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Summary. We investigate properties of the zero of the subadditive pressure which is
a most important tool to estimate the Hausdorff dimension of the attractor of a non-
conformal iterated function system (IFS). Our result is a generalization of the main results
of Miao and Falconer [Fractals 15 (2007)] and Manning and Simon [Nonlinearity 20 (2007)].

1. Introduction. Since the main goal of this paper is to improve a
tool which is used to estimate the Hausdorff dimension, we first define the
Hausdorff measure and Hausdorff dimension of a bounded set A ⊂ Rn.
Let

(1.1) Hsδ = inf
{∑

i

|Ui|s : A ⊂
⋃
i

Ui, |Ui| < δ
}

where |U | is the diameter of U . Now we define the s-dimensional Hausdorff
measure of A by

(1.2) Hs(A) = lim
δ→∞

Hsδ(A).

We call

(1.3) dimHA = inf{s : Hs(A) = 0}

the Hausdorff dimension of A.
We consider the Hausdorff dimension of the attractors of iterated function

systems (IFS) which are non-conformal. (We say that a map is conformal
if the derivative is a similarity at every point.) The dimension theory of
non-conformal IFS is difficult and there are only very few results. The most
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important tool in this field is the subadditive pressure, defined by K. Fal-
coner [4] and L. Barreira [1]. Unfortunately, we know very little about the
subadditive pressure itself.

In the conformal case, the subadditive pressure coincides with the usual
topological pressure (see for example [10, Chapter 9]).

The simplest non-conformal situation is the case of self-affine IFS. To
study the dimension of a self-affine attractor we consider the kth approxi-
mation of the attractor with the so called kth cylinders which are naturally
defined by the k-fold application of the functions of the IFS. To measure
the contribution of such a cylinder to the covering sum which appears in the
definition of the Hausdorff measure (see (1.1) and (1.2)), for each of these
cylinders we consider the singular value functions. These are non-negative
valued functions defined in a neighborhood of the attractor. The dimension
of the attractor is related to the exponential growth rate of the sum of the
values of these exponentially many singular value functions in the self-affine
case (see [2]). To verify this it was essential that this exponential growth rate
is the same wherever we evaluate these singular value functions, since they
are constant in the self-affine case.

Falconer [4] and Barreira [1] considered the more general situation when
the IFS is no longer self-affine. In this case, using a similar method, it turns
out that under a technical condition (which Barreira called the 1-bunched
property) the exponential growth rate of the sum of the values of the singular
value functions does not depend on where they are evaluated. We express
this phenomenon by saying that “the insensitivity property holds”.

This is an important property of the subadditive pressure and in general
we do not know if it holds or not. The main goal of this paper is to verify this
property in a special case when the 1-bunched property does not hold but
the IFS consists of maps with lower triangular derivative matrices. This is
a generalization of the result of K. Simon and A. Manning [8]. They proved
the same assertion in two dimensions.

Even if the 1-bunched condition is not satisfied, Zhang [11] found that
the zero of the subadditive pressure is an upper bound for the Hausdorff
dimension. As an application we supply two examples of IFS for which we
are able to calculate the Hausdorff dimension using the insensitivity property.

The main theorem is also a generalization of a recent results by K. Fal-
coner and J. Miao [6]. They gave an estimate for the Hausdorff dimension of
self-affine fractals generated by upper triangular matrices. We will give an
estimate for the subadditive pressure in the non-conformal case and we will
prove that the subadditive pressure depends only on the diagonal elements
of the derivative matrices in the case when the matrices are triangular. In
this paper we use the method of K. Falconer and J. Miao’s article [6].
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2. Definitions. In this section we define our iterated function system
and the subadditive pressure.

Throughout this paper we will always assume the following. LetM ⊂ Rn

be a non-empty, open and bounded set, and let Fi : M →M be a contractive
maps for every i = 1, . . . , l. For i = i1 . . . ik, ij ∈ {1, . . . , l}, we write Fi(x) =
Fi1 ◦ · · · ◦ Fin(x). Our principal assumption about the maps Fi, i = 1, . . . , l,
is that

(2.1) Fi(x1, . . . , xn) = (f1
i (x1), f2

i (x1, x2), . . . , fni (x1, . . . , xn)),

and Fi(x1, . . . , xn) ∈ C1+ε(M) for every i = 1, . . . , l. Moreover, we require
that DxFi is regular (a non-singular matrix) for every x ∈ M and every
i ∈ {1, . . . , l}. Denote the elements of DxFi by xij(i, x).

Proposition 2.1. There exists a real constant 0 < C <∞ such that

(2.2) C−1 <
|xii(i, x)|
|xii(i, y)|

< C

for every x, y ∈M and every i ∈ {1, . . . , l}∗ =
⋃
r≥1{1, . . . , i}r.

Proof. Let G(m)
i : Rm → Rm, for every integer m between 1 and n, be

the restriction of Fi to the first m components, i.e.

G
(m)
i (x1, . . . , xm) := (f1

i (x1), f2
i (x1, x2), . . . , fmi (x1, . . . , xm)).

From [9, Proposition 20.1(3), p. 198] it follows that for every x, y ∈M , every
finite sequence i ∈ {1, . . . , l}∗, and 1 ≤ m ≤ n there exists a real constant
0 < Cm <∞ such that

C−1
m <

JacG(m)
i (x)

JacG(m)
i (y)

< Cm.

Since for every m, the matrix DxG
(m)
i is lower triangular, its Jacobian is

JacG(m)
i (x) = |x11(i, x) · · ·xmm(i, x)|.

Therefore for every integer 1 ≤ m < n and every x, y ∈M ,

C−1
m

Cm+1
<

JacG(m)
i (x)/JacG(m)

i (y)

JacG(m+1)
i (x)/JacG(m+1)

i (y)
<

Cm

C−1
m+1

and
JacG(m)

i (x)/JacG(m)
i (y)

JacG(m+1)
i (x)/JacG(m+1)

i (y)
=
|xm+1,m+1(i, y)|
|xm+1,m+1(i, x)|

.

Then choosing C := max1≤m<n−1{Cm/C−1
m+1, C1} completes the proof.
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The singular values of a linear contraction T are the positive square roots
of the eigenvalues of TT ∗, where T ∗ is the transpose of T . Let αk(DxFi)
be the kth greatest singular value of the matrix DxFi. The singular value
function φs is defined for 0 ≤ s ≤ n as

(2.3) φs(DxFi) := α1(DxFi) · · ·αk−1(DxFi)αk(DxFi)s−k+1

where k − 1 < s ≤ k and k is a positive integer. We define the maximum
and the minimum of the singular value function as

φ
s(i) := max

x∈M
φs(DxFi), φs(i) := min

x∈M
φs(DxFi).

We define the subadditive pressure after K. Falconer [4] and L. Barreira [1]:

(2.4) P (s) := lim
k→∞

1
k

log
∑
|i|=k

φ
s(i),

and define the lower pressure by

(2.5) P (s) := lim inf
k→∞

1
k

log
∑
|i|=k

φs(i).

3. Subadditive pressure for triangular maps. In this section we
state and prove the main theorem of the paper, namely that the subadditive
pressure is equal to the lower pressure, which implies the insensitivity prop-
erty. More precisely, it implies that the exponential growth rate of the sum
of the values of the singular value functions does not depend on where they
are evaluated (see (2.4), (2.5)).

Theorem 3.1. Let 0 ≤ s ≤ n. If F1, . . . , Fl are contractive maps of the
form (2.1) and Fi ∈ C1+ε for every 1 ≤ i ≤ l then

P (s) = P (s).

In the following we state some linear algebra definitions and lemmas, the
proofs of which can be found in [6].

The m-dimensional exterior algebra Φm is a vector space spanned by
formal elements v1∧· · ·∧vm with vi ∈ Rn such that v1∧· · ·∧vm = 0 if vi = vj
for some i 6= j, and interchanging two different elements reverses the sign,
i.e. v1∧· · ·∧vi∧· · ·∧vj∧· · ·∧vm = −v1∧· · ·∧vj · · ·∧vi∧· · ·∧vm if i 6= j. Then
Φm has dimension

(
n
m

)
with basis {ej1 ∧ · · · ∧ ejm : 1 ≤ j1 < · · · < jm ≤ n}

where {e1, . . . , en} is any orthonormal basis of Rn.
Let us define a scalar product on Φm in the following way. Let

〈v1 ∧ · · · ∧ vm, u1 ∧ · · · ∧ um〉Φm = det((〈vi, uj〉)i,j=1...m),

where 〈·, ·〉 is the usual scalar product on Rn. One can extend 〈·, ·〉Φm to all
of Φm in the natural way. Then Φm becomes a Hilbert space. Let ‖ · ‖ be the
corresponding norm. Then it is easy to see that ‖v1∧· · ·∧vm‖ is equal to the
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absolute m-dimensional volume of the parallelepiped spanned by v1, . . . , vm
(see [7, p. 44]).

We may also define another norm ‖ · ‖∞ on Φm by∥∥∥ ∑
1≤i1<···<im≤m

λi1···im(ei1 ∧ · · · ∧ eim)
∥∥∥
∞

:= max |λi1...im |.

If T : Rn → Rn is linear then there is an induced linear mapping T̃ :
Φm → Φm given by

T̃ (v1 ∧ · · · ∧ vm) := (Tv1) ∧ · · · ∧ (Tvm).

The norms on Φm induce norms on the space L(Φm, Φm) of linear map-
pings in the usual way by

‖T̃‖ = sup
w∈Φm, w 6=0

‖T̃w‖
‖w‖

.

Then with respect to the norm ‖ · ‖,

(3.1) ‖T̃‖ = φm(T ),

and with respect to ‖ · ‖∞,

(3.2) ‖T̃‖∞ = max{|T (m)| : T (m) is an m×m minor of T},

where T (m) = T
(
r1,...,rm
s1,...,sm

)
is the determinant of the m×m minor of the n×n

matrix T which is formed by the elements of T in rows 1 ≤ r1 < · · · <
rm ≤ n and columns 1 ≤ s1 < · · · < sm ≤ n. The space L(Φm, Φm) is of
dimension

(
n
m

)2. Since any two norms on a finite-dimensional normed space
are equivalent, there are constants 0 < c1 < c2 < ∞ depending only on n
and m such that

(3.3) c1‖T̃‖∞ ≤ ‖T̃‖ ≤ c2‖T̃‖∞.

Now we will state several lemmas relating to minors of matrices. We will
need some well-known facts.

Lemma 3.2. Let xi ≥ 0 for i = 1, . . . ,m, and p ∈ R+.

(1) If p > 1, then (xp1+· · ·+x
p
m) ≤ (x1+· · ·+xm)p ≤ mp−1(xp1+· · ·+x

p
m).

(2) If 0 < p ≤ 1, then mp−1(xp1 + · · · + xpm) ≤ (x1 + · · · + xm)p ≤
xp1 + · · ·+ xpm.

Lemma 3.3. Let an be a sequence of real numbers such that an+m ≤
an + am. Then the limit limn→∞ an/n exists and equals infn an/n.

We first look at the expansion of m × m minors of the product of k
matrices A = A1 · · ·Ak, where for i = 1, . . . , k,
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Ai =


ai11 ai12 . . . ai1n
ai21 ai22 . . . ai2n
...

...
. . .

...
ain1 ain2 . . . ainn

 .
Lemma 3.4. For 1 ≤ m ≤ n, the m ×m minors of A = A1 · · ·Ak have

formal expansions in terms of the entries of the Ai of the form

A

(
r1, . . . , rm
s1, . . . , sm

)
=

∑
c1,...,ck

±a1
1(c1) · · · a

1
m(c1)a

2
1(c2) · · · a

2
m(c2) · · · a

k
1(ck) · · · a

k
m(ck)

such that for each i = 1, . . . , k, the ai1(ci)
, . . . , aim(ci)

are distinct entries airs
of Ai. In particular, for each i, 1(ci), . . . ,m(ci) denote pairs (r, s) corre-
sponding to entries in m different rows and columns of Ai, and the sum is
over all such entry combinations (c1, . . . , ck) with appropriate sign ±.

The proof of this lemma can be found in [6, Lemma 2.2]. Now we consider
lower triangular matrices. For i = 1, . . . , k, let

Ui =


ui1 0 . . . 0
ui21 ui2 . . . 0
...

...
. . .

...
uin1 uin2 . . . uin

 .
We consider the product

U = U1 · · ·Uk =


u1 0 . . . 0
u21 u2 . . . 0
...

...
. . .

...
un1 un2 . . . un

 .
We note that

(3.4) urs =
∑

r≥r1≥···≥rk−1≥s
u1
rr1u

2
r1r2 · · ·u

k
rk−1s

, 1 ≤ r ≤ s ≤ n,

since all other products are 0.

Lemma 3.5. With notations as above, let U1, . . . , Uk be lower triangular
matrices and U = U1 · · ·Uk. Then

(1) If r < s, then urs = 0.
(2) If r = s, then urs ≡ ur = u1

r · · ·ukr .
(3) If r > s, then the sum (3.4) for urs has at most kr−s ≤ kn−1 non-zero

terms. Moreover, each non-zero summand u1
rr1u

2
r1r2 · · ·u

k
rk−1s

has at
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most n− 1 non-diagonal terms in the product, i.e. terms with r 6= r1
or ri 6= ri+1 or rk−1 6= s.

The proof can also be found in [6, Lemma 2.3] for upper triangular ma-
trices. Now we extend the estimate of Lemma 3.5 to minors.

Lemma 3.6. Let U1, . . . , Uk and U be lower triangular matrices as above.
Then each m×m minor of U has an expansion of the form

U

(
r1, . . . , rm
s1, . . . , sm

)
=

∑
c1,...,ck

±u1
1(c1)u

2
1(c2) · · ·u

k
1(ck) · · ·u

1
m(c1)u

2
m(c2) · · ·u

k
m(ck)

where 1(ci), . . . ,m(ci) are as in Lemma 3.4 and

(1) there are at most m!km(n−1) terms in the sum which are non-zero,
(2) each summand contains at most (n − 1)m non-diagonal elements in

the product.

The proof is analogous to the proof of [6, Lemma 2.4]. Before we prove
Theorem 3.1, we define two sums:

(3.5) H(s, r)

= max
j1,...,jm−1

j′1,...,j
′
m

∑
|i|=r

(dj1j1(i) · · · djm−1jm−1(i))
m−s(dj′1j′1(i) · · · dj′mj′m(i))s−m+1

where m− 1 < s ≤ m and djj(i) = infx |xjj(i, x)|, and

(3.6) T (s, r)

= max
j1,...,jm−1

j′1,...,j
′
m

∑
|i|=r

(tj1j1(i) · · · tjm−1jm−1(i))
m−s(tj′1j′1(i) · · · tj′mj′m(i))s−m+1

where m − 1 < s ≤ m and tjj(i) = supx |xjj(i, x)|. It is easy to see from
Proposition 2.1 and the definition of the two sums that

(3.7) H(s, r) ≤ T (s, r) ≤ CsH(s, r).

Lemma 3.7. For any positive integers r, z, T (s, r + z) ≤ T (s, r)T (s, z).
Moreover, limr→∞ log T (s, r)/r exists and equals infr log T (s, r)/r.

Proof. From the definition of T (s, r) it follows that

T (s, r + z)

= max
j1,...,jm−1

j′1,...,j
′
m

∑
|i|=r+z

(tj1j1(i) · · · tjm−1jm−1(i))
m−s(tj′1j′1(i) · · · tj′mj′m(i))s−m+1
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≤ max
j1,...,jm−1

j′1,...,j
′
m

(∑
|i|=r

∑
|h|=z

(tj1j1(i)tj1j1(h) · · · tjm−1jm−1(i)tjm−1jm−1(h))m−s

× (tj′1j′1(i)tj′1j′1(h) · · · tj′mj′m(i)tj′mj′m(h))s−m+1
)

= max
j1,...,jm−1

j′1,...,j
′
m

(∑
|i|=r

(tj1j1(i) · · · tjm−1jm−1(i))
m−s(tj′1j′1(i) · · · tj′mj′m(i))s−m+1

×
∑
|h|=z

(tj1j1(h) · · · tjm−1jm−1(h))m−s(tj′1j′1(h) · · · tj′mj′m(h))s−m+1
)

≤ T (s, r)T (s, z).

The existence of the limit follows from Lemma 3.3.

The proof of Theorem 3.1 follows the lines of the proof of [6, Theo-
rem 2.5], but our theorem is not a consequence of [6, Theorem 2.5]. The
most important alteration is that some of the functions in [6] are affine,
while the derivatives in our case are not constant matrices. To control the
consequences of this phenomenon in our proof, we have to state a lemma.

Lemma 3.8. Let X be a compact subset of Rn and let {fi} be finitely
many continuous, real-valued functions. Then

sup
x∈X

max
i
fi(x) = max

i
sup
x∈X

fi(x).

Proof. SinceX is compact, there are xi∈X such that fi(xi) = supx fi(x).
Therefore

sup
x

max
i
fi(x) ≤ max

i
sup
x
fi(x) = max

i
fi(xi) = max

i,j
fi(xj)

= max
j

max
i
fi(xj) ≤ sup

x
max
i
fi(x),

which was to be proved.

Moreover, in the proof of [6, Theorem 2.5], the singular value functions
and the minors of the derivative matrices were compared. During the proof
of Theorem 3.1 we will do this as well; however, we have to introduce in the
proof a new IFS, which will be the rth iteration of the original IFS, since
we have to separate the growth rates of the non-zero and the non-diagonal
terms of the minors of the derivative matrices.

Proof of Theorem 3.1. Let

(3.8) {Gh}l
r

h=1 = {Fi1···ir}
l,...,l
i1=1,...,ir=1,

so that each h corresponds to a suitable finite sequence i ∈ {1, . . . , l}r of
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length r. Let us define

φ′
s(h) = sup

x
φs(DxGh), φ′

s(h) = inf
x
φs(DxGh)

for h ∈ {1, . . . , lr}∗, corresponding to IFS {Gh}l
r

h=1 (see (2.3)).
It is easy to see that

(3.9)
∑
|i|=kr

φs(DxFi) =
∑
|h|=k

φs(DxGh).

where i ∈ {1, . . . , l}kr and h ∈ {1, . . . , lr}k. The elements of DxGh, denoted
by yij(h, x), are equal to xij(i, x) for a suitable finite sequence i of length r.
It is easy to see that

φs(DxGh) = (φm−1(DxGh))m−s(φm(DxGh))s−m+1, where m− 1 < s ≤ m.

By using relations (3.1), (3.2) and (3.3) it follows that

φm(DxGh) ≥ c2 max{|DxG
(m)
h | : DxG

(m)
h is an m×m minor of DxGh}.

The maximum m×m minor of DxGh is at least equal to the largest product
of m distinct diagonal elements of DxGh, since such products are themselves
minors of triangular matrices. Therefore

φ′
s(h) ≥ cs2(inf

x
|yj1j1(h, x) · · · yjm−1jm−1(h, x)|)m−s

× (inf
x
|yj′1j′1(h, x) · · · yj′mj′m(h, x)|)s−m+1

for every j1, . . . , jm−1, j
′
1, . . . , j

′
m.

By the chain rule

DxGh = DGh2···hk
(x)Gh1DGh3···hk

(x)Gh2 · · ·DxGhk
,

yjj(h, x) = yjj(h1, Gh2···hk
(x))yjj(h2, Gh3···hk

(x)) · · · yjj(hk, x).
It follows with the notation infx |yjj(h, x)| = d′jj(h) that

inf
x
|yj1j1(h, x) · · · yjm−1jm−1(h, x)|m−s inf

x
|yj′1j′1(h, x) · · · yj′mj′m(h, x)|s−m+1

≥ (d′j1j1(h1) · · · d′j1j1(hk)d
′
j2j2(h1) · · · d′jm−1jm−1

(h1) · · · d′jm−1jm−1
(hk))m−s

× (d′j′1j′1(h1) · · · d′j′1j′1(hk)d
′
j′2j
′
2
(h1) · · · d′j′mj′m(h1) · · · d′j′mj′m(hk))s−m+1.

The next inequality follows from the rearrangement of the product:∑
|h|=k

φ′
s(h)

≥ cs2
∑
|h|=k

(d′j1j1(h1) · · · d′jm−1jm−1
(h1))m−s(d′j′1j′1(h1) · · · d′j′mj′m(h1))s−m+1

· · · (d′j1j1(hk) · · · d
′
jm−1jm−1

(hk))m−s(d′j′1j′1(hk) · · · d
′
j′mj
′
m

(hk))s−m+1
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= cs2((d
′
j1j1(1) · · · d′jm−1jm−1

(1))m−s(d′j′1j′1(1) · · · d′j′mj′m(1))s−m+1

+ · · ·+ (d′j1j1(l
r) · · · d′jm−1jm−1

(lr))m−s(d′j′1j′1(l
r) · · · d′j′mj′m(lr))s−m+1)k.

The inequality above is true for every j1, . . . , jm−1, j
′
1, . . . , j

′
m, therefore we

obtain the maximum. From the definition of {Gh}l
r

h=1 and H(s, r) (see (3.5)
and (3.8)), it follows that

(3.10)
∑
|h|=k

φ′
s(h) ≥ cs2H(s, r)k.

By using relations (3.1), (3.2) and (3.3) it follows similarly that

φm(DxGh) ≤ c1 max{|DxG
(m)
h | : DxG

(m)
h is an m×m minor of DxGh}.

Therefore∑
|h|=k

φ′
s(i)

≤c21
∑
|h|=k

(sup
x

max
m−1×m−1 minor

|DxG
(m−1)
h |)m−s(sup

x
max

m×mminor
|DxG

(m)
h |)s−m+1.

By Lemma 3.8, the order of the supremum and the maximum can be
reversed in this situation and we can estimate the sum by

C max
{ r1,...,rm−1

s1,...,sm−1
}

max
{
r′1,...,r

′
m

s′1,...,s
′
m
}

∑
|h|=k

(sup
x
|DxG

(m−1)
h |)m−s(sup

x
|DxG

(m)
h |)s−m+1

where r1, . . . , rm−1 are the rows and s1, . . . , sm−1 the columns of the
(m − 1) × (m − 1) minor, and r′1, . . . , r

′
m are the rows and s′1, . . . , s

′
m the

columns of the m × m minor; moreover C = c21
(
n
m

)2( n
m−1

)2. By the chain
rule

DxGh = DGh2···hk
(x)Gh1DGh3···hk

(x)Gh2 · · ·DxGhk
,

we obtain

(3.11) DxGh

(
r1, . . . , rm
s1, . . . , sm

)
=

∑
c1,...,ck

±y1(c1)(h1, Gh2···hk
(x)) · · · y1(ck)(hk, x) · · · ym(c1)(h1, Gh2···hk

(x))

× ym(c2)(h2, Gh3···hk
(x)) · · · ym(ck)(hk, x).

Therefore
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(3.12) sup
x
|DxG

(m)
h |

≤
∑

c1,...,ck

sup
x
|y1(c1)(h1, x)| · · · sup

x
|y1(ck)(hk, x)| · · · sup

x
|ym(c1)(h1, x)|

× sup
x
|ym(c2)(h2, x)| · · · sup

x
|ym(ck)(hk, x)|.

Denote by t′kl(h) := supx |ykl(h, x)| the suprema. It follows from the inequal-
ity (3.12) and Lemma 3.2 that

(3.13)
∑
|h|=k

sup
x
|DxG

(m−1)
h |m−s sup

x
|DxG

(m)
h |s−m+1

≤
∑

c1,...,ck
c′1,...,c

′
k

(
(t′1(c1)(1) · · · t′m−1(c1)(1))m−s(t′1(c′1)(1) · · · t′m(c′1)(1))s−m+1

+ · · ·+ (t′1(c1)(l
r) · · · t′m−1(c1)(l

r))m−s(t′1(c′1)(l
r) · · · t′m(c′1)(l

r))s−m+1)

× · · · × ((t′1(ck)(1) · · · t′m−1(ck)(1))m−s(t′1(c′k)(1) · · · t′m(c′k)(1))s−m+1

+ · · ·+ (t′1(ck)(l
r) · · · t′m−1(ck)(l

r))m−s(t′1(c′k)(l
r) · · · t′m(c′k)(l

r))s−m+1
)
.

Lemma 3.6 implies that each non-zero term of the above sum has at most
2(n−1)m = b indices 1(c1), . . . ,m−1(c1), . . . , 1(ck), . . . ,m−1(ck), 1(c′1), . . . ,
m(c′1), . . . , 1(c′k), . . . ,m(c′k) that are non-diagonal terms. Thus, for each set
of indices (c1, . . . , ck, c′1, . . . , c

′
k), we have at least k − b of these indices such

that 1(cr), . . . ,m − 1(cr), 1(c′r), . . . ,m(c′r) are all diagonal entries. For such
cr and c′r,

((t′1(cr)(1) · · · t′m−1(cr)(1))m−s(t′1(c′r)(1) · · · t′m(c′r)(1))s−m+1

+ · · ·+ (t′1(cr)(l
r) · · · t′m−1(c1)(l))

m−s(t′1(c′r)(l
r) · · · t′m(c′r)(l

r))s−m+1)

≤ max
{j1,...,jm−1},{j′1,...,j′m}

(
(t′j1j1(1) · · · t′jm−1jm−1

(1))m−s(t′j′1(1) · · · t′j′m(1))s−m+1

+ · · ·+ (t′j1j1(l
r) · · · t′jm−1jm−1

(lr))m−s(t′j′1(l
r) · · · t′j′mj′m(lr))s−m+1

)
= T (s, r).

The last equality follows from the definition of {Gh}l
r

h=1 and T (s, r). Hence
from (3.13),

(3.14)
∑
|h|=k

sup
x
|DxG

(m−1)
h |m−s sup

x
|DxG

(m)
h |s−m+1

≤
∑

c1,...,ck
c′1,...,c

′
k

T (s, r)k−b(lr)b ≤ c′′kqlrbT (s, r)k−b,

where, by Lemma 3.6, c′′ = m!(m− 1)! and q = (2m− 1)(n− 1).
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By using (3.7), (3.9), (3.10) and (3.14), we obtain∑
|i|=kr

φ
s(i) =

∑
|h|=k

φ′
s(h) ≤ c′′kqlrbT (s, r)k−b(3.15)

≤ c′′(Cs)kkqlrbT (s, r)−bH(s, r)k

≤ c′′′(Cs)kkqlrbT (s, r)−b
∑
|h|=k

φ′
s(h)

= c′′′kqlrbT (s, r)−b
∑
|i|=kr

φs(i).

We take the logarithm of both sides and divide by kr to obtain

log
∑
|i|=kr φ

s(i)

kr
≤ log c′′′

kr
+
q log k
kr

+
rb log l
kr

+
(kb) log(Cs)

kr
(3.16)

+
−b log T (s, r)

kr
+

log
∑
|i|=kr φ

s(i)

kr
for any positive integers k, r. We take the limit inferior of both sides as
k →∞ and r →∞. The limit on the left-hand side of the inequality exists,
and on the right-hand side the limit of every term exists and equals zero
except the last term. Therefore

P (s) ≤ P (s).

As the opposite relation is trivial this completes the proof.

The next corollary is a consequence of the previous proof.

Corollary 3.9. Let 0 ≤ s ≤ n. If F1, . . . , Fl are contractive maps of
the form (2.1) and Fi ∈ C1+ε for every 1 ≤ i ≤ l then

(3.17) P (s) = lim
r→∞

1
r

log
(

max
j1,...,jm−1

j′1,...,j
′
m

∑
|i|=r

(|xj1j1(i, x)| · · · |xjm−1jm−1(i, x)|)m−s

× (|xj′1j′1(i, x)| · · · |xj′mj′m(i, x)|)s−m+1
)

for every x ∈M .

Proof. It follows from inequality (3.7) that limr→∞ logH(s, r)/r exists
and

lim
r→∞

logH(s, r)
r

= lim
r→∞

log T (s, r)
r

.

It is clear by (3.15) that limr→∞ (log T (s, r))/r = P (s). Because of the
definition of H(s, r), T (s, r), this is exactly what we want to prove.

4. Some applications. In this section we compute the Hausdorff di-
mension of some non-conformal IFS by using Corollary 3.9. It follows from
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[11] that the Hausdorff dimension is less than or equal to s0 where P (s0) = 0.
We will show some examples where the root is exactly the dimension.

Example 1. The easiest example is the non-linear modified Sierpiński
triangle. Let

T =

[
1/3 0
0 1/3

]
and Tix = Tx + vi for i = 1, 2, 3, where v1 =

(
0
0

)
, v2 =

(
2/3
0

)
, v3 =

(1/3
2/3

)
.

We call the attractor of this IFS a modified Sierpiński triangle. Clearly, its
Hausdorff and box dimension is ln 3

ln 3 = 1.
Let fi : [0, 1]→ [0, 1] for i = 1, 2, 3 be functions in C1+ε such that

Fi

(
x

y

)
=
(

x/3 + vi
y/3 + fi(x) + wi

)
are contractions where

(
v1
w1

)
=
(
0
0

)
,
(
v2
w2

)
=
(
2/3
0

)
,
(
v3
w3

)
=
(1/3
1/2

)
. We can con-

sider the attractor as a non-linear Sierpiński triangle.

Fig. 1. The image of the modified and the non-linear modified Sierpiński triangle for
fi(x) = sin(πx)/6 for every i.

We prove that the Hausdorff dimension of the non-linear modified Sier-
piński triangle is equal to 1, assuming that for i = 1, 2, 3 we have fi ∈ C1+ε

and
(f ′i(x))

2 + |f ′i(x)|
√

(f ′i(x))2 + 4/9 < 16/9.

We need this assumption to ensure that {F1, F2, F3} is contracting.
From the definition in this case it is easy to see that x11(i, x) = x22(i, x)

= 1
3

|i|. We can suppose that 1 ≤ s < 2. Then by Corollary 3.9,
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P (s) = lim
r→∞

1
r

log
(

max
j1,j′1,j

′
2

∑
|i|=r

(|xj1j1(i, x)|)2−s · (|xj′1j′1(i, x)| |xj′2j′2(i, x)|)
s−2+1

)
= lim

r→∞

1
r

log
(∑
|i|=r

(
1
3

|i|)2−s(1
3

|i| 1
3

|i|)s−1)
= lim

r→∞

1
r

log
(

3r
1
3

sr
)

= log 3− s log 3.

It is easy to see that P (s) = 0 if and only if s = 1, which is the upper bound
of the Hausdorff dimension of the modified non-linear attractor, as follows
from [11]. To get a lower bound it is enough to project it onto the x axis and
we get the interval [0, 1].

Example 2. The next example is a non-linear perturbation of a self-
affine IFS. Let c1, c2 ∈ (0, 1). Consider the following self-affine IFS:

g0(x) =

[
c1 0
0 c2

]
x, g1(x) =

[
1− c1 0

0 1− c2

]
x+

[
c1

c2

]
.

It is easy to see that the attractor of this IFS has Hausdorff dimension 1
since it is the graph of a strictly monotone function. We perturb this IFS as
follows. Let

g̃0(x, y) =

[
c1x

c2y + f0(x)

]
, g̃1(x, y) =

[
(1− c1)x+ c1

(1− c2)y + c2 + f1(x)

]
.

where f0, f1 ∈ C1+ε and fi are periodic with period 1. Moreover, we suppose

Fig. 2. The images of the attractors in case c1 = 1/2, c2 = 1/4, f0(x) = (1− c2) sin(πx),
f1(x) = −c2 sin(πx).
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that g̃0, g̃1 are contractions, namely the following inequalities hold:

c21 + (f ′0(x))
2 + c22 +

√
(c21 + (f ′0(x))2 + c22)2 − 4c21c

2
2 < 2,

(1− c1)2 + (f ′1(x))
2 + (1− c2)2

+
√

((1− c1)2 + (f ′1(x))2 + (1− c2)2)2 − 4(1− c1)2(1− c2)2 < 2.

In this case the Hausdorff dimension of the modified attractor is greater
than or equal to 1 since the projection to the x axis is the interval [0, 1]. To get
an upper bound we have to use the subadditive pressure and Corollary 3.9.
For every i ∈ {0, 1}∗ we have x11(i, x) = c]0i1 (1 − c1)]1i and x22(i, x) =
c]0i2 (1− c2)]1i where ]ji is the number of js in i. Then

max
j

∑
|i|=r

xjj(i, x)2−s(x11(i, x)x22(i, x))s−2+1

= max
j

∑
|i|=r

c
(2−s)]0i
j (1− cj)(2−s)]1ic(s−1)]0i

1 (1− c1)(s−1)]1i

× c(s−1)]0i
2 (1− c2)(s−1)]1i

= max{(c1cs−1
2 + (1− c1)(1− c2)s−1)r, (c2cs−1

1 + (1− c2)(1− c1)s−1)r}.

Therefore by formula (3.17) we have P (1) = 0, and by [11], 1 is an upper
bound for the Hausdorff dimension, so the Hausdorff dimension is exactly 1.
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