+ε)]∑
k=1

(
Sk

k
− µ

)
r

(
Sk

k

)
.

Because E|X1| <∞, by the SLLN we have r(Sk/k)→ 0 a.s. From Lemma 3
in [2] it follows that

sup
0≤ε≤1

∣∣∣∣ 1
γ
√

2nc

[nc(1+ε)]∑
k=1

(
Sk

k
− µ

)
r

(
Sk

k

)∣∣∣∣ ≤ 1
γ
√

2nc

[2nc]∑
k=1

∣∣∣∣Sk

k
− µ

∣∣∣∣∣∣∣∣r(Sk

k

)∣∣∣∣
= oP(1).

From the above inequality, it follows that∑Nn
k=1 log(Sk/k)−Nn logµ

γ
√

2Nn
=

1
γ
√

2Nn

Nn∑
k=1

(
Sk

kµ
− 1
)

+ oP(1).

By Lemma 3 we get the assertion.
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