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Summary. We provide upper and lower bounds in consistency strength for the theories
“ZF + ¬ACω + All successor cardinals except successors of uncountable limit cardinals are
regular + Every uncountable limit cardinal is singular + The successor of every uncount-
able limit cardinal is singular of cofinality ω” and “ZF + ¬ACω + All successor cardinals
except successors of uncountable limit cardinals are regular + Every uncountable limit
cardinal is singular + The successor of every uncountable limit cardinal is singular of co-
finality ω1”. In particular, our models for both of these theories satisfy “ZF + ¬ACω + κ
is singular iff κ is either an uncountable limit cardinal or the successor of an uncountable
limit cardinal”.

There are many instances in the literature where choiceless large cardi-
nal patterns are initially forced from strong hypotheses which one later sees
can be weakened somewhat. For example, it is shown in [4] that the models
constructed in [11] from an almost huge cardinal can actually be built from
a cardinal which is intermediate in consistency strength between a super-
compact limit of supercompact cardinals and an almost huge cardinal.

The purpose of this paper is to continue in this vein by proving two “sand-
wich theorems”, where a sandwich theorem traps the consistency strength of
a particular statement between two distinct large cardinal axioms. In par-
ticular, we begin by providing a smaller new upper bound in consistency
strength and a new lower bound in consistency strength for a choiceless car-
dinal pattern that is a corollary of the work of [11] and [4]. We then show
how the methods developed can be used to prove a sandwich theorem for a
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choiceless cardinal pattern that does not follow explicitly from the work of
[11] and [4]. Specifically, we have the following theorems.

Theorem 1.

(1) Suppose V � “ZFC + κ is 2[iω(κ)]<κ supercompact”. There is then a
partial ordering P ∈ V and a symmetric submodel N ⊆ V P of height
κ such that N � “ZF + ¬ACω + All successor cardinals except succes-
sors of uncountable limit cardinals are regular + Every uncountable
limit cardinal is singular + The successor of every uncountable limit
cardinal is singular of cofinality ω”.

(2) Assume ZF and that all uncountable limit cardinals are singular and
the successor of every uncountable limit cardinal is singular of cofi-
nality ω. Then for every n < ω and every set of ordinals x, M ]

n(x)
exists.

Theorem 2.

(1) Suppose V � “ZFC + κ is 2[iω1 (κ)]<κ supercompact”. There is then a
partial ordering P ∈ V and a symmetric submodel N ⊆ V P of height
κ such that N � “ZF + ¬ACω + All successor cardinals except succes-
sors of uncountable limit cardinals are regular + Every uncountable
limit cardinal is singular + The successor of every uncountable limit
cardinal is singular of cofinality ω1”.

(2) Assume ZF and that all uncountable limit cardinals are singular and
the successor of every uncountable limit cardinal is singular of cofinal-
ity ω1. Then for every n<ω and every set of ordinals x,M ]

n(x) exists.

We note that Theorems 1(2) and 2(2) have an additional strong conse-
quence. This is that for every n < ω, there is an inner model with n Woodin
cardinals, i.e., that PD holds in all set generic extensions. Theorems 1(2) and
2(2) are due to Busche and Schindler [7]. They follow from [7, Section 3.1],
and are corollaries of [6, Theorem 5].

We will explicitly prove Theorem 1. However, since the proof of Theo-
rem 2 is virtually identical to the proof of Theorem 1, we will only indicate
the minor modifications to the proof of Theorem 1 that need to be made in
order to establish Theorem 2. Also, we observe that our models witnessing
the conclusions of Theorems 1(1) and 2(1) satisfy the theory “ZF + ¬ACω

+ κ is singular iff κ is either an uncountable limit cardinal or the successor
of an uncountable limit cardinal”.

Our proof uses Gitik’s techniques of [11]. Our presentation of Gitik’s tech-
niques is based on the one given in [3], but also follows the ones given in [5],
[1], [6], and [2]. All of these rely heavily on [11]. As the necessary facts about
Radin forcing are distributed throughout the literature, our bibliographical
citations will reflect this.
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Our witnessing model N for Theorem 1(1) is the specific version of the
model NA of [3] described at the end of that paper, except that λ is now
the least singular strong limit cardinal of cofinality ω above κ instead of
the least measurable cardinal above κ. (See also [2].) We explicitly give the
construction below. Let λ = iω(κ). Let j : V → M be an elementary
embedding witnessing the 2[λ]<κ supercompactness of κ. Our first step is to
define a Radin sequence of measures µ<κ+ = 〈µα | α < κ+〉 appropriate for
supercompact Radin forcing over Pκ(λ). Specifically, if α = 0, µα is given
by X ∈ µα iff 〈j(β) | β < λ〉 ∈ j(X), and if α > 0, α < κ+, µα is given
by X ∈ µα iff 〈µβ | β < α〉 =df µ<α ∈ j(X). Since M2[λ]<κ ⊆ M , µ<κ+ is
well-defined.

Next, we let R<κ+ be supercompact Radin forcing over Pκ(λ) defined us-
ing µ<κ+ . The particulars of the definition are virtually identical to the ones
found in [5], [3], [1], [6], and [2], but for clarity, we repeat them here. R<κ+ is
composed of all finite sequences of the form 〈〈p0, u0, C0, 〉, . . . , 〈pn, un, Cn〉,
〈µ<κ+ , C〉〉 such that the following conditions hold.

(1) For 0 ≤ i < j ≤ n, pi ⊂∼ pj , where for p, q ∈ Pκ(λ), p ⊂∼ q means
p ⊆ q and otp(p) < q ∩ κ.

(2) For 0 ≤ i ≤ n, pi ∩ κ is a measurable cardinal.
(3) otp(pi) is the least strong limit cardinal greater than pi∩κ (which of

course is iω(pi ∩ κ)). In analogy to the notation of [11], [5], [3], [1],
[6], and [2], we write otp(pi) = (pi ∩ κ)∗.

(4) For 0 ≤ i ≤ n, ui is a Radin sequence of measures appropriate for
supercompact Radin forcing over Ppi∩κ(otp(pi)) with (ui)0, the 0th
coordinate of ui, a supercompact measure over Ppi∩κ(otp(pi)).

(5) Ci is a sequence of measure 1 sets for ui.
(6) C is a sequence of measure 1 sets for µ<κ+ .
(7) For each p ∈ (C)0, where (C)0 is the coordinate of C such that

(C)0 ∈ µ0,
⋃
i∈{0,...,n} pi = pn ⊂∼ p.

(8) For each p ∈ (C)0, otp(p) = (p ∩ κ)∗ and p ∩ κ is a measurable
cardinal.

Conditions (5) and (6) are both standard to any definition of Radin
forcing. Conditions (1), (2), (4), and (7) are all standard to any definition of
supercompact Radin forcing. Conditions (3) and (8) are used because of our
ultimate aim of constructing a model in which the successor of every limit
cardinal is singular of cofinality ω. That they may be included and have
the Radin forcing attain its desired goals follows by the fact that V � “κ
is supercompact and λ is the least strong limit cardinal greater than κ”.
Thus, by closure, M � “κ is measurable and λ is the least strong limit
cardinal greater than κ”. This means that by reflection, {p ∈ Pκ(λ) | p ∩ κ
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is a measurable cardinal and otp(p) is the least strong limit cardinal greater
than p ∩ κ} ∈ µ0. This will ensure that the Radin sequence of cardinals
eventually produced can be used in our final symmetric inner model N .

For completeness of exposition, we recall now the definition of the or-
dering on R<κ+ . If π0 = 〈〈p0, u0, C0〉, . . . , 〈pn, un, Cn〉, 〈µ<κ+ , C〉〉 and π1 =
〈〈q0, v0, D0〉, . . . , 〈qm, vm, Dm〉, 〈µ<κ+ , D〉〉, then π1 extends π0 iff the follow-
ing conditions hold.

(1) For each 〈pj , uj , Cj〉 which appears in π0, there is a 〈qi, vi, Di〉 which
appears in π1 such that 〈qi, vi〉 = 〈pj , uj〉 and Di ⊆ Cj , i.e., for each
coordinate (Di)α and (Cj)α, (Di)α ⊆ (Cj)α.

(2) D ⊆ C.
(3) n ≤ m.
(4) If 〈qi, vi, Di〉 does not appear in π0, let 〈pj , uj , Cj〉 (or 〈µ<κ+ , C〉) be

the first element of π0 such that pj ∩ κ > qi ∩ κ. Then
(a) qi is order isomorphic to some q ∈ (Cj)0.
(b) There exists an α < α0, where α0 is the length of uj , such that

vi is isomorphic “in a natural way” to an ultrafilter sequence
v ∈ (Cj)α.

(c) For β0 the length of vi, there is a function f : β0 → α0 such
that for β < β0, (Di)β is a set of ultrafilter sequences such that
for some subset (Di)

′
β of (Cj)f(β), each ultrafilter sequence in

(Di)β is isomorphic “in a natural way” to an ultrafilter sequence
in (Di)

′
β .

For further information on the definition of the ordering on R<κ+ (including
the meaning of “in a natural way”) and more facts about Radin forcing in
general, readers are referred to [5], [3], [1], [6], [2], [8], [9], [11], [10], and [12].

We are now ready to define the partial ordering P used in the proof of
Theorem 1(1). It is given by the finite support product ordered component-
wise ∏

{〈α,β〉 |ω≤α<β<κ are regular cardinals}

Coll(α,<β)× R<κ+ ,

where Coll(α,<β) is the Lévy collapse of all cardinals of size less than β
to α.

Let G be V -generic over P, and let G0 be the projection of G onto R<κ+ .
For any condition π ∈ R<κ+ , call 〈p0, . . . , pn〉 the p-part of π. Let R = {p |
∃π ∈ G0 [p ∈ p-part(π)]}, and let R` = {p | p ∈ R and p is a limit point
of R}. Define three sets E0, E1, and E2 by E0 = {α | For some π ∈ G0

and some p ∈ p-part(π), p ∩ κ = α}, E1 = {α < κ | α is a limit point
of E0}, and E2 = E1 ∪ {ω} ∪ {β | ∃α [α is a limit point of E1 and β = α∗]}.
Let 〈αν | ν < κ〉 be the continuous, increasing enumeration of E2, and let



Consistency Strength of Cardinal Patterns 193

ν = ν ′ + n for some n ∈ ω. For β where β ∈ [αν , αν+1) in the first case and
β = αν+1 in the second and third cases, define sets Ci(αν , β) for i = 1, 2, 3
according to specific conditions on ν, ν ′, and n in the following manner:

(1) ν = ν ′ 6= 0 and n = 0, i.e., ν is a limit ordinal. Let p(αν) be the
element p of R such that p ∩ κ = αν , and let hp(αν) : p(αν) →
otp(p(αν)) be the order isomorphism between p(αν) and otp(p(αν)).
Then C1(αν , β) = {hp(αν)

′′p ∩ β | p ∈ R`, p ⊆ p(αν), and h−1
p(αν)

(β)
∈ p}.

(2) (ν = ν ′ + n, ν ′ > 0, and 2 ≤ n < ω) or (ν ′ = 0 and n ∈ ω),
i.e., ν is neither a limit ordinal nor the successor of a limit ordinal.
Let H(αν , αν+1) be the projection of G onto Coll(αν , <αν+1). Then
C2(αν , αν+1) = H(αν , αν+1).

(3) ν = ν ′ + 1 for ν ′ > 0, i.e., ν is the successor of a limit ordinal.
Let H(α+

ν , αν+1) be the projection of G onto Coll(α+
ν , <αν+1). Then

C3(α+
ν , αν+1) = H(α+

ν , αν+1).
C1(αν , β) is used to collapse β to αν when ν is a limit ordinal, and is also

used to generate the closed, cofinal sequence 〈αγ | γ < ν〉. C2(αν , αν+1) is
used to collapse αν+1 to be the successor of αν when ν is neither a limit ordi-
nal nor the successor of a limit ordinal, and C3(α+

ν , αν+1) is used to collapse
αν+1 to be the successor of α+

ν when ν is the successor of a limit ordinal.
Intuitively, the symmetric inner model N ⊆ V [G] witnessing the conclusions
of Theorem 1(1) is Vκ of the least model of ZF extending V which contains
C1(αν , β) if ν is a limit ordinal and β ∈ [αν , αν+1), C2(αν , αν+1) if ν is nei-
ther a limit ordinal nor the successor of a limit ordinal, and C3(α+

ν , αν+1) if
ν is the successor of a limit ordinal.

To define N more precisely, it is necessary to define canonical names αν
for the αν ’s and canonical names Ci(ν, β) for i = 1 and Ci(ν, ν + 1) for i =
2, 3. Recall that it is possible to decide p(αν) (and hence otp(p(αν))) by writ-
ing ω·ν = ωσ0 ·n0+ωσ1 ·n1+· · ·+ωσm ·nm (where σ0 > σ1 > · · · > σm are ordi-
nals, n0, . . . , nm > 0 are integers, and +, ·, and exponentiation are the ordinal
arithmetical operations), letting π = 〈〈piji , uiji , Ciji〉i≤m,1≤ji≤ni , 〈µ<κ+ , C〉〉
be such that min(pi1 ∩ κ, ωlength(ui1)) = σi and length(uiji) = min(pi1 ∩ κ,
length(ui1)) for 1 ≤ ji ≤ ni, and letting p(αν) be pmnm . Further, Dν = {r ∈
P | r�R<κ+ extends a condition π of the above form} is a dense open subset
of P. αν is the name of the αν determined by any element of Dν ∩G; in the
notation of [11], [5], [3], [1], [6], and [2], αν = {〈r, α̌ν(r)〉 | r ∈ Dν}, where
αν(r) is the αν determined by the condition r.

The canonical names Ci(ν, β) for i = 1 and Ci(ν, ν + 1) for i = 2, 3
are defined in a manner so as to be invariant under the appropriate group
of automorphisms. Specifically, there are three cases to consider. We again
write ν = ν ′ + n, where n ∈ ω and ν ′ is either a limit ordinal or 0, and let β
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be as before. We also assume without loss of generality that as in [11], [5],
[3], [1], [6], and [2], αν+1 is determined by Dν . Further, we adopt throughout
each of the three cases the notation of [11], [5], [3], [1], [6], and [2].

(1) ν ′ = ν 6= 0 and n = 0, i.e., ν is a limit ordinal. Then C1(ν, β) =
{〈r, (ř�R<κ+)�(αν(r), β)〉 | r ∈ Dν}, where for r ∈ P, π = r�R<κ+ ,
π�(αν(r), β) = {hp(αν)(r)

′′p ∩ β | p ∈ p-part(π), p ⊆ p(αν)(r), p ∈
R`�π, and h−1

p(αν)(r)
(β) ∈ p}.

(2) (ν = ν ′ + n, ν ′ > 0, and 2 ≤ n < ω) or (ν ′ = 0 and n ∈ ω), i.e., ν
is neither a limit ordinal nor the successor of a limit ordinal. Then
C2(ν, ν + 1) = {〈r, (ř�Coll(αν(r), <αν+1(r)))〉 | r ∈ Dν}.

(3) ν = ν ′ + 1 for ν ′ > 0, i.e., ν is the successor of a limit ordinal. Then
C3(ν, ν + 1) = {〈r, (ř�Coll(α+

ν (r), <αν+1(r)))〉 | r ∈ Dν}.

As in [11], [5], [3], [1], [6], and [2], since for any r, r′ ∈ Dν ∩ G, p(αν)(r) =
p(αν)(r′), each of the definitions just given is unambiguous.

Let G be the group of automorphisms of [11]. Set C(G)={ψ(C1(ν, β)) |
ψ ∈ G, 0 ≤ ν < κ, and β ∈ [ν, κ) is a cardinal} ∪

⋃
i=2,3{ψ(Ci(ν, ν + 1)) |

ψ ∈ G and 0 ≤ ν < κ}. Then C(G) = {iG(ψ(C1(ν, β))) | ψ ∈ G, 0 ≤ ν < κ,
and β ∈ [ν, κ) is a cardinal} ∪

⋃
i=2,3{iG(ψ(Ci(ν, ν + 1))) | ψ ∈ G and 0 ≤

ν < κ} = iG(C(G)). N is then the set of all sets of rank less than κ of the
model consisting of all sets which are hereditarily V definable from C(G),
i.e., N = V

HVD(C(G))
κ .

Let 〈δν | ν<κ〉 be the continuous, increasing enumeration of {αν | ν < κ}
∪ {(α+

ν )V | ν < κ is the successor of a limit ordinal}. The arguments of [11]
and [3, Lemma 1] allow us to conclude that N � “ZF + ¬ACω + For every
limit ordinal ν, δν = αν = ℵν is singular + If ν = ν ′ + 1 and ν ′ is not
a limit ordinal, then δν is a regular cardinal + ∀ν [δν ≤ ℵν ]”. In addition,
we know that for any ordinal γ and any set x ⊆ γ, x ∈ N , x = {α < γ |
V [G] � φ(α, iG(ψ1(Ci1(ν1, β1))), . . . , iG(ψn(Cin(νn, βn))), C(G))}, where ij
is an integer, 1 ≤ j ≤ n, 1 ≤ ij ≤ 3, each ψi ∈ G, each βi is an appropriate
ordinal for νi, and φ(x0, . . . , xn+1) is a formula which may also contain some
parameters from V which we shall suppress.

Let

P =
∏

ij=2, j≤n
Coll(ανj , <ανj+1)×

∏
ij=3, j≤n

Coll(α+
νj , <ανj+1)× R<κ+ .

For π ∈ R<κ+ , let π�γ = {〈q, u, C〉 ∈ π | q ∩ κ ≤ γ}, and let Rγ =
{π�γ | π ∈ R<κ+}. For p ∈ P, p = 〈p1, . . . , pm, π〉, m ≤ n, π ∈ R<κ+ ,
let p�γ = 〈q1, . . . , qm, π�γ〉, where qj = pj if ανj ≤ γ and qj = ∅ otherwise.
In other words, p�γ is the part of p below or at γ. Without loss of generality,
we ignore the empty coordinates and let P�γ = {p�γ | p ∈ P}. Let G�γ be the
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projection of G onto P�γ. An analogous fact to [11, Theorem 3.2.11] holds,
using the same proof as in [11], namely x ∈ V [G�γ]. In addition, the ele-
ments of P�γ can be partitioned into equivalence classes (the “almost similar”
equivalence classes of [11]) with respect to Ci1(ν1, β1), . . . , Cin(νn, βn) via an
equivalence relation to be called ∼ such that if ϕ is any formula mention-
ing only (terms for ground model sets and) Ci1(ν1, β1), . . . , Cin(νn, βn), and
C(G), p ‖ ϕ (i.e., p decides ϕ), and q ∼ p, then q ‖ ϕ in the same way that p
does. It thus follows as an immediate corollary of the work of [11] that if we
define G〈〈ν1,β1〉,...,〈νn,βn〉〉 = {[p]∼ | p ∈ G�γ}, then x ∈ V [G〈〈ν1,β1〉,...,〈νn,βn〉〉]
and V [G〈〈ν1,β1〉,...,〈νn,βn〉〉] ⊆ N . It further follows by the work of [11] that if
ν < κ is a limit ordinal and γ = αν+1, then since δν+1 = αν+1 = α∗ν and
α∗ν is a strong limit cardinal, there are fewer than αν+1 many such equiv-
alence classes. In other words, G〈〈ν1,β1〉,...,〈νn,βn〉〉 is V -generic over a partial
ordering forcing equivalent to a partial ordering Q〈〈ν1,β1〉,...,〈νn,βn〉〉 such that
|Q〈〈ν1,β1〉,...,〈νn,βn〉〉| < αν+1. It is this last fact, in tandem with the way in
which N is defined, which allows us to show that N is our desired model. In
particular, the following two lemmas complete the proof of Theorem 1(1).

Lemma 1.1. If ν < κ is a limit ordinal, then N � “αν+1 is a singular
cardinal having cofinality ω”.

Proof. Since ν < κ is a limit ordinal, as was mentioned above, δν+1 =
αν+1 = α∗ν . By the definition of α∗ν , V � “α∗ν is a strong limit cardinal
having cofinality ω”, so since V ⊆ N , N � “cof(αν+1) = ω”. Then, to see
that N � “αν+1 is a cardinal”, suppose that ρ < αν+1 and N � “f : ρ →
αν+1 is a function”. Since f may be coded by a subset of αν+1, by the
preceding paragraph, f ∈ V [G〈〈ν1,β1〉,...,〈νn,βn〉〉] ⊆ N for the appropriate
generic object G〈〈ν1,β1〉,...,〈νn,βn〉〉. Because G〈〈ν1,β1〉,...,〈νn,βn〉〉 is V -generic over
a partial ordering forcing equivalent to a partial ordering having cardinality
less than αν+1, f cannot witness that αν+1 is no longer a cardinal. This
completes the proof of Lemma 1.1.

Lemma 1.2. N � “All successor cardinals except successors of uncount-
able limit cardinals are regular + Every uncountable limit cardinal is singular
+ The successor of every uncountable limit cardinal is singular of cofinal-
ity ω”.

Proof. By our earlier remarks, N � “δν is a cardinal, except possibly if
ν = ν ′ + 1 and ν ′ is a limit ordinal”. By Lemma 1.1, for such a ν, N �
“δν = αν is a singular cardinal of cofinality ω”. Since as we have already
observed, N � “∀ν [δν ≤ ℵν ]”, an easy induction in conjunction with the
fact that N � “For every limit ordinal ν, δν = αν = ℵν is singular + If
ν = ν ′ + 1 and ν ′ is not a limit ordinal, then δν is a regular cardinal”
now shows that N � “∀ν [δν = ℵν ]”. In particular, we may also infer that
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N � “All successor cardinals except successors of uncountable limit cardinals
are regular + Every uncountable limit cardinal is singular + The successor of
every uncountable limit cardinal is singular of cofinality ω”. This completes
the proof of Lemma 1.2.

Lemmas 1.1 and 1.2 complete the proof of Theorem 1(1).

To prove Theorem 1(2) (and thereby complete the proof of Theorem 1),
we assume ZF and that all uncountable limit cardinals are singular and the
successor of every uncountable limit cardinal is singular. Let Φ(ρ) be the
statement “ρ is a singular cardinal”. Since ZFC ` “All successor cardinals
are regular”, if Φ(ρ) holds, there is no inner model of ZFC in which ρ is a
successor cardinal. Further, by assumption, there is a proper class of cardinals
δ in which δ is singular and Φ(δ+) is true. Therefore, by [6, Theorem 5] (see
also the work of [7, Section 3.1], from which [6, Theorem 5] is derived), for
every n < ω and every set of ordinals x, M ]

n(x) exists. This completes the
proof of both Theorem 1(2) and Theorem 1.

To sketch the proof of Theorem 2, suppose V � “ZFC + κ is 2[iω1 (κ)]<κ

supercompact”. Let λ = iω1(κ), and let µ<κ+ and R<κ+ be defined exactly
as in the proof of Theorem 1(1) using this value of λ. Define P as the finite
support product ordered componentwise∏

{〈α,β〉 |ω1≤α<β<κ are regular cardinals}

Coll(α,<β)× R<κ+ ,

i.e., P is defined as in the proof of Theorem 1(1), except that the small-
est regular cardinal to which another regular cardinal may be collapsed is
(ω1)V (1). Since this definition of P ensures that (ω1)V is not collapsed (and
so remains a regular cardinal), if we construct N in the analogous manner to
the construction given in the proof of Theorem 1(1), we may use the same
arguments as given in the proof of Theorem 1(1) to prove Theorem 2(1).
The proof of Theorem 2(2) is then exactly the same as the proof of Theorem
1(2). This completes the proof sketch of Theorem 2.

We note that in the proof of Theorem 2, there is nothing special about
cofinality ω1. Other uncountable cofinalities, e.g., ω2, ω3, etc. are also possi-
ble, with the appropriate further modifications analogous to those given in
the proof of Theorem 2. We leave it to interested readers to work out the
details for themselves.

There is of course a vast disparity between the upper and lower bounds
in consistency strength given in Theorems 1 and 2. We conclude by asking
if it is possible to prove equiconsistencies for both of these theorems, and

(1) This idea was also used in the proof of the main theorem of [2].
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not just “sandwich theorems”. Unfortunately, such results remain outside the
reach of current set-theoretic technology.
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