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Summary. We force and construct a model in which GCH and level by level equivalence
between strong compactness and supercompactness hold, along with certain additional “L-
like” combinatorial principles. In particular, this model satisfies the following properties:

(1) ♦δ holds for every successor and Mahlo cardinal δ.
(2) There is a stationary subset S of the least supercompact cardinal κ0 such that for

every δ ∈ S, �δ holds and δ carries a gap 1 morass.
(3) A weak version of �δ holds for every infinite cardinal δ.
(4) There is a locally defined well-ordering of the universe W, i.e., for all κ ≥ ℵ2

a regular cardinal, W�H(κ+) is definable over the structure 〈H(κ+),∈〉 by a
parameter free formula.

The model constructed amalgamates and synthesizes results due to the author, the
author and Cummings, and Asperó and Sy Friedman. It has no restrictions on the structure
of its class of supercompact cardinals and may be considered as part of Friedman’s “outer
model programme”.

1. Introduction and preliminaries. In [11], Sy Friedman introduced
the outer model programme, whose goal is to construct “outer models”, i.e.,
forcing extensions, of models of ZFC containing very large cardinals in which
L-like principles hold. Examples of papers falling under this rubric include,
but are not necessarily limited to, [1], [3], [11], [10], [2], [5], [6], [7], and [8].

The purpose of this paper is to produce another contribution to Fried-
man’s outer model programme. We show that the existence of gap 1 morasses
on a stationary subset of the least supercompact cardinal κ0 and a locally
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defined well-ordering of the universe is consistent with level by level equiv-
alence between strong compactness and supercompactness, together with
certain instances of diamond and square. Specifically, we prove the following
theorem.

Theorem 1. Suppose V � “ZFC + GCH + K 6= ∅ is the class of super-
compact cardinals”. There is then a partial ordering P ⊆ V such that V P �
“ZFC + GCH + K is the class of supercompact cardinals”. In V P, level by
level equivalence between strong compactness and supercompactness holds. In
addition, V P satisfies the following combinatorial properties:

(1) ♦δ holds for every successor and Mahlo cardinal δ (1).
(2) There is a stationary subset S of the least supercompact cardinal κ0

such that for every δ ∈ S, �δ holds and δ carries a gap 1 morass.
(3) A weak version of �δ holds for every infinite cardinal δ. In particular,

�T
δ holds for every infinite cardinal δ, where T = Safe(δ) is a certain

final segment of regular cardinals less than or equal to δ (2).
(4) There is a locally defined well-ordering of the universe W, i.e., for

all regular cardinals κ ≥ ℵ2,W�H(κ+) is definable over the structure
〈H(κ+),∈〉 by a parameter free formula.

The model witnessing the conclusions of Theorem 1 amalgamates and
synthesizes the results of [1], [3], and [5]. Since our ground model has no
restrictions on the structure of its class of supercompact cardinals, neither
does the resulting generic extension. It is produced by forcing over the model
of [3] with a modified version of one of the partial orderings used in [1]
(which will add gap 1 morasses and square sequences to each member of a
certain stationary subset of the least supercompact cardinal) and the partial
ordering of [5]. The key step will be to show that the forcing of [5] preserves
the combinatorial properties previously added, together with level by level
equivalence between strong compactness and supercompactness.

Before beginning the proof of Theorem 1, we give the most pertinent
definitions and facts, many of which are taken from [1] or [3]. When forcing,
q ≥ p means that q is stronger than p. Let κ be a cardinal. We abuse
notation slightly by using both V [G] and V P to denote the generic extension
of V by P, assuming that G is V -generic over P. The partial ordering P is
κ-directed closed if every directed set of elements of P of size less than κ
has an upper bound. P is κ-closed if every increasing chain of elements of
P of size less than κ has an upper bound. P is κ-strategically closed if in
the two person game in which the players construct an increasing sequence

(1) Of course, the fact that ♦δ holds for every successor cardinal δ > ℵ1 follows from
GCH, by Shelah’s famous result [17] on diamonds.

(2) The exact definition of Safe(δ) will be given in Definition 1.2.
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〈pα | α ≤ κ〉 of elements of P, where player I plays odd stages and player
II plays even stages (choosing the trivial condition at stage 0), player II has
a strategy ensuring the game can always be continued. P is ≺κ-strategically
closed if in the two person game in which the players construct an increasing
sequence 〈pα | α < κ〉 of elements of P, where player I plays odd stages and
player II plays even stages (choosing the trivial condition at stage 0), player
II has a strategy ensuring the game can always be continued. Note that for
any partial ordering P, we have the chain of implications κ-directed closed⇒
κ-closed ⇒ ≺κ-strategically closed. In addition, if P is κ-strategically closed
and f : κ→ V is a function in V P, then f ∈ V .

Next, we state a result which will be used in the proof of Theorem 1. This
is a corollary of Theorems 3 and 31 and Corollary 14 of Hamkins’ paper [12].
This theorem is a generalization of Hamkins’ Gap Forcing Theorem and
Corollary 16 of [13] and [14] (and we refer readers to [13], [14], and [12] for
further details). We therefore state the theorem we will be using now, along
with some associated terminology. Suppose P is a partial ordering which
can be written as Q ∗ Ṙ, where |Q| ≤ δ, Q is nontrivial, and Q “Ṙ is
δ-strategically closed”. In Hamkins’ terminology of [12], P admits a closure
point at δ. In Hamkins’ terminology of [13] and [14], P is mild with respect
to a cardinal κ iff every set of ordinals x in V P of size below κ has a “nice”
name τ in V of size below κ, i.e., there is a set y in V , |y| < κ, such that any
ordinal forced by a condition in P to be in τ is an element of y. Also, as in
the terminology of [13], [14], [12], and elsewhere, an embedding j : V → M
is amenable to V when j�A ∈ V for any A ∈ V . The specific corollary of
Theorems 3 and 31 and Corollary 14 of [12] we will be using is then the
following.

Theorem 2 (Hamkins). Suppose that V [G] is a forcing extension ob-
tained by forcing that admits a closure point at some regular δ < κ. Suppose
further that j : V [G] → M [j(G)] is an embedding with critical point κ for
which M [j(G)] ⊆ V [G] and M [j(G)]δ ⊆ M [j(G)] in V [G]. Then M ⊆ V ;
indeed, M = V ∩ M [j(G)]. If the full embedding j is amenable to V [G],
then the restricted embedding j�V : V → M is amenable to V . If j is de-
finable from parameters (such as a measure or extender) in V [G], then the
restricted embedding j�V is definable from the names of those parameters
in V . Finally, for any pair of cardinals λ ≥ κ, if P is mild with respect to κ
and κ is λ strongly compact in V [G], then κ is λ strongly compact in V .

It immediately follows from Theorem 2 that any cardinal κ which is λ su-
percompact in a generic extension obtained by forcing that admits a closure
point below κ (such as at or less than the least inaccessible cardinal) must
also be λ supercompact in the ground model. In particular, if V is a forcing
extension of V by a partial ordering that admits a closure point at or less
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than the least inaccessible cardinal in which each supercompact cardinal is
preserved, the class of supercompact cardinals in V remains the same as in V .

Suppose V is a model of ZFC in which for all regular cardinals κ < λ,
κ is λ strongly compact iff κ is λ supercompact, except possibly if κ is a
measurable limit of cardinals δ which are λ supercompact. Such a model
will be said to witness level by level equivalence between strong compactness
and supercompactness. Note that the exception is provided by a theorem of
Menas [16], who showed that if κ is a measurable limit of cardinals δ which
are λ strongly compact, then κ is λ strongly compact but need not be λ
supercompact. Models in which level by level equivalence between strong
compactness and supercompactness holds nontrivially were first constructed
in [4].

We presume familiarity with the combinatorial notions of �, ♦ and its
variants, and morasses. We refer readers to [1], [3], and [7] for further informa-
tion. Since it is somewhat less familiar, however, we do state a weak version
of �γ , �T

γ , compatible with supercompact cardinals. Square sequences of this
kind were first shown to be consistent with supercompactness by Foreman
and Magidor [9, p. 191], using techniques of Baumgartner. In the notation of
Definition 1.1, Foreman and Magidor showed that �{κ

+n|n<ω}
κ+ω is consistent

with κ being supercompact.
Given a set T of regular cardinals, we denote by cof(T ) the class of

ordinals α such that cf(α) ∈ T .
Definition 1.1. Let γ be an infinite cardinal, and let T be a set of

regular cardinals which are less than or equal to γ. Then a �T
γ sequence is a

sequence 〈Cα | α ∈ γ+ ∩ cof(T )〉 such that

1. Cα is club in α, and ot(Cα) ≤ γ.
2. If β ∈ lim(Cα) ∩ lim(Cα′), then Cα ∩ β = Cα′ ∩ β.

�T
γ holds if and only if there is a �T

γ sequence.

Definition 1.2. For each infinite cardinal γ, a regular cardinal µ is safe
for γ if and only if

1. µ ≤ γ.
2. For every cardinal λ ≤ γ, if λ is γ+ supercompact, then λ ≤ µ.

Safe(γ) is the set of safe regular cardinals for γ.

We observe that the safe set is a final segment of REG∩ (γ+1), and that
the safe set can only be empty when γ is a singular limit of cardinals which
are γ+ supercompact. In addition, by the remarks immediately following the
statement of Theorem 2, Safe(γ) is upwards absolute to any cofinality (and
hence cardinal) preserving generic extension by a partial ordering admitting
a closure point at or below the least inaccessible cardinal.
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2. The proof of Theorem 1. Suppose V � “ZFC + GCH + K 6= ∅ is
the class of supercompact cardinals”. By first forcing with the partial ordering
of [3], we assume in addition that level by level equivalence between strong
compactness and supercompactness holds in V and that V � “♦δ holds for
every regular cardinal δ (3) + �T

δ holds for every infinite cardinal δ, where
T = Safe(δ)”.

Let κ0 be the least supercompact cardinal, and let S = {δ < κ0 | δ is a
non-measurable Mahlo limit of strong cardinals}. As in [1], S is stationary.
This allows us to define our first partial ordering P∗ = 〈〈Pδ, Q̇δ〉 | δ < κ0〉
as the reverse Easton iteration of length κ0 which begins by forcing with
Add(ℵ1, 1), the partial ordering for adding a Cohen subset of ℵ1. For any
stage δ > 0, Q̇δ is a term for the trivial partial ordering {∅}, except if δ ∈ S.
Under these circumstances, Q̇δ = Q̇0

δ ∗ Q̇1
δ , where Q̇0

δ is a term for the partial
ordering of [1] which adds a �δ sequence, and Q̇1

δ is a term for the partial
ordering of [11] (see also [7]) which adds a gap 1 morass at δ (4). Since P∗ is
a reverse Easton iteration of length κ0 and κ0 is Mahlo, P∗ is κ0-c.c. Hence,
it follows that V P∗ � “S is a stationary subset of κ0”.

Suppose δ ∈ S. It is inductively the case that forcing with either Pδ or
Pδ ∗ Q̇0

δ preserves GCH. It therefore is true (see [11]) that Pδ∗Q̇0
δ

“Q̇1
δ is

δ-closed and δ+-c.c.”. This of course means that Pδ∗Q̇0
δ

“Forcing with Q̇1
δ

preserves all cofinalities”. It is also the case (because of the way in which
Q1
δ is defined and because Pδ∗Q̇0

δ
“Q̇1

δ is δ-closed and δ+-c.c.”) that Pδ∗Q̇0
δ

“Forcing with Q̇1
δ preserves GCH”. Because �δ is upwards absolute to a

cofinality preserving generic extension, we may thus infer that Pδ∗Q̇0
δ∗Q̇

1
δ

“There is both a �δ sequence and a gap 1 morass at δ”. In addition, since
Pδ “Q̇0

δ is δ-strategically closed”, Pδ “Q̇δ = Q̇0
δ ∗ Q̇1

δ is ≺δ-strategically
closed”. We may consequently conclude that V P∗ � “S is a stationary subset
of κ0 such that for every δ ∈ S, �δ holds and δ carries a gap 1 morass”.
Further, P∗ admits a closure point at ℵ1, and inductively, forcing with P∗
preserves cofinalities. Thus, by our remarks immediately following Definition
1.2, Safe(δ) is upwards absolute to V P∗ for every infinite cardinal δ. This
means that V P∗ � “�T

δ holds for every infinite cardinal δ, where T = Safe(δ)”.

(3) In fact, forcing with the partial ordering of [3] actually allows us to assume that
V � “♦+

δ holds for every δ which is the successor of a regular cardinal”.
(4) Quoting [1], the partial ordering for adding a �δ sequence consists of proper initial

segments of �δ sequences, ordered by end-extension. Quoting [11], the partial ordering for
adding a gap 1 morass at δ consists of proper initial segments of a gap 1 morass at δ up to
some top level, together with a map of an initial segment of this top level into δ+ which
obeys the requirements of a morass map. The ordering is by end-extending the morass up
to its top level and requiring that the map from the given initial segment of its top level
into δ+ factors as the composition of a map into the top level of the stronger condition,
followed by the map given by the stronger condition into δ+.
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By exactly the same arguments as in [1, Lemma 1.7], we have that if V �
“δ < λ are such that δ is λ supercompact and λ is regular”, then V P∗ � “δ is λ
supercompact” (5). This means that each supercompact cardinal is preserved
from V to V P∗ . Consequently, since P∗ admits a closure point at ℵ1, by our
remarks immediately following the statement of Theorem 2, V P∗ � “K is the
class of supercompact cardinals (so κ0 is the least supercompact cardinal)”.
Further, V P∗ � “Level by level equivalence between strong compactness and
supercompactness holds”, by the identical argument to the one given in the
proof of [1, Lemma 1.3] (6).

Since an inductive argument together with the facts of the preceding
paragraph show that V P∗ � GCH, Shelah’s result of [17] immediately implies
that V P∗ � “♦δ holds for every successor cardinal δ > ℵ1”. Because the first
nontrivial stage of P∗ adds a Cohen subset of ℵ1, as in [1], V P∗ � “♦ℵ1 holds”,
i.e., V P∗ � “♦ holds”. Now, for δ such that V P∗ � “δ is a Mahlo cardinal”,
it is the case that V � “δ is a Mahlo cardinal”. If we write P∗ = Pδ ∗ Ṗδ,
then Pδ is δ-c.c., |Pδ| ≤ δ, and Pδ “Ṗδ is ≺δ-strategically closed” (7). By
[2, Facts 1.1 and 1.2], this means that ♦δ is preserved from V to V P∗ , so
V P∗ � “♦δ holds for every successor and Mahlo cardinal δ”. Hence, V P∗

satisfies properties (1)–(3) of Theorem 1, together with GCH, level by level
equivalence between strong compactness and supercompactness, and the fact
that K is the class of supercompact cardinals.

We complete the proof of Theorem 1 by forcing over V P∗ with a partial
ordering P∗∗ ⊆ V P∗ which preserves everything mentioned in the last sen-
tence of the preceding paragraph and also adds property (4) of Theorem 1.
P∗∗ = Add(ℵ1, 1) ∗ Ẇ, where Ẇ is a term for Asperó and Friedman’s reverse
Easton class iteration W of [5] for adding a locally defined well-ordering W

(5) An outline of the proof is as follows. By the Lévy–Solovay results [15], this is
certainly true if δ > κ0. If δ = κ0 and λ > κ0 is a regular cardinal, let j : V → M be an
elementary embedding witnessing the λ supercompactness of κ0 such that M � “κ0 is not
λ supercompact”. We may then write j(P∗) = P∗ ∗ Q̇, where the first ordinal at which Q̇
is forced to do nontrivial forcing is well above λ. A standard lifting argument now shows
that V P∗ � “κ0 is λ supercompact”. Finally, if δ < κ0 and V � “δ is λ supercompact and
λ is regular”, it follows as in [1] that λ is below the least V -strong cardinal above δ. If
we write P∗ = Pδ ∗ Ṗδ, then Pδ “Ṗδ is η-strategically closed for η the least inaccessible
cardinal above λ”. Therefore, to show that V P∗ � “δ is λ supercompact”, it suffices to show
that V Pδ � “δ is λ supercompact”. If |Pδ| < δ, then this follows from the results of [15],
and if |Pδ| = δ, then this follows from the same argument as when δ = κ0.

(6) This argument is analogous to the one found in the proof of Lemma 2.1 of this
paper. As such, more details will be given when this lemma is proven. The key facts used
are that if V � “δ < λ are such that δ is λ supercompact and λ is regular”, then V P∗ � “δ
is λ supercompact” and that P∗ admits a closure point at ℵ1. The main changes are then
that V1 in Lemma 2.1 is replaced by V , and P∗∗ in Lemma 2.1 is replaced by P∗.

(7) If δ ≥ κ0, then Pδ is forcing equivalent to Pκ0 , and Ṗδ may be taken as a term for
trivial forcing.
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of the universe, i.e., a well-ordering satisfying the conditions mentioned ear-
lier. For the exact definition of W, which is rather involved, we refer readers
to [5]. We mention only a few relevant facts from [5], which are as follows.

(1) Forcing with W (and hence forcing with P∗∗) preserves GCH and all
cofinalities.

(2) Add(ℵ1,1) “Ẇ is ℵ2-directed closed”.
(3) W = B ∗ Ċ, where both B and C are direct limits of proper class

reverse Easton iterations.
(4) For each Mahlo cardinal δ, P∗∗ = Add(ℵ1, 1) ∗ Ẇ = Add(ℵ1, 1) ∗ Ḃδ ∗
Ḃδ ∗ Ċδ ∗ Ċδ, where Add(ℵ1,1) “Ḃδ is δ-c.c.”, Add(ℵ1,1) “|Ḃδ| = δ”,
Add(ℵ1,1)∗Ḃδ “Ḃδ is δ+-directed closed”, Add(ℵ1,1)∗Ḃδ∗Ḃδ “Ċδ is δ-
c.c.”, Add(ℵ1,1)∗Ḃδ∗Ḃδ “|Ċδ| = δ”, and Add(ℵ1,1)∗Ḃδ∗Ḃδ∗Ċδ “Ċδ is δ-
directed closed”.

(5) Forcing with W preserves the λ supercompactness of δ, if λ ≥ δ are
such that δ is λ supercompact and λ is regular.

Let P = P∗ ∗ Ṗ∗∗. By property (1) above, V P = V P∗∗Ṗ∗∗ � GCH.
The following lemma is key to the proof of Theorem 1.

Lemma 2.1. V P∗∗Ṗ∗∗ = V P � “Level by level equivalence between strong
compactness and supercompactness holds”.

Proof. We follow the proof of [1, Lemma 1.3]. Let V1 = V P∗ , and suppose
V P∗∗

1 � “κ<λ are regular cardinals such that κ is λ strongly compact and
κ is not a measurable limit of cardinals δ which are λ supercompact”. Sup-
pose V1 � “δ is λ supercompact”. By the results of [15], V Add(ℵ1,1)

1 � “δ is λ

supercompact”, and by property (5) above, V Add(ℵ1,1)∗Ẇ
1 = V P∗∗

1 � “δ is λ su-
percompact” as well. This means that V1 � “κ < λ are regular cardinals such
that κ is not a measurable limit of cardinals δ which are λ supercompact”.

By property (4) above, P∗∗ is mild with respect to κ. Therefore, by the
fact P∗∗=Add(ℵ1, 1)∗Ẇ (so P∗∗ admits a closure point at ℵ1) and Theorem 2,
V1 � “κ is λ strongly compact”. Hence, by level by level equivalence between
strong compactness and supercompactness in V1, V1 � “κ is λ supercompact”.
Consequently, as in the previous paragraph, V P∗∗

1 = V P∗∗Ṗ∗∗ = V P � “κ is λ
supercompact” as well. This completes the proof of Lemma 2.1.

As we have just shown, if V P∗ � “δ < λ are such that δ is λ supercompact
and λ is regular”, then V P∗∗Ṗ∗∗ = V P � “δ is λ supercompact”. Since P∗∗

admits a closure point at ℵ1, as before, it follows that V P∗∗Ṗ∗∗ = V P �
“K is the class of supercompact cardinals (so κ0 is the least supercompact
cardinal)”. Therefore, by Lemma 2.1, the proof of Theorem 1 will be complete
once we have shown that properties (1)–(4) of its statement hold in V P.
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By the definition of P∗∗, property (4) of the statement of Theorem 1
holds in V P∗∗Ṗ∗∗ = V P. Because forcing with P∗∗ adds a Cohen subset of ℵ1

and preserves GCH, as earlier, V P∗∗Ṗ∗∗ = V P � “♦δ holds for every successor
cardinal δ”. For δ such that V P∗∗Ṗ∗∗ = V P � “δ is a Mahlo cardinal”, it is of
course once again the case that V P∗ � “δ is a Mahlo cardinal”. By successively
applying the factorization of P∗∗ found in property (4) above and [2, Facts 1.1
and 1.2], we yet again have that ♦δ is preserved from V P∗ to V P∗∗Ṗ∗∗ = V P,
so as previously, V P � “♦δ holds for every successor and Mahlo cardinal δ”.
Thus, property (1) of the statement of Theorem 1 holds in V P.

To show that properties (2) and (3) of the statement of Theorem 1 hold
in V P, we begin by assuming that δ ∈ S. Because both �δ and the existence
of a gap 1 morass at δ are upwards absolute to a cofinality preserving generic
extension, V P∗∗Ṗ∗∗ = V P � “�δ holds, and δ carries a gap 1 morass”. Once
more, by successively applying the factorization of P∗∗ given in property
(4) above, together with its chain condition and directed closure properties,
we may infer that V P∗∗Ṗ∗∗ = V P � “S is a stationary subset of κ0”. Thus,
property (2) of the statement of Theorem 1 holds in V P. Then, since P∗∗
admits a closure point at ℵ1 and forcing with P∗∗ preserves cofinalities, we
have as earlier that Safe(δ) is upwards absolute to V P∗∗Ṗ∗∗ = V P for every
infinite cardinal δ. By another application of upwards absoluteness, we have
as before that V P∗∗Ṗ∗∗ = V P � “�T

δ holds for every infinite cardinal δ, where
T = Safe(δ)”. Hence, property (3) of the statement of Theorem 1 holds in V P.
This completes the proof of Theorem 1.

We conclude by asking the general question of which additional L-like
principles are consistent with GCH and level by level equivalence between
strong compactness and supercompactness. In particular, as is true of the
model constructed in [3], is it possible to infer that ♦+

δ holds for every δ
which is the successor of a regular cardinal in the model of Theorem 1? Is it
possible to infer that ♦δ holds in this model for any non-Mahlo inaccessible
cardinal δ? Is it possible to obtain further instances of morasses? By [6, page
644, last paragraph], ♦+

δ for δ a regular cardinal is destroyed by forcing with
Add(δ, δ+) (the standard partial ordering for adding δ+ many Cohen subsets
of δ). In addition, the preservation theorems for ♦δ when δ is inaccessible
seem to require a chain condition which is automatically true only when δ
is also a Mahlo cardinal. It is therefore unclear at the moment which partial
orderings preserve the various forms of ♦.
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