On Polynomially Bounded Harmonic Functions on the \mathbb{Z}^{d} Lattice

by
Piotr NAYAR
Presented by Stanistaw KWAPIEŃ

Summary. We prove that if $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ is harmonic and there exists a polynomial $W: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ such that $f+W$ is nonnegative, then f is a polynomial.

1. Introduction. Harmonic functions on the integer lattice are closely related to lattice random walks and have been studied by many authors; an introduction and detailed references can be found in a modern monograph by Woess [8]. Many different methods have been successfully applied, including the extreme point theory [2] and martingale approach [4]. The present paper grew out of the author's bachelor thesis [7] which extended results and methods of Darkiewicz [3]. A similar result for sublinear functions on compactly generated groups of polynomial growth has been obtained by Hebisch and Saloff-Coste [6, Theorem 6.1] by using Gaussian estimates for iterated kernels of random walks.
2. Preliminaries and main results. Let $d \in \mathbb{N}$ and let $\left(e_{i}\right)_{i=1}^{d}$ be the standard orthonormal basis for \mathbb{R}^{d}. A function $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ is called harmonic if it has the mean value property,

$$
f(x)=\frac{1}{2 d} \sum_{i=1}^{d}\left[f\left(x+e_{i}\right)+f\left(x-e_{i}\right)\right] \quad \text { for all } x \in \mathbb{Z}^{d}
$$

We say that $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ is a polynomial if there exists a polynomial $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $f=\left.F\right|_{\mathbb{Z}^{d}}$.

[^0]For $t \geq 0$ let $Y_{1}^{(t)}, \ldots, Y_{d}^{(t)}, Z_{1}^{(t)}, \ldots, Z_{d}^{(t)}$ be independent Poisson random variables with mean t.

We will use the following notation:

- $\|x\|_{p}=\left(\sum_{i=1}^{d}\left|x_{i}\right|^{p}\right)^{1 / p}$ for $p \in[1, \infty)$ and $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$,
- $X_{i}^{(t)}=Y_{i}^{(t)}-Z_{i}^{(t)}$ for $i=1, \ldots, d, X^{(t)}=\sum_{i=1}^{d} X_{i}^{(t)} e_{i}$,
- $g_{t}(l)=\mathbb{P}\left(Y_{1}^{(t)}-Z_{1}^{(t)}=l\right)$ for $l \in \mathbb{Z}$,
- $G_{t}(k)=\prod_{i=1}^{m} g_{t}\left(k_{i}\right)$ for $k=\left(k_{1}, \ldots, k_{m}\right) \in \mathbb{Z}^{m}$,
- $q_{t}(l)=\mathbb{P}\left(Y_{1}^{(t)}=l\right)=e^{-t} t^{l} / l$! for $l \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.

Note that if $t \in \mathbb{N}$ then $q_{t}(0) \leq q_{t}(1) \leq \cdots \leq q_{t}(t-1)=q_{t}(t) \geq q_{t}(t+1) \geq$ $q_{t}(t+2) \geq \cdots$.

We consider the space of all exponentially bounded functions,

$$
\mathcal{L}=\left\{f: \mathbb{Z}^{d} \rightarrow \mathbb{R}\left|\exists_{c_{1}, c_{2}>0}\right| f(x) \mid \leq c_{1} e^{c_{2}\|x\|_{1}} \text { for all } x \in \mathbb{Z}^{d}\right\}
$$

and define a family of operators $\left(\mathcal{P}_{t}\right)_{t \geq 0}, \mathcal{P}_{t}: \mathcal{L} \rightarrow \mathcal{L}$, by

$$
\mathcal{P}_{t}(f)(x)=\mathbb{E} f\left(x+X^{(t)}\right)
$$

TheOrem 2.1. The family $\left(\mathcal{P}_{t}\right)_{t \geq 0}$ is a well-defined semigroup of operators. Moreover, harmonic functions belonging to \mathcal{L} lie in the domain \mathcal{D}_{A} of the infinitesimal generator A of the semigroup $\left(\mathcal{P}_{t}\right)_{t \geq 0}$, and for $f \in \mathcal{D}_{A}$ we have

$$
(A f)(x)=\left.\frac{d}{d t} \mathcal{P}_{t}(f)(x)\right|_{t=0}=\sum_{k \in \mathbb{Z}^{d}:\|k\|_{1}=1} f(x+k)-2 d f(x)
$$

In particular, if $f \in \mathcal{L}$ is harmonic, then $(A f)(x)=0$ for all $x \in \mathbb{Z}^{d}$, and so

$$
\mathcal{P}_{t}(f)(x)=\sum_{k \in \mathbb{Z}^{d}} G_{t}(k) f(x+k)=f(x) \quad \text { for all } x \in \mathbb{Z}^{d}
$$

Proof. If $f \in \mathcal{L}$, then there exist $c_{1}, c_{2}, \tilde{c}_{1}(t)>0$ such that

$$
\left|\mathbb{E} f\left(x+X^{(t)}\right)\right| \leq c_{1} \mathbb{E} e^{c_{2}\left\|x+X^{(t)}\right\|_{1}} \leq c_{1} e^{c_{2}\|x\|_{1}}\left(\mathbb{E} e^{c_{2}\left|X_{1}^{(t)}\right|}\right)^{d}=\tilde{c}_{1}(t) e^{c_{2}\|x\|_{1}}
$$

so $\mathcal{P}_{t}(f) \in \mathcal{L}$. Observe that $\mathcal{P}_{0}(f)=f$. If $s, t \geq 0$ and $\tilde{X}^{(s)}$ is a copy of $X^{(s)}$ independent of $X^{(t)}$, then $X^{(t)}+\tilde{X}^{(s)} \sim X^{(t+s)}$, so one can easily check that $\left(\mathcal{P}_{t}\right)_{t \geq 0}$ is a semigroup. The last part is a simple calculation.

Lemma 2.2. If $\left(r_{i}\right)_{i \in \mathbb{N}}$ are independent ± 1 symmetric Bernoulli random variables and M is a Poisson variable with mean $4 t$, such that M and $\left(r_{i}\right)_{i \in \mathbb{N}}$ are independent, then

$$
X_{1}^{(t)} \sim \frac{1}{2}\left(r_{1}+\cdots+r_{2 M}\right)
$$

Moreover, for $l \in \mathbb{N}_{0}$,

$$
g_{t}(l)=g_{t}(-l)=\sum_{n=0}^{\infty} e^{-4 t} \frac{t^{n}}{n!}\binom{2 n}{n+l},
$$

so if $l_{1}, l_{2} \in \mathbb{Z}$ and $0 \leq l_{1} \leq l_{2}$, then

$$
g_{t}\left(l_{1}\right) \geq g_{t}\left(l_{2}\right) .
$$

Proof. To prove the first statement, it is enough to show that the characteristic functions of both random variables are equal. We have

$$
\begin{aligned}
\phi_{X_{1}^{(t)}}(x) & =\phi_{Y_{1}^{(t)}}(x) \phi_{Z_{1}^{(t)}}(-x)=e^{t\left(e^{i x}-1\right)} e^{t\left(e^{-i x}-1\right)}=e^{t(2 \cos x-2)} \\
& =e^{-4 t \sin ^{2}(x / 2)}
\end{aligned}
$$

and

$$
\begin{aligned}
\phi_{\left(r_{1}+\cdots+r_{2 M}\right) / 2}(x) & =\sum_{n=0}^{\infty} \mathbb{P}(M=n) \phi_{\left(r_{1}+\cdots+r_{2 n}\right) / 2}(x) \\
& =\sum_{n=0}^{\infty} e^{-4 t} \frac{(4 t)^{n}}{n!}\left(\phi_{r_{1} / 2}(x)\right)^{2 n}=e^{-4 t} e^{4 t\left(\phi_{r_{1} / 2}(x)\right)^{2}} \\
& =e^{4 t\left(-1+\cos ^{2}(x / 2)\right)}=e^{-4 t \sin ^{2}(x / 2)},
\end{aligned}
$$

as

$$
\phi_{r_{1} / 2}(x)=\phi_{r_{1}}(x / 2)=\frac{1}{2}\left(e^{-i x / 2}+e^{i x / 2}\right)=\cos (x / 2) .
$$

To finish the proof observe that for $l \in \mathbb{N}_{0}$ we have

$$
\begin{aligned}
g_{t}(l) & =\mathbb{P}\left(\frac{1}{2}\left(r_{1}+\cdots+r_{2 M}\right)=l\right)=\sum_{n=0}^{\infty} \mathbb{P}(M=n) \mathbb{P}\left(r_{1}+\cdots+r_{2 n}=2 l\right) \\
& =\sum_{n=0}^{\infty} e^{-4 t} \frac{(4 t)^{n}}{n!} \frac{1}{2^{2 n}}\binom{2 n}{n+l}=\sum_{n=0}^{\infty} e^{-4 t} \frac{t^{n}}{n!}\binom{2 n}{n+l}
\end{aligned}
$$

and $\binom{2 n}{n+l_{1}} \geq\binom{ 2 n}{n+l_{2}}$ for $0 \leq l_{1} \leq l_{2}$.
Lemma 2.3. For every $\varepsilon>0$ and $d \in \mathbb{N}$ we can find $0<s<t$ such that

$$
g_{t}(k) \geq(1-\varepsilon) g_{s}(k-1) \quad \text { for } k \in \mathbb{Z}
$$

and

$$
G_{t}(k) \geq(1-\varepsilon) G_{s}\left(k-e_{1}\right) \quad \text { for } k \in \mathbb{Z}^{d} .
$$

Proof. If the first inequality holds for $k=1,2, \ldots, m$ then it holds for $k=0,-1, \ldots,-m$. Indeed, for $k=-1,-2, \ldots,-m$ we have (see Lemma 2.2)

$$
\begin{aligned}
\mathbb{P}\left(X_{1}^{(t)}=k\right) & =\mathbb{P}\left(X_{1}^{(t)}=-k\right) \geq(1-\varepsilon) \mathbb{P}\left(X_{1}^{(s)}=-k-1\right) \\
& =(1-\varepsilon) \mathbb{P}\left(X_{1}^{(s)}=k+1\right) \geq(1-\varepsilon) \mathbb{P}\left(X_{1}^{(s)}=k-1\right)
\end{aligned}
$$

and

$$
\mathbb{P}\left(X_{1}^{(t)}=0\right) \geq \mathbb{P}\left(X_{1}^{(t)}=1\right) \geq(1-\varepsilon) \mathbb{P}\left(X_{1}^{(s)}=0\right) \geq(1-\varepsilon) \mathbb{P}\left(X_{1}^{(s)}=-1\right)
$$

For $k \geq 1$ we have

$$
\begin{gathered}
\mathbb{P}\left(X_{t}=k\right)=\sum_{l=0}^{\infty} \mathbb{P}\left(Y_{t}=l+k\right) \mathbb{P}\left(Z_{t}=l\right)=\sum_{l=0}^{\infty} e^{-2 t} \frac{t^{2 l+k}}{l!(l+k)!} \\
\mathbb{P}\left(X_{s}=k-1\right)=\sum_{l=0}^{\infty} e^{-2 s} \frac{s^{2 l+k-1}}{l!(l+k-1)!}
\end{gathered}
$$

Let $s>1$ be such that $\sqrt{s} \in \mathbb{N}$ and set $t=s+\sqrt{s}$. We then have

$$
\mathbb{P}\left(X_{t}=k\right) \geq \sum_{l=\sqrt{s}}^{\infty} e^{-2 t} \frac{t^{2 l+k}}{l!(l+k)!}=\sum_{l=0}^{\infty} e^{-2 t} \frac{t^{2(l+\sqrt{s})+k}}{(l+\sqrt{s})!(l+\sqrt{s}+k)!}
$$

It is enough to prove that

$$
\inf _{k \geq 1, l \geq 0}\left(e^{-2 t} \frac{t^{2(l+\sqrt{s})+k}}{(l+\sqrt{s})!(l+\sqrt{s}+k)!} / e^{-2 s} \frac{s^{2 l+k-1}}{l!(l+k-1)!}\right) \underset{s \rightarrow \infty}{ } 1
$$

We consider the expression

$$
p_{l, k}(s):=e^{2(s-t)} s t^{2 \sqrt{s}}\left(\frac{t}{s}\right)^{l+k} \frac{(l+k-1)!}{(l+\sqrt{s}+k)!}\left(\frac{t}{s}\right)^{l} \frac{l!}{(l+\sqrt{s})!} .
$$

The function $\mathbb{N} \ni n \mapsto(t / s)^{n}(n-1)!/(n+\sqrt{s})$! has its minimum at $n=$ $s(1+\sqrt{s}) /(t-s)=t$. Similarly, the function $\mathbb{N}_{0} \ni n \mapsto(t / s)^{n} n!/(n+\sqrt{s})$! has its minimum at $n=s \sqrt{s} /(t-s)=s$. Therefore

$$
\begin{aligned}
p_{l, k}(s) & \geq p_{s, t-s}(s)=e^{2(s-t)} s t^{2 \sqrt{s}}\left(\frac{t}{s}\right)^{t+s} \frac{(t-1)!}{(t+\sqrt{s})!} \frac{s!}{t!} \\
& =e^{-2 \sqrt{s}} s(s+\sqrt{s})^{2 \sqrt{s}}\left(\frac{s+\sqrt{s}}{s}\right)^{2 s+\sqrt{s}} \frac{s!}{(s+2 \sqrt{s})!} \frac{1}{s+\sqrt{s}}
\end{aligned}
$$

Using Stirling's formula we get $s!/(s+2 \sqrt{s})!\approx e^{2 \sqrt{s}} s^{s} /(s+2 \sqrt{s})^{s+2 \sqrt{s}}$ as $s \rightarrow \infty$, hence we arrive at

$$
\begin{aligned}
& \inf _{k \geq 1, l \geq 0} p_{l, k}(s) \approx s^{-s-\sqrt{s}+1}(s+\sqrt{s})^{2 s+3 \sqrt{s}-1}(s+2 \sqrt{s})^{-s-2 \sqrt{s}} \\
& \quad=\sqrt{s}^{-2 s-2 \sqrt{s}+2+2 s+3 \sqrt{s}-1}(1+\sqrt{s})^{-\sqrt{s}-1}(1+\sqrt{s})^{2 s+4 \sqrt{s}}(s+2 \sqrt{s})^{-s-2 \sqrt{s}} \\
& \quad=\left(\frac{\sqrt{s}}{1+\sqrt{s}}\right)^{\sqrt{s}+1}\left(\frac{s+2 \sqrt{s}+1}{s+2 \sqrt{s}}\right)^{s+2 \sqrt{s}} \xrightarrow[s \rightarrow \infty]{\longrightarrow} e^{-1} e=1
\end{aligned}
$$

To prove the second part observe that the first inequality yields

$$
\begin{aligned}
G_{t}(k) & =g_{t}\left(k_{1}\right) \ldots g_{t}\left(k_{d}\right) \geq(1-\varepsilon) g_{s}\left(k_{1}-1\right) g_{t}\left(k_{2}\right) \ldots g_{t}\left(k_{d}\right) \\
& \geq(1-\varepsilon)^{d} G_{s}\left(k-e_{1}\right),
\end{aligned}
$$

since

$$
g_{t}(l)=g_{t}(|l|) \geq g_{t}(|l|+1) \geq(1-\varepsilon) g_{s}(|l|)=(1-\varepsilon) g_{s}(l) .
$$

A sequence $\left(x_{i}\right)_{i=0}^{n} \subset \mathbb{Z}^{d}$ is called a path in \mathbb{Z}^{d} between x_{0} and x_{n} if $\left\|x_{i}-x_{i+1}\right\|_{1}=1$ for $i=0, \ldots, n-1$. For $k \in \mathbb{Z}^{d}$ let $L_{n}(k)$ denote the number of paths in \mathbb{Z}^{d} between 0 and k.

Lemma 2.4. Let $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ be harmonic. Suppose there exists a polynomial $W: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ such that $f(x) \geq-W(x)$. Then $f \in \mathcal{L}$.

Proof. Using simple induction we can prove that for f harmonic and $n \in \mathbb{N}$ we have

$$
f(0)=\frac{1}{(2 d)^{n}} \sum_{k \in \mathbb{Z}^{d}} f(k) L_{n}(k) .
$$

Let $l \in \mathbb{Z}^{d}$. Then $L_{\|l\| \|_{1}}(l) \geq 1$ and

$$
\begin{aligned}
f(0)(2 d)^{\|l\|_{1}} & =\sum_{k \in \mathbb{Z}^{d}}(f(k)+W(k)) L_{\|l l\|_{1}}(k)-\sum_{k \in \mathbb{Z}^{d}} W(k) L_{\| \| l \|_{1}}(k) \\
& \geq(f(l)+W(l))-\max _{k:\|k\|_{1} \leq\|l\|_{1}}|W(k)| \cdot(2 d)^{\|l l\|_{1}},
\end{aligned}
$$

hence

$$
f(l) \leq f(0)(2 d)^{\|l\|_{1}}+(2 d)^{\|l\|_{1}} \max _{k:\|k\|_{1} \leq\|l\|_{1}}|W(k)|-W(l) \leq c_{1} e^{c_{2}\|l\| \|_{1}}
$$

for some $c_{1}, c_{2}>0$ which depend only on f and W but not on l. Since f is polynomially bounded from below we have $f \in \mathcal{L}$.

Now we may recover the classical strong Liouville property of harmonic functions on \mathbb{Z}^{d}. Woess [8] traces back its weak form to Blackwell [1] see also [2] and [5].

Theorem 2.5. If $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ is harmonic and $f \geq 0$ then f is constant.
Proof. By Lemma 2.4 we have $f \in \mathcal{L}$. Let $x \in \mathbb{Z}^{d}$. Lemma 2.3 implies that there exist $t>s>0$ such that

$$
\begin{aligned}
f(x)-f\left(x+e_{1}\right) & =P_{t}(f)(x)-P_{s}(f)\left(x+e_{1}\right) \\
& =\sum_{k \in \mathbb{Z}^{d}} f(x+k) G_{t}(k)-\sum_{k \in \mathbb{Z}^{d}} f\left(x+k+e_{1}\right) G_{s}(k) \\
& =\sum_{k \in \mathbb{Z}^{d}} f(x+k)\left(G_{t}(k)-G_{s}\left(k-e_{1}\right)\right) \\
& \geq-\varepsilon \sum_{k \in \mathbb{Z}^{d}} f(x+k) G_{s}\left(k-e_{1}\right)=-\varepsilon f\left(x+e_{1}\right) .
\end{aligned}
$$

By letting $\varepsilon \rightarrow 0$ we get $f(x) \geq f\left(x+e_{1}\right)$. Applying this inequality to the harmonic function $x \mapsto g(x)=f(-x)$ we get $f(x)=f\left(x+e_{1}\right)$ and similarly $f(x)=f\left(x+e_{i}\right)$ for $i=1, \ldots, d$.

We will now prove some auxiliary lemmas.
Lemma 2.6. Let $n \in \mathbb{N}$ and let $k \in \mathbb{Z}$ satisfy $|k| \leq n$. Then

$$
\frac{1}{2 \sqrt{n}}\left(1-\frac{k^{2}}{n}\right) \leq \frac{1}{2^{2 n}}\binom{2 n}{n+k} \leq \frac{1}{\sqrt{2 n+1}} e^{-\frac{k^{2}}{2 n}} \leq \frac{1}{\sqrt{n+1}} e^{-\frac{k^{2}}{2 n}}
$$

Proof. We can assume $k \geq 0$. By multiplying the obvious inequalities $(2 j-1)^{2} \geq 2 j(2 j-2)$ for $j=2,3, \ldots, n$ and $(2 j)^{2} \geq(2 j-1)(2 j+1)$ for $j=1,2, \ldots, n$ we arrive at $((2 n-1)!!)^{2} \geq \frac{1}{2}(2 n)!!(2 n-2)!!$ and $((2 n)!!)^{2} \geq$ $(2 n-1)!!(2 n+1)!!$, so that

$$
\frac{1}{4 n} \leq\left(\frac{(2 n-1)!!}{(2 n)!!}\right)^{2} \leq \frac{1}{2 n+1}
$$

To finish the proof it suffices to observe that

$$
\frac{1}{2^{2 n}}\binom{2 n}{n+k}=\frac{(2 n-1)!!}{(2 n)!!} \cdot \prod_{j=1}^{k}\left(1-\frac{k}{n+j}\right)
$$

and

$$
1-\frac{k^{2}}{n} \leq\left(1-\frac{k}{n}\right)^{k} \leq \prod_{j=1}^{k}\left(1-\frac{k}{n+j}\right) \leq\left(1-\frac{k}{2 n}\right)^{k} \leq e^{-\frac{k^{2}}{2 n}}
$$

Lemma 2.7. There exists a constant $C>0$ such that for $k \in \mathbb{Z}^{d} \backslash\{0\}$,

$$
G_{\|k\|_{1}^{2}}(k) \geq C^{d}\|k\|_{1}^{-2 d}
$$

Proof. Let $t>0$ and $k=\left(k_{1}, \ldots, k_{d}\right) \in \mathbb{Z}^{d}$. We have (see Lemma 2.2)

$$
g_{t}\left(k_{i}\right) \geq e^{-4 t} \frac{t^{n}}{n!}\binom{2 n}{n+k_{i}} \geq e^{-4 t} \frac{t^{n}}{n!}\binom{2 n}{n+\|k\|_{1}} \quad(i=1, \ldots, d, n \in \mathbb{N})
$$

We set $t=\|k\|_{1}^{2}$ and $n=4 t$. Then $e^{-4 t} t^{n}=e^{-n} n^{n} / 4^{n}$, so that $g_{t}\left(k_{i}\right) \geq q_{n}(n) \cdot \frac{1}{2^{2 n}}\binom{2 n}{n+\|k\|_{1}} \geq q_{n}(n) \cdot \frac{1}{2 \sqrt{n}}\left(1-\frac{\|k\|_{1}^{2}}{n}\right)=\frac{3}{16} q_{n}(n) /\|k\|_{1}$,
where we have used Lemma 2.6. Note that by Chebyshev's inequality,

$$
\mathbb{P}\left(\left|Y_{1}^{(n)}-n\right| \geq 2 \sqrt{n}\right)=\mathbb{P}\left(\left|Y_{1}^{(n)}-\mathbb{E} Y_{1}^{(n)}\right| \geq 2 \sqrt{n}\right) \leq \frac{D^{2} Y_{1}^{(n)}}{4 n}=1 / 4,
$$

so that

$$
\begin{aligned}
3 / 4 & \leq \mathbb{P}\left(\left|Y_{1}^{(n)}-n\right|<2 \sqrt{n}\right)=\sum_{m \in \mathbb{N}_{0}:|m-n|<2 \sqrt{n}} q_{n}(m) \\
& \leq \operatorname{card}\left\{m \in \mathbb{N}_{0}:|m-n|<2 \sqrt{n}\right\} \cdot q_{n}(n) \leq 8\|k\|_{1} \cdot q_{n}(n) .
\end{aligned}
$$

Hence

$$
g_{t}\left(k_{i}\right) \geq \frac{3}{32\|k\|_{1}} \cdot \frac{3}{16\|k\|_{1}}=\frac{C}{\|k\|_{1}^{2}}
$$

and therefore

$$
G_{\|k\|_{1}^{2}}(k)=\prod_{i=1}^{d} g_{t}\left(k_{i}\right) \geq C^{d}\|k\|_{1}^{-2 d} .
$$

Lemma 2.8. Let $W: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a polynomial. Define $H_{W}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
H_{W}(t)=\mathcal{P}_{t}(W)(0)=\sum_{k \in \mathbb{Z}^{d}} G_{t}(k) W(k) .
$$

Then H_{W} is a polynomial.
Proof. H_{W} is well defined since $\left.W\right|_{\mathbb{Z}^{d}} \in \mathcal{L}$. Because of the product structure of G_{t} it is enough to consider the case $d=1$ and $W(z)=z^{l}$ for $l \in \mathbb{N}$. The characteristic function

$$
\phi_{X_{1}^{(t)}}(z)=e^{-4 t \sin ^{2}(z / 2)}
$$

is smooth, so that

$$
H_{W}(t)=\mathbb{E}\left[\left(X_{1}^{(t)}\right)^{l}\right]=(-i)^{l} \frac{d^{l} \phi_{X_{1}^{(t)}}}{d z^{l}}(0),
$$

which is clearly a polynomial in t.
Lemma 2.9. Let $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ be harmonic. Suppose there exists a polynomial $W: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ such that $f \geq-W$. Then $|f| \leq R$ for some polynomial $R: \mathbb{Z}^{d} \rightarrow \mathbb{R}$.

Proof. We have $f \in \mathcal{L}$ (see Lemma 2.4). Proposition 2.1 yields

$$
f(0)=\sum_{k \in \mathbb{Z}^{d}} \overline{G_{t}}(k) f(k),
$$

hence for all $l \in \mathbb{Z}^{d}$,

$$
\begin{aligned}
f(0) & =\sum_{k \in \mathbb{Z}^{d}} G_{t}(k)(f(k)+W(k))-\sum_{k \in \mathbb{Z}^{d}} G_{t}(k) W(k) \\
& \geq G_{t}(l)(f(l)+W(l))-H_{W}(t) .
\end{aligned}
$$

Therefore

$$
f(0)+H_{W}(t) \geq G_{t}(l)(f(l)+W(l))
$$

There exists a constant $c=c(d)>0$ such that (see Lemma 2.7) for all $l \neq 0$,

$$
G_{\| \|\| \|_{1}^{2}}(l) \geq c\|l\|_{1}^{-2 d} .
$$

Hence for $l \neq 0$,

$$
f(0)+H_{W}\left(\|l\|_{1}^{2}\right) \geq c(f(l)+W(l))\|l\|_{1}^{-2 d}
$$

and therefore

$$
f(l) \leq c^{-1}\|l\|_{1}^{2 d}\left(f(0)+H_{W}\left(\|l\|_{1}^{2}\right)\right)-W(l) .
$$

Since the right-hand side is polynomially bounded from above in l, we have $f(l) \leq P(l)$ for some polynomial $P: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and all $l \in \mathbb{Z}^{d}$. One can easily check that $|f(l)| \leq 1+[P(l)]^{2}+[W(l)]^{2}$.

Lemma 2.10. For all $x \in \mathbb{Z}, n \in \mathbb{N}, a, b \in \mathbb{R}$ and $p \geq 0$ we have

$$
|a+b|^{p} \leq 2^{p}\left(|a|^{p}+|b|^{p}\right)
$$

and

$$
\left||x|^{n}-|x+1|^{n}\right| \leq 1+2^{n}|x|^{n-1} .
$$

Proof. Without loss of generality we may assume that $|a| \leq|b|$. Then

$$
|a+b|^{p} \leq(2|b|)^{p} \leq 2^{p}\left(|a|^{p}+|b|^{p}\right) .
$$

To prove the second inequality note that

$$
\begin{aligned}
\left|\left|(x+1)^{n}\right|-\left|x^{n}\right|\right| & \leq\left|(x+1)^{n}-x^{n}\right|=\left|\sum_{k=0}^{n-1}\binom{n}{k} x^{k}\right| \leq 1+\sum_{k=1}^{n-1}\binom{n}{k}|x|^{n-1} \\
& \leq 1+2^{n}|x|^{n-1} .
\end{aligned}
$$

Lemma 2.11. If $t>0$ then

$$
g_{t}(0) \leq \frac{1}{2 \sqrt{t}}
$$

and

$$
\mathbb{E}\left|X_{1}^{(t)}\right|^{m} \leq b(m) t^{m / 2}+c(m)
$$

for some constants $b(m), c(m)>0$ and $m \in \mathbb{N}$.
Proof. Let M be the Poisson variable with mean $4 t$. By Lemma 2.2, Lemma 2.6 and Jensen's inequality we have

$$
\begin{aligned}
g_{t}(0) & =\sum_{n=0}^{\infty} e^{-4 t} \frac{(4 t)^{n}}{n!} \frac{1}{2^{2 n}}\binom{2 n}{n} \leq \sum_{n=0}^{\infty} e^{-4 t} \frac{(4 t)^{n}}{n!} \frac{1}{\sqrt{n+1}}=\mathbb{E} \frac{1}{\sqrt{M+1}} \\
& \leq\left(\mathbb{E} \frac{1}{M+1}\right)^{1 / 2}
\end{aligned}
$$

and

$$
\mathbb{E} \frac{1}{M+1}=\sum_{n=0}^{\infty} e^{-4 t} \frac{(4 t)^{n}}{(n+1)!}=\frac{1}{4 t} \sum_{n=0}^{\infty} e^{-4 t} \frac{(4 t)^{n+1}}{(n+1)!} \leq \frac{1}{4 t}
$$

To prove the second part, let M, r_{1}, r_{2}, \ldots be as in Lemma 2.2. For fixed $k \in \mathbb{N}$ and all $i \leq k$ we have $\mathbb{E} e^{r_{i} / \sqrt{k}}=1+\sum_{s=1}^{\infty} k^{-s} /(2 s)!\leq 1+e k^{-1} \leq e^{e / k}$, so that

$$
\frac{1}{m!} \mathbb{E}\left(\frac{r_{1}+\cdots+r_{k}}{\sqrt{k}}\right)_{+}^{m} \leq \mathbb{E} \exp \left(\frac{r_{1}+\cdots+r_{k}}{\sqrt{k}}\right)=\prod_{i=1}^{k} \mathbb{E} e^{r_{i} / \sqrt{k}} \leq e^{e}
$$

Hence

$$
\mathbb{E}\left|r_{1}+\cdots+r_{k}\right|^{m}=2 \mathbb{E}\left(r_{1}+\cdots+r_{k}\right)_{+}^{m} \leq 2 e^{e} m!\cdot k^{m / 2}
$$

and therefore, by Lemma 2.2 ,

$$
\mathbb{E}\left|X_{1}^{(t)}\right|^{m} \leq 2 e^{e} m!\cdot 2^{-m} \cdot \mathbb{E}(2 M)^{m / 2} \leq 2 e^{e} m!\cdot\left(\mathbb{E} M^{m}\right)^{1 / 2}
$$

Now,

$$
\begin{aligned}
\mathbb{E} M^{m} & =\mathbb{E} M^{m} I_{M<m}+\mathbb{E} M^{m} I_{M \geq m} \leq m^{m}+m^{m} \mathbb{E}(M-m+1)^{m} \\
& \leq m^{m}\left(1+\sum_{k=m}^{\infty} e^{-4 t} \frac{(4 t)^{k}}{k!} k(k-1) \ldots(k-m+1)\right) \\
& =m^{m}\left(1+(4 t)^{m}\right)
\end{aligned}
$$

and it is obvious (see Lemma 2.10) that

$$
\mathbb{E}\left|X_{1}^{(t)}\right|^{m} \leq b(m) t^{m / 2}+c(m)
$$

for some constants $b(m), c(m)>0$.
Now we state the key lemma of this paper. Similar estimates for sublinear harmonic functions have been obtained in a more general setting in [6, Theorem 6.1].

Lemma 2.12. Let $n \in \mathbb{N}$ and let $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ be harmonic. Suppose that there exists a constant a_{n} such that

$$
|f(x)| \leq a_{n}\left(1+\|x\|_{n}^{n}\right)
$$

for all $x \in \mathbb{Z}^{d}$. Then there exists a constant a_{n-1} such that for all $x \in \mathbb{Z}^{d}$,

$$
\left|f\left(x+e_{1}\right)-f(x)\right| \leq a_{n-1}\left(1+\|x\|_{n-1}^{n-1}\right)
$$

Proof. For $x \in \mathbb{Z}^{d}$ and any $t>0$ we have

$$
f(x)=\sum_{k \in \mathbb{Z}^{d}} G_{t}(k) f(x+k)
$$

and

$$
f\left(x+e_{1}\right)=\sum_{k \in \mathbb{Z}^{d}} G_{t}(k) f\left(x+e_{1}+k\right)=\sum_{k \in \mathbb{Z}^{d}} G_{t}\left(k-e_{1}\right) f(x+k)
$$

hence

$$
\begin{aligned}
\left|f\left(x+e_{1}\right)-f(x)\right| \leq & \sum_{k \in \mathbb{Z}^{d}}\left|G_{t}\left(k-e_{1}\right)-G_{t}(k)\right||f(x+k)| \\
\leq & \sum_{k \in \mathbb{Z}^{d}}\left|G_{t}\left(k-e_{1}\right)-G_{t}(k)\right| a_{n}\left(1+\|x+k\|_{n}^{n}\right) \\
= & \sum_{k \in \mathbb{Z}^{d}: k_{1} \leq 0}\left(G_{t}(k)-G_{t}\left(k-e_{1}\right)\right) a_{n}\left(1+\|x+k\|_{n}^{n}\right) \\
& +\sum_{k \in \mathbb{Z}^{d}: k_{1}>0}\left(G_{t}\left(k-e_{1}\right)-G_{t}(k)\right) a_{n}\left(1+\|x+k\|_{n}^{n}\right) \\
= & \sum_{k \in \mathbb{Z}^{d}: k_{1} \leq-1} G_{t}(k) a_{n}\left(\left|x_{1}+k_{1}\right|^{n}-\left|x_{1}+k_{1}+1\right|^{n}\right) \\
& +\sum_{k \in \mathbb{Z}^{d}: k_{1} \geq 1} G_{t}(k) a_{n}\left(\left|x_{1}+k_{1}+1\right|^{n}-\left|x_{1}+k_{1}\right|^{n}\right) \\
& +\sum_{k \in\{0\} \times \mathbb{Z}^{d-1}} G_{t}(k) a_{n}\left(1+\|x+k\|_{n}^{n}\right) \\
& +\sum_{k \in\{0\} \times \mathbb{Z}^{d-1}} G_{t}(k) a_{n}\left(1+\left\|x+k+e_{1}\right\|_{n}^{n}\right) .
\end{aligned}
$$

We have used the product structure of G_{t} and Lemma 2.2. By using Lemma 2.10 we get

$$
\begin{aligned}
& \quad \sum_{k_{1} \leq-1, k \in \mathbb{Z}^{d}} G_{t}(k)\left(\left|x_{1}+k_{1}\right|^{n}-\left|x_{1}+k_{1}+1\right|^{n}\right) \\
& \quad+\sum_{k_{1} \geq 1, k \in \mathbb{Z}^{d}} G_{t}(k)\left(\left|x_{1}+k_{1}+1\right|^{n}-\left|x_{1}+k_{1}\right|^{n}\right) \\
& \quad \leq \sum_{k \in \mathbb{Z}^{d}} G_{t}(k)\left(2^{n}\left|x_{1}+k_{1}\right|^{n-1}+1\right)=1+2^{n} \sum_{k_{1} \in \mathbb{Z}} g_{t}\left(k_{1}\right)\left|x_{1}+k_{1}\right|^{n-1} \\
& \quad \leq 1+2^{2 n-1} \sum_{k_{1} \in \mathbb{Z}} g_{t}\left(k_{1}\right)\left(\left|x_{1}\right|^{n-1}+\left|k_{1}\right|^{n-1}\right) \\
& \quad=1+2^{2 n-1}\left(\left|x_{1}\right|^{n-1}+\mathbb{E}\left|X_{1}^{(t)}\right|^{n-1}\right) .
\end{aligned}
$$

We also have, again by using Lemma 2.10 several times,

$$
\begin{aligned}
\sum_{k \in\{0\} \times \mathbb{Z}^{d-1}} & G_{t}(k)\left(1+\|x+k\|_{n}^{n}\right)+\sum_{k \in\{0\} \times \mathbb{Z}^{d-1}} G_{t}(k)\left(1+\left\|x+k+e_{1}\right\|_{n}^{n}\right) \\
& \leq \sum_{k \in\{0\} \times \mathbb{Z}^{d-1}} G_{t}(k)\left(2+2^{n}\|x\|_{n}^{n}+2^{n}\left\|x+e_{1}\right\|_{n}^{n}+2^{n+1}\|k\|_{n}^{n}\right) \\
& \leq g_{t}(0)\left(2+2^{n}\|x\|_{n}^{n}+2^{n}\left\|x+e_{1}\right\|_{n}^{n}+d 2^{n+1} \mathbb{E}\left|X_{1}^{(t)}\right|^{n}\right) \\
& \leq 4^{n+1} g_{t}(0)\left(1+\|x\|_{n}^{n}+d \mathbb{E}\left|X_{1}^{(t)}\right|^{n}\right)
\end{aligned}
$$

so we arrive at

$$
\begin{aligned}
& \left|f\left(x+e_{1}\right)-f(x)\right| \\
& \quad \leq a_{n}\left[1+2^{2 n-1}\left(\left|x_{1}\right|^{n-1}+\mathbb{E}\left|X_{1}^{(t)}\right|^{n-1}\right)+4^{n+1} g_{t}(0)\left(1+\|x\|_{n}^{n}+d \mathbb{E}\left|X_{1}^{(t)}\right|^{n}\right)\right] \\
& \quad \leq 4^{n+2} a_{n} d\left[\left(1+\|x\|_{n-1}^{n-1}+\mathbb{E}\left|X_{1}^{(t)}\right|^{n-1}\right)+g_{t}(0)\left(\|x\|_{n}^{n}+\mathbb{E}\left|X_{1}^{(t)}\right|^{n}\right)\right]
\end{aligned}
$$

From Lemma 2.11 we infer that there exists a constant $C=C(n, d)$ such that for every $t>0$ and every $x \in \mathbb{Z}^{d}$,

$$
\left|f\left(x+e_{1}\right)-f(x)\right| \leq C a_{n}\left[1+\|x\|_{n-1}^{n-1}+t^{(n-1) / 2}+t^{-1 / 2}\left(\|x\|_{n}^{n}+t^{n / 2}\right)\right]
$$

By setting $t=\left(1+\|x\|_{1}\right)^{2}$ we complete the proof.
LEMMA 2.13. Let $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ be such that $f_{i}(x)=f\left(x+e_{i}\right)-f(x)$ are polynomials for $i=1, \ldots, d$. Then f is a polynomial.

Proof. First we consider the case $d=1$. Note that $f(x)-f(0)$ is determined by values of f_{1}. Define a sequence of polynomials $\left(W_{k}\right)_{k=0}^{\infty}$ by

$$
x^{m}=\sum_{k=0}^{m-1}\binom{m}{k} W_{k}(x), \quad m=1,2, \ldots
$$

A simple induction yields $W_{k}(x+1)-W_{k}(x)=x^{k}$ and $W_{k}(0)=0$. It follows that if $f_{1}(x)=\sum_{i=0}^{l} a_{i} x^{i}$ then $f(x)=f(0)+\sum_{i=0}^{l} a_{i} W_{i}(x)$. If $d>1$ then

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{d}\right)= & f\left(x_{1}, x_{2}, \ldots, x_{d}\right)-f\left(0, x_{2}, \ldots, x_{d}\right) \\
& +f\left(0, x_{2}, \ldots, x_{d}\right)-f\left(0,0, x_{3}, \ldots, x_{d}\right) \\
& +\cdots+f\left(0, \ldots, 0, x_{1}\right)-f(0, \ldots, 0)+f(0)
\end{aligned}
$$

By using the same argument as in the case $d=1$ we see that

$$
f\left(0, \ldots, x_{i}, \ldots, x_{d}\right)-f\left(0, \ldots, x_{i+1}, \ldots, x_{d}\right) \quad(i=1, \ldots, d)
$$

are polynomials.
Main Theorem 2.14. Let $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ be harmonic. Suppose there exists a polynomial $W: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ such that $f(k) \geq-W(k)$ for $k \in \mathbb{Z}^{d}$. Then f is a polynomial.

Proof. There exists $n \in \mathbb{N}$ such that $|f(x)| \leq a_{n}\left(1+\|x\|_{n}^{n}\right)$ (see Lemma 2.9. We claim that together with the harmonicity of f this already implies that f is a polynomial. We prove this by induction on n. For $n=0$ the claim is a consequence of Proposition 2.5. For $n>1$ let $f_{i}(x)=f_{i}\left(x+e_{1}\right)-f(x)$. Note that $f_{i}, i=1, \ldots, d$, are also harmonic. By Lemma 2.12 and induction hypothesis, f_{i} are polynomials, hence by Lemma 2.13 we conclude that f is a polynomial as well.

Acknowledgments. I would like to thank Prof. Krzysztof Oleszkiewicz for his helpful comments and suggestions, especially for ideas of Theorem 2.1 and Lemma 2.2.

References

[1] D. Blackwell, Extension of the renewal theorem, Pacific J. Math. 3 (1953), 315-320.
[2] G. Choquet et J. Deny, Sur l'équation de convolution $\mu=\mu * \sigma$, C. R. Acad. Sci. Paris 250 (1960), 799-801.
[3] G. Darkiewicz, Nonnegative harmonic functions on graphs-probabilistic approach, Master Thesis, Univ. of Warsaw, 2001 (in Polish).
[4] P. L. Davies and D. N. Shanbhag, A generalization of a theorem of Deny with applications in characterization theory, Quart. J. Math. Oxford Ser. 38 (1987), 13-34.
[5] J. L. Doob, J. L. Snell and R. E. Williamson, Application of boundary theory to sums of independent random variables, in: Contributions to Probability and Statistics, Stanford Univ. Press, Stanford, CA, 1960, 182-197.
[6] W. Hebisch and L. Saloff-Coste, Gaussian estimates for Markov chains and random walks on groups, Ann. Probab. 21 (1993), 673-709.
[7] P. Nayar, The Liouville theorem for harmonic functions on the \mathbb{Z}^{d} lattice, Bachelor Thesis, Univ. of Warsaw, 2008 (in Polish).
[8] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Univ. Press, Cambridge, 2000.

Piotr Nayar
Institute of Mathematics
University of Warsaw
02-097 Warszawa, Poland
E-mail: p.nayar@students.mimuw.edu.pl

[^0]: 2010 Mathematics Subject Classification: Primary 31C05; Secondary 60G50.
 Key words and phrases: harmonic functions, integer lattice, polynomially bounded harmonic functions.

