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Summary. New concepts of Lebesgue measure on R∞ are proposed and some of their
realizations in the ZFC theory are given. Also, it is shown that Baker’s both measures [1],
[2], Mankiewicz and Preiss–Tišer generators [6] and the measure of [4] are not α-standard
Lebesgue measures on R∞ for α = (1, 1, . . .).

We discuss the problem of existence of an analog of Lebesgue measure
on the vector space R∞ =

∏∞
i=1 R of all real-valued sequences equipped with

the Tikhonov topology.
R. Baker [1] introduced the notion of “Lebesgue measure” on R∞ as

follows: a measure λ which is the completion of a translation-invariant Borel
measure on R∞ is called a Lebesgue measure on R∞ if for any measurable
rectangle

∏∞
i=1(ai, bi) with −∞ < ai < bi <∞ and 0 ≤

∏∞
i=1(bi − ai) <∞,

we have

λ
( ∞∏
i=1

(ai, bi)
)

=
∞∏
i=1

(bi − ai),

where
∞∏
i=1

(bi − ai) := lim
n→∞

n∏
i=1

(bi − ai).

Subsequently, Baker [2] extended this notion as follows: a measure λ which
is the completion of a translation-invariant Borel measure on R∞ is called a
Lebesgue measure if for any measurable rectangle

∏∞
i=1Ri with Ri ∈ B(R)
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and 0 ≤
∏∞
i=1m(Ri) <∞, we have

λ
( ∞∏
i=1

Ri

)
=
∞∏
i=1

m(Ri),

where m denotes the linear Lebesgue measure on R.
In [1] and [2] Baker constructed examples of Lebesgue measures in the

respective sense.
To propose a new concept of Lebesgue measure on R∞ we point out the

following two simple facts.

Fact 1. Let µ be a probability measure defined on a measure space (E,S).
Then the product measure µN defined on (EN, SN) has the following property:
if f is any permutation of N and Af ((xk)k∈N) := (xf(k))k∈N for (xk)k∈N
∈ EN, then µN(Af (X)) = µN(X) for every X ∈ SN.

Fact 2. The n-dimensional Lebesgue measure `n on Rn has the following
property: if f is any permutation of {1, . . . , n} and

Af ((xk)1≤k≤n) = (xf(k))1≤k≤n ((xk)1≤k≤n ∈ Rn),

then `n(Af (X)) = `n(X) for every X ∈ B(Rn).

In view of these facts we can say that Baker’s measures of [1], [2] do not
have the essential property of a product measure of being invariant under
the group of all canonical permutations (1) of R∞.

Indeed, if we consider the infinite-dimensional rectangular set

X =
∞∏
k=1

[0, e(−1)k/k],

then for every non-zero real number a there exists a permutation fa of N
such that λ(Afa(X)) = a, where λ is any of Baker’s measures of [1], [2].

To introduce new concepts of Lebesgue measure on R∞, we need some
definitions.

Let (βj)j∈N ∈ [0,+∞]N.

Definition 1. We say that β ∈ [0,+∞] is the ordinary product of num-
bers (βj)j∈N if

β = lim
n→∞

n∏
i=1

βi.

The ordinary product of (βj)j∈N is denoted by (O)
∏
i∈N βi.

(1) Let f be any permutation of N. The mapping Af : R∞ → R∞ defined by
Af ((xk)k∈N) = (xf(k))k∈N for (xk)k∈N ∈ R∞ is called a canonical permutation of R∞.
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Definition 2. The standard product of numbers (βi)i∈N is denoted by
(S)
∏
i∈N βi and defined as follows:

(S)
∏
i∈N

βi =


0 if

∑
i∈N−

ln(βi) = −∞,

where N− = {i : ln(βi) < 0} (2),

e
P

i∈N ln(βi) if
∑
i∈N−

ln(βi) 6= −∞.

Let α = (nk)k∈N ∈ (N \ {0})N. We set

F0 = [0, n0] ∩ N, F1 = [n0 + 1, n0 + n1] ∩ N, . . . ,

Fk = [n0 + · · ·+ nk−1 + 1, n0 + · · ·+ nk] ∩ N, . . . .

Definition 3. We say that β ∈ [0,+∞] is the ordinary α-product of
numbers (βi)i∈N if β is the ordinary product of the numbers (

∏
i∈Fk

βi)k∈N.
The ordinary α-product of (βi)i∈N is denoted by (O, α)

∏
i∈N βi.

Definition 4. We say that β ∈ [0,+∞] is the standard α-product of
(
∏
i∈Fk

βi)k∈N if β is the standard product of (
∏
i∈Fk

βi)k∈N. The standard
α-product of (βi)i∈N is denoted (S, α)

∏
i∈N βi.

Definition 5. Let α = (nk)k∈N ∈ (N\{0})N. Let (α)OR be the class of
all infinite-dimensional measurable rectangles R =

∏
i∈NRi (Ri ∈ B(Rni))

for which the ordinary α-product of (mni(Ri))i∈N exists and is finite.
We say that a measure λ which is the completion of a translation-

invariant Borel measure is an ordinary α-Lebesgue measure (or, briefly, λ ∈
O(α)LM) if for every R ∈ (α)OR we have

λ(R) = (O)
∏
k∈N

mnk(Rk).

Definition 6. Let α = (nk)k∈N ∈ (N\{0})N. Let (α)SR be the class of
all infinite-dimensional measurable rectangles R =

∏
i∈NRi (Ri ∈ B(Rni))

for which the standard α-product of (mni(Ri))i∈N exists and is finite.
We say that a measure λ which is the completion of a translation-

invariant Borel measure is a standard α-Lebesgue measure on R∞ (or, briefly,
λ ∈ S(α)LM) if for every R ∈ (α)SR we have

λ(R) = (S)
∏
k∈N

mnk(Rk).

Proposition 1. For every α = (nk)k∈N ∈ (N \ {0})N we have the strict
inclusion

(α)OR ⊂ (α)SR.

(2) We set ln(0) = −∞.
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Proof. Suppose that R =
∏
i∈NRi ∈ (α)OR. This means that

0 ≤ lim
n→∞

n∏
k=1

mnk(Rk) <∞.

Three cases are possible:
(1)

∑∞
i=1 ln(mnk(Rk)) is convergent to −∞;

(2)
∑∞

i=1 ln(mnk(Rk)) is conditionally convergent to a finite real number;
(3)

∑∞
i=1 ln(mnk(Rk)) is absolutely convergent to a finite real number.

Conditions (1) and (2) each imply that

(S)
∏
k∈N

mnk(Rk) = 0.

Condition (3) implies that

0 < (S)
∏
k∈N

mnk(Rk) <∞.

The main purpose of the present paper is to give a new construction of
translation-invariant Borel measures on R∞ which will be different from the
construction of [2] in the sense that it does not apply the metric properties
of R∞. It will be an adaptation of a construction from general measure theory
which will allow us to construct interesting examples of analogs of Lebesgue
measure on the entire space.

Let (E,S) be a measurable space and let R be any subclass of the σ-
algebra S. Let (µB)B∈R be a family of σ-finite measures such that for B ∈ R
we have dom(µB) = S ∩ P(B), where P(B) denotes the power set of B.

Definition 7. The family (µB)B∈R is called consistent if

(∀X)(∀B1, B2)(X ∈ S & B1, B2 ∈ R → µB1(X ∩B1 ∩B2)
= µB2(X ∩B1 ∩B2)).

The following assertion plays a key role in our investigations.

Lemma 1. Let (µB)B∈R be a consistent family of σ-finite measures. Then
there exists a measure µR on (E,S) such that

(i) µR(B) = µB(B) for every B ∈ R;
(ii) if there exists an uncountable family of pairwise disjoint sets {Bi :

i ∈ I} ⊆ R such that 0 < µBi(Bi) < ∞, then the measure µR is
non-σ-finite;

(iii) if G is a group of measurable transformations of E such that G(R) =
R and

(∀B)(∀X)(∀g)((B ∈ R & X ∈ S ∩ P(B) & g ∈ G)→ µg(B)(g(X))
= µB(X)),

then the measure µR is G-invariant.
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Proof. If X ∈ S is covered by a countable family (An)n∈N of elements
of R, then we put

µR(X) =
∑
n∈N

µAn

((
An \

n−1⋃
k=1

Ak

)
∩X

)
.

We set µR(X) = +∞ if X is not covered by any countable family of elements
of R.

Let us show the correctness of the definition of the functional µR.
If X is not covered by any countable family of elements of R, then the

correctness is obvious.
Now let X be covered by two countable families (An)n∈N, (Bn)n∈N ⊂ R.

We have to show that∑
n∈N

µAn

((
An \

n−1⋃
k=1

Ak

)
∩X

)
=
∑
n∈N

µBn

((
Bn \

n−1⋃
k=1

Bk

)
∩X

)
.

Indeed, we have∑
n∈N

µAn

((
An \

n−1⋃
k=1

Ak

)
∩X

)
=
∑
n∈N

µAn

((
An \

n−1⋃
k=1

Ak

)
∩
( ⋃
m∈N

(
Bm \

m−1⋃
l=1

Bl

))
∩X

)
=
∑
n∈N

µAn

( ⋃
m∈N

((
An \

n−1⋃
k=1

Ak

)
∩
(
Bm \

m−1⋃
l=1

Bl

))
∩X

)
=
∑
n∈N

∑
m∈N

µAn

((
An \

n−1⋃
k=1

Ak

)
∩
(
Bm \

m−1⋃
l=1

Bl

)
∩X

)
=
∑
m∈N

∑
n∈N

µAn

((
An \

n−1⋃
k=1

Ak

)
∩
(
Bm \

m−1⋃
l=1

Bl

)
∩X

)
=
∑
m∈N

∑
n∈N

µBm

((
An \

n−1⋃
k=1

Ak

)
∩
(
Bm \

m−1⋃
l=1

Bl

)
∩X

)
=
∑
m∈N

µBm

(⋃
n∈N

(
An \

n−1⋃
k=1

Ak

)
∩
(
Bm \

m−1⋃
l=1

Bl

)
∩X

)
=
∑
m∈N

µBm

((
Bm \

m−1⋃
l=1

Bl

)
∩X

)
.

Thus the correctness is proved.
Let us prove that the functional µR is σ-additive.
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Let (Xk)k∈N be a countable family of pairwise disjoint elements of S.

Case I. Each Xk is covered by a countable family of elements ofR. Then
so will be their union. Let (Am)m∈N be a family of elements of R that covers⋃
k∈NXk. We have

µR

(⋃
k∈N

Xk

)
=
∑
n∈N

µAn

((
An \

n−1⋃
k=1

Ak

)
∩
(⋃
k∈N

Xk

))

=
∑
n∈N

∑
k∈N

µAn

((
An \

n−1⋃
k=1

Ak

)
∩Xk

)

=
∑
k∈N

∑
n∈N

µAn

((
An \

n−1⋃
k=1

Ak

)
∩Xk

)
=
∑
k∈N

µR(Xk).

Case II. Let us assume that not every element of the family (Xk)k∈N is
covered by a countable family of elements of R. Then neither will be their
union and we get

µR

(⋃
k∈N

Xk

)
= +∞ =

∑
k∈N

µR(Xk).

Proof of (i). We set Ak = B for k ∈ N. Then the family (Ak)k∈N covers
B and by the definition of µR we have

µR(B) = µB(B) + µB((B \B) ∩B) + · · · = µB(B).

The proof of (ii) is obvious and we omit it.

Proof of (iii). Let G be a group of measurable transformations of E such
that G(R) = R and

(∀B)(∀X)(∀g)((B ∈ R & X ∈ B ∩ S & g ∈ G)→ µg(B)(g(X)) = µB(X)).

We are to show that the measure µR is G-invariant.
Let X ∈ S be covered by a countable family (An)n∈N of elements of R.

Then g(X) will be covered by (g(An))n∈N, which is a countable family of
elements of R.

We have

µR(g(X)) =
∑
n∈N

µg(An)

((
g(An) \

n−1⋃
k=1

g(Ak)
)
∩ g(X)

)
=
∑
n∈N

µg(An)

(
g
((
An \

n−1⋃
k=1

Ak

)
∩X

))
=
∑
n∈N

µAn

((
An \

n−1⋃
k=1

Ak

)
∩X

)
= µR(X).
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If X is not covered by any countable family of elements of R, then the same
is true for g(X) and we get

µR(g(X)) = µR(X) = +∞.

Lemma 2. Let α = (ni)i∈N ∈ (N \ {0})N. Set R = (α)OR. Suppose that
R =

∏
i∈NRi ∈ R with Ri ∈ B(Rni) for i ∈ N.

For X ∈ B(R), set µR(X) = 0 if

(O)
∏
i∈N

mni(Ri) = 0,

and

µR(X) = (O)
∏
i∈N

mni(Ri)×
(∏
i∈N

mni
Ri

mni(Ri)

)
(X)

otherwise, where mni Ri
mni (Ri)

is a Borel probability measure defined on Ri as
follows:

mni
Ri

mni(Ri)
(X) =

mni(Y ∩Ri)
mni(Ri)

for X ∈ B(Ri).

Then the family (µR)R∈R of measures is consistent.

Proof. Let R1 =
∏∞
i=1R

(1)
i and R2 =

∏∞
i=1R

(2)
i be two elements of R.

Without loss of generality it can be assumed that 0 < (O)
∏
i∈Nm

ni(R(1)
i )

<∞ and 0 < (O)
∏
i∈Nm

ni(R(2)
i ) <∞.

We will show that µR1(X) = µR2(X) for every X ∈ B(R1 ∩ R2). In
this case it is sufficient to show that µR1(Y ) = µR2(Y ) for every elementary
measurable rectangle Y =

∏∞
i=1 Yi in R1 ∩ R2. Note that by an elementary

measurable rectangle Y =
∏∞
i=1 Yi in R1 ∩R2 we mean a subset of R1 ∩R2

such that Yi ∈ B(R(1)
i ∩R

(2)
i ) for every i ∈ N and, in addition, there exists a

natural number n such that Yi = R
(1)
i ∩R

(2)
i for i ≥ n.

For every i ∈ N and every Yi ∈ B(R(1)
i ∩R

(2)
i ) we have

mni(Yi ∩R(1)
i ∩R

(2)
i ) = mni(Yi ∩R(1)

i ) = mni(Yi ∩R(2)
i ).

This implies that

(O)
∞∏
i=1

mni(Yi ∩R(1)
i ∩R

(1)
i ) = lim

n→∞

n∏
i=1

mni(Yi ∩R(1)
i ∩R

(1)
i )

= lim
n→∞

n∏
i=1

mni(Yi ∩R(1)
i ) = (O)

∏
i∈N

mni(Yi ∩R(1)
i ).
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Analogously, we have

(O)
∏
i∈N

mni(Yi ∩R(1)
i ∩R

(1)
i ) = lim

n→∞

n∏
i=1

mni(Yi ∩R(1)
i ∩R

(1)
i )

= lim
n→∞

n∏
i=1

mni(Yi ∩R(2)
i ) = (O)

∏
i∈N

mni(Yi ∩R(2)
i ).

Hence we get

µR1

( ∞∏
i=1

Yi

)
= (O)

∏
i∈N

mni(Yi ∩R(1)
i ) = (O)

∏
i∈N

mni(Yi ∩R(1)
i ∩R

(1)
i )

= (O)
∏
i∈N

mni(Yi ∩R(2)
i ) = µR2

( ∞∏
i=1

Yi

)
.

Since the class A(R1 ∩ R2) of all finite disjoint unions of elementary
measurable rectangles in R1 ∩ R2 is a ring, and since, by definition, the
class B(R1 ∩R2) of Borel measurable sets of R1 ∩R2 is the minimal σ-ring
generated by A(R1 ∩R2), we claim (cf. [7, Theorem B, p. 27]) that the class
of all sets in R1∩R2 for which this equality holds coincides with B(R1∩R2).

The consistency of the family (µR)R∈R of measures is proved.

Lemma 3. Let α = (ni)i∈N ∈ (N \ {0})N. Set R = (α)SR. Suppose
that R =

∏
i∈NRi ∈ R with Ri ∈ B(Rni) for i ∈ N and R ∈ (α)SR. For

X ∈ B(R), set µR(X) = 0 if

(S)
∏
i∈N

mni(Ri) = 0,

and
µR(X) = (S)

∏
i∈N

mni(Ri)×
(∏
i∈N

mni
Ri

mni(Ri)

)
(X)

otherwise, where mni Ri
mni (Ri)

is the Borel probability measure defined on Ri as in
Lemma 2. Then the family (µR)R∈R of measures is consistent.

The proof of Lemma 3 can be obtained by the scheme applied in the
proof of Lemma 2.

Let us consider some corollaries of Lemmas 1–3.

Theorem 1. For every α = (ni)i∈N ∈ (N \ {0})N, there exists a Borel
measure µα on R∞ which is in O(α)LM.

Proof. By Lemma 2, the class (µR)R∈(α)OR of measures is consistent.
Since the class (α)OR is translation-invariant and condition (iii) in Lemma 1
is satisfied with respect to the group of all translations of R∞, Lemma 1
shows that µα := λ(α)OR ∈ O(α)LM.
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Theorem 2. For every α = (ni)i∈N ∈ (N \ {0})N, there exists a Borel
measure να on R∞ which is in S(α)LM.

Proof. By Lemma 3, the class (µR)R∈(α)SR of measures is consistent.
Since the class (α)SR is translation-invariant and condition (iii) in Lemma 1
is satisfied with respect to the group of all translations of R∞, by Lemma 1
we conclude that να := λ(α)SR ∈ S(α)LM.

Let µ1 and µ2 be two measures defined on a measurable space (E,S).

Definition 8 ([4, p. 124]). We say that µ1 is absolutely continuous with
respect to µ2, in symbols µ1 � µ2, if

(∀X)(X ∈ S & µ2(X) = 0→ µ1(X) = 0).

Definition 9 ([4, p. 126]). Two measures µ1 and µ2 for which both
µ1 � µ2 and µ2 � µ1 are called equivalent, in symbols µ1 ≡ µ2.

We have the following assertion.

Theorem 3. For every α = (ni)i∈N ∈ (N \ {0})N, we have να � µα and
the measures να and µα are not equivalent.

Proof. Suppose that µα(D) = 0 for some D ∈ B(R∞). This means that
D is covered by a countable family (Dk)k∈N of elements of (α)OR such that
Dk =

∏
i∈ND

(k)
i , D

(k)
i ∈ B(Rni) (k, i ∈ N) and µDk

(D ∩Dk) = 0 for each k.
We have to show that να(D) < ε for all ε > 0.
If µDk

(Dk) = 0, then it is obvious that µDk
(D ∩Dk) = 0 < ε/2k+1.

Now assume µDk
(Dk) > 0. We have µDk

(D∩Dk) = 0. By Carathéodory’s
well known theorem there exists a sequence (A(k,ε)

s )s∈N = (
∏
i∈NA

(s)
i )s∈N of

elementary measurable rectangles in Dk for which A
(s)
i ∈ Rni for s, i ∈ N,

D ∩Dk ⊆
⋃
s∈NA

(k,ε)
s and∑

s∈N
µDk

(∏
i∈N

A
(s)
i

)
<

ε

2k+1
.

We set

A =
{
s :
∑
i∈N

ln(mni(A(s)
i )) is not absolutely convergent

}
.

Then we get

να(D ∩Dk) ≤ να
(⋃
s∈N

A(k,ε)
s

)
≤
∑
s∈N

να(A(k,ε)
s )

=
∑
s∈A

να(A(k,ε)
s ) +

∑
s∈N\A

να(A(k,ε)
s )

=
∑
s∈A

(S)
∏
i∈N

mni(A(s)
i ) +

∑
s∈N\A

(S)
∏
i∈N

mni(A(s)
i )
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= 0 +
∑
s∈N\A

(0)
∏
i∈N

mni(A(s)
i )

=
∑
s∈N\A

µα(A(k,ε)
s ) ≤

∑
s∈N

µα(A(k,ε)
s ) ≤ ε

2k+1
.

Finally, we get

να(D) ≤
∑
k∈N

να(D ∩Dk) ≤
∑
k∈N

ε

2k+1
= ε.

The proof of the fact that the measures να and µα are not equivalent can
be obtained as follows: Let D =

∏
i∈NDi with Di ∈ B(Rni) (i ∈ N) be such

that µn0(D0) = 1 and µni(Di) = e(−1)i/i for i ≥ 1. Then we get

µα(D) = (O)
∏
i∈N

mni(Di) = 2

and
να(D) = (S)

∏
i∈N

mni(Di) = 0.

Remark 1. Note that µα coincides with Baker’s measure of [2] for α =
(1, 1, . . .). By Lemmas 1 and 2 we can get the construction of Baker’s measure
of [1]. To do this we consider the class RB of all measurable rectangles∏∞
i=1(ai, bi) with −∞ < ai < bi < ∞ and 0 ≤ (O)

∏
i∈N(bi − ai) < ∞.

Since RB is translation-invariant and the family (µR)R∈RB
of measures is

consistent as a subfamily of the consistent family of measures constructed
in Lemma 2, we claim that Baker’s measure of [1] coincides with λRB

. Note
also that for every β = (mi)i∈N ∈ (N \ {0})N, the measure µβ coincides with
the measure of [8, Theorem 2, p. 7].

Definition 10. Let α = (ni)i∈N ∈ (N \ {0})N be such that ni = nj for
every i, j ∈ N. We set Fi = (a(i)

1 , . . . , a
(i)
n0) for every i ∈ N (see notations

introduced before Definition 3). Let f be any permutation of N such that
for every i ∈ N there exists j ∈ N such that f(Fi) = Fj . Then the map
Af : R∞ → R∞ defined by Af ((zk)k∈N) = (zf(k))k∈N for (zk)k∈N ∈ R∞ is
called a canonical α-permutation of R∞.

The group of transformations generated by all α-permutations and shifts
of R∞ is denoted by Gα.

Corollary 1. For every α = (ni)i∈N ∈ (N \ {0})N for which ni = nj
(i, j ∈ N), the measure να is Gα-invariant.

One can easily prove the following propositions.

Proposition 2. For every α = (ni)i∈N ∈ (N \ {0})N there exists β ∈
(N \ {0})N such that µα and µβ are different.
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Proposition 3. For every α = (ni)i∈N ∈ (N \ {0})N there exists β ∈
(N \ {0})N such that να and νβ are different.

As a corollary of Propositions 2–3 we get

Corollary 2. There does not exist a translation-invariant Borel mea-
sure λ on R∞ such that λ(D) = µα(D) for every α = (ni)i∈N ∈ (N \ {0})N

and every D ∈ B(R∞).

Corollary 3. There does not exist a translation-invariant Borel mea-
sure λ on R∞ such that λ(D) = να(D) for every α = (ni)i∈N ∈ (N \ {0})N

and every D ∈ B(R∞).

Corollary 4. Set

R = {R : R = [0, 1]N + a for some a ∈ R∞}
and

µR(X) = λ((X − a) ∩ [0, 1]N)

for every X ∈ B(R), where λ = µN and µ is a linear probability Lebesgue
measure on [0, 1]. Then the family (µR)R∈R and the class R, being invariant
under the group G, satisfy all conditions of Lemma 1. Hence µR is a G-
invariant measure on R∞.

Corollary 5. Let (L(n)
i )i∈I be the family of all n-dimensional vector

subspaces of R∞ and let `(i)n be the n-dimensional Lebesgue measure on Li.
Set

R = {L(n)
i + a : a ∈ R∞, i ∈ I}

and
µ
L

(n)
i +a

(X) = `(i)n ((X − a) ∩ L(n)
i )

for every X ∈ B(R∞). Then the class R, the family of measures (µR)R∈R and
the group of all translations of R∞ satisfy all conditions of Lemma 1. Hence
there exists a translation-invariant Borel measure µR such that µR(X) =
µ
L

(n)
i +a

(X) for every Borel subset X ⊂ L(n)
i + a.

Though the next three examples are not the particular realizations of
Lemma 1, they are of some interest.

Example 1. The Mankiewicz generator GM [7] is the usual completion
of the functional µ defined by

µ(X) =
∑
a∈`⊥1

µ[0,1]N((X − a) ∩B[0,1]N)

for every X ∈ B(R∞), where

(i) µ[0,1]N denotes Kharazishvili’s quasi-generator of shy sets on R∞
(see [7]),
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(ii) B[0,1]N =
⋃
n∈N(Rn × [0, 1]N\{1,...,n}),

(iii) `⊥1 denotes a linear complement of the vector subspace `1 in R∞.

This measure GM is G-invariant and has the property that X is a stan-
dard cube null set iff X is of GM -measure zero for every X ⊂ R∞.

The measure described in Corollary 4 is different from the Mankiewicz
generator GM . Indeed, if we consider the set (2Z)N, then we observe that it
is not covered by the union of a countable family of elements of the class R,
and hence µR(2ZN) = +∞ whenever GM (2ZN) = 0.

Example 2. Let (Li)i∈I be the family of all n-dimensional vector sub-
spaces of R∞ and let `(i)n be the n-dimensional Lebesgue measure on Li. For
i ∈ I, denote by L⊥i a linear complement of Li. Then the functional GP&T

defined by
G

(n)
P&T (X) =

∑
i∈I

∑
a∈L⊥i

`(i)n ((X − a) ∩ Li)

for X ∈ B(R∞) is a G-invariant Borel measure and GP&T (Y ) = 0 iff Y is
n-dimensional null in the sense of [9] for every Y ⊂ R∞ (see [7]).

Note that G(n)
P&T and the measure µR described in Corollary 5 are dif-

ferent. Indeed, for n > 1, let Sn be an n-dimensional sphere lying in an
n+1-dimensional vector subspace of R∞. Then G(n)

P&T (Sn) = 0, while µR(Sn)
= +∞ because it is not covered by a countable family of elements of R.

Remark 2. For a set
∏
k∈NXk, where Xk = [0, 1/2] for even k and

Xk = [0, k] for odd k, we have

+∞ = λ
(∏
n∈N

Xk

)
6= (S)

∏
k∈N

m(Xk) = 0

for Baker’s measures λ of [1], [2].
For Yk = [0, 1] (k ∈ N), the condition

+∞ = µR

(∏
n∈N

Yk

)
= G

(n)
P&T

(∏
n∈N

Yk

)
> 1 = (S)

∏
k∈N

m(Yk)

implies that the measures described in Corollary 5 and Example 2 are not
α-standard Lebesgue measures for α = (1, 1, . . .).

For the Mankiewicz generator GM described in Example 1 we have

GM

(∏
k∈N

Xk

)
= 0,

but for the set
∏
k∈N Zk =

∏
k∈N([0, 1/2] ∪ [1, 3/2]) we get

0 = GM

(∏
n∈N

Zk

)
6= (S)

∏
k∈N

m(Zk) = 1.
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Example 3 ([5]). For k ∈ N, let Sk be the unit circle in the Euclidean
plane R2. We may identify Sk with the compact group of all rotations of
R2 around the origin. Let λN be the probability Haar measure defined on
the compact group

∏
k∈N Sk. For k ∈ N, define fk(x) = exp{2πxi} for every

x ∈ R.
For E ⊂ RN and g ∈

∏
k∈N Sk, put

fE(g) =
{
card((

∏
k∈N fk)

−1(g) ∩ E) if this is finite,
+∞ otherwise.

In the Solovay model [10], we define the functional µN by

µN(E) =
�

Q
k∈N Sk

fE(g) dλN(g) for E ⊆ R∞.

It was established in [5] that µN is a translation-invariant Borel measure on
R∞ which takes the value one on the set [0, 1]N.

Let us show that µN is not an α-standard Lebesgue measure on R∞ for
α = (1, 1, . . .). Indeed, consider an infinite-dimensional measurable rectangle
R ∈ B(R∞) of the form

R =
∏
i∈N

Ri, where Ri =
i⋃

k=1

[k, k + 1/i[

for every i ∈ N. It is obvious that m(Ri) = 1 for every i ∈ N, which implies
that

0 < 1 = (S)
∏
k∈N

m(Rk) <∞.

Note that fQ
i∈N Ri

(g) = +∞ if g ∈
∏
k∈N fk([0, 1/k[), and = 0 otherwise.

Hence

µN

(∏
i∈N

Ri

)
=

�
Q

k∈N Sk

fQ
i∈N Ri

(g) dλN(g))

= +∞×λN

(∏
k∈N

fk([0, 1/k[)
)

+ 0×λN

(∏
k∈N

Sk\
∏
k∈N

fk([0, 1/k[)
)

= 0 < 1 = (S)
∏
k∈N

m(Rk).

Remark 3. Example 3 shows that Conjecture 1 of [8, p. 9] is not valid,
i.e. µN(D) 6= ν(D) for every ν ∈ O(α)LM (α ∈ (N \ {0})N) and every
D ∈ B(R∞) with 0 ≤ ν(D) <∞. Corollary 2 contains a more precise result,
in particular, it answers negatively Problem 2 of [8, p. 9].

Acknowledgments. The author expresses his thanks to the anonymous
referee for the careful reading of the manuscript and helpful remarks.



222 G. Pantsulaia

This research has been supported by the Georgia National Science Foun-
dation (Grants: # GNSF /ST 07/3-178, # GNSF /ST 08/3-391).

References

[1] R. Baker, “Lebesgue measure” on R∞, Proc. Amer. Math. Soc. 113 (1991), 1023–
1029.

[2] —, “Lebesgue measure” on R∞. II, ibid. 132 (2004), 2577–2591.
[3] J. Cichoń, A. Kharazishvili and B. Węglorz, Subsets of the Real Line, Wydawnictwo

Uniwersytetu Łódzkiego, Łódź, 1995.
[4] P. R. Halmos, Measure Theory, Van Nostrand, Princeton, 1950.
[5] G. R. Pantsulaia, Relations between shy sets and sets of νp-measure zero in Solovay’s

model, Bull. Polish Acad. Sci. Math. 52 (2004), 63–69.
[6] —, Invariant and Quasiinvariant Measures in Infinite-Dimensional Topological Vec-

tor Spaces, Nova Science, 2007.
[7] —, On generators of shy sets on Polish topological vector spaces, New York J. Math.

14 (2008), 235–261.
[8] —, Change of variable formula for “Lebesgue measures” on RN, J. Math. Sci. Adv.

Appl. 2 (2009), 1–12.
[9] D. Preiss and J. Tišer, Two unexpected examples concerning differentiability of Lip-

schitz functions on Banach spaces, in: Geometric Aspects of Functional Analysis
(Israel, 1992–1994), Oper. Theory Adv. Appl. 77, Birkhäuser, Basel, 1995, 219–238.

[10] R. M. Solovay, A model of set theory in which every set of reals is Lebesgue mea-
surable, Ann. of Math. 92 (1970), 1–56.

Gogi Pantsulaia
Department of Mathematics
Georgian Technical University
Kostava St. 77
0175 Tbilisi, Georgia
E-mail: gogi_pantsulaia@hotmail.com

Received October 15, 2008;
received in final form July 16, 2009 (7684)

http://dx.doi.org/10.4064/ba52-1-7
http://dx.doi.org/10.2307/1970696

