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Summary. We present a new proof of Janson’s strong hypercontractivity inequality for
the Ornstein–Uhlenbeck semigroup in holomorphic algebras associated with CAR (ca-
nonical anticommutation relations) algebras. In the one generator case we calculate op-
timal bounds for t such that Ut is a contraction as a map L2(H) → Lp(H) for arbitrary
p ≥ 2. We also prove a logarithmic Sobolev inequality.

1. Introduction. We say that a semigroup Ut is hypercontractive if for
some t > 0 it is bounded as a map Ut : Lr → Lp for some ∞ > p > r > 1.
In 1973 Nelson [N] proved his famous result:

Theorem 1. Let Aγ be the Dirichlet form operator for the Gauss mea-
sure dγ(x) = (2π)−n/2e−|x|

2/2 dx on Rn. For 1 < r ≤ p < ∞ and f ∈
Lp(Rn, γ),

‖e−tAγf‖p ≤ ‖f‖r for t ≥ t(r, p) =
1
2

ln
p− 1
r − 1

.

For t < t(r, p), e−tAγ is not bounded from Lr to Lp.

Gross used this inequality to show that the boson energy operator in a
model of 2-dimensional Euclidean quantum field theory has a unique ground
state. There are several generalizations of that result. The complete version of
the hypercontractivity result in its sharp form (optimal time to contraction)
for fermions (canonical anticommutation relations) is due to Carlen and Lieb
[CL]. Biane [Bia] generalized their result to the case of Bożejko and Speicher’s
q-commutation relations (see [BKSp]) and then in [K2] it was extended to a
large class of algebras connected with so called general commutation relations
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(see [JSW]). In the non-commutative setting estimates for p =∞ have also
been obtained (see [Bo]). There is also another sort of extension of Nelson’s
result. We say that Ut is complex hypercontractive if for any holomorphic
function f such that f ∈ Lp(R2n, µ) and for any p ≥ r > 0 there exists
t(r, p) such that ‖Ut(f)‖p ≤ ‖f‖r for t ≥ t(r, p). In 1983 Janson proved that
contractivity in the complex case is attained in a shorter time than in the
real case.

Theorem 2. Let 0 < r ≤ p < ∞ and let f ∈ Lp(R2n, γ) ∩ Hol(Cn),
where R2n ∼ Cn and Hol(Cn) denotes the set of holomorphic functions.
Then for Ut being a linear extension of Ut(Hn) = e−tnHn, where Hn is the
nth Hermite polynomial,

‖Ut(f)‖p ≤ ‖f‖r for t ≥ t(r, p) =
1
2

ln
p

r
.

For t < t(r, p), Ut is not bounded from Lr to Lp.

In 2005 Kemp [Ke] proved an analog of Janson’s complex hypercontrac-
tivity inequality for q-Gaussian algebras. Precisely, he showed that an analog
of the above inequality holds with the same constant for p being any even
natural number and r = 2, i.e. t(2, 2k) = 1

2 ln k. We propose another proof of
his result. We show that the problem of complex hypercontractivity reduces
to the one generator case and we calculate explicitly the Lp norms of ele-
ments of interest in the case of p even using combinatorial methods and for
arbitrary p ≥ 1 using a modified matrix model. We also prove a logarithmic
Sobolev inequality.

The paper is organized as follows. In Section 2 we recall the classical rep-
resentation of the CAR algebra, a construction of an analog of the algebra of
holomorphic functions and describe its basic properties. Section 3 contains
the first part of the main results. We prove an inequality which reduces the
problem to the one generator case and deduce a formula for L2k norms. In
Section 4 we present an alternative matrix model for our algebra, prove the
hypercontractive inequality for the one generator case, but without the pre-
vious restriction on p, i.e. for all p ≥ 2. As a corollary we get the logarithmic
Sobolev inequality.

2. The Clifford algebra. We begin by recalling some well known facts
about fermions. The fundamental elements satisfy the canonical anticommu-
tation relations (CAR)

xkxj + xjxk = 2δkj for j, k ∈ I, a finite index set.

They can be concretely represented as operators on some Hilbert space. We
define the matrices
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Id =
(

1 0
0 1

)
, U =

(
1 0
0 −1

)
, Q =

(
0 1
1 0

)
.

Let H denote the n-fold tensor product of C 2 with itself (n = |I|):
H = C2 ⊗ . . .⊗ C2︸ ︷︷ ︸

n times

and on H define
xj = U ⊗ · · · ⊗ U ⊗Q⊗ Id⊗ · · · ⊗ Id,

where Q occurs in the jth place. The operators just defined are easily seen
to satisfy the canonical anticommutation relations.

In the non-commutative fermionic holomorphic setting we begin the con-
struction of our algebra HOL(I) by doubling the number of generators:

xkxj + xjxk = 2δkj ,
x−kx−j + x−jx−k = 2δkj ,

x−jxi + xix−j = 0,

where k = 1, . . . , |I|. We take

x−j = U ⊗ · · · ⊗ U ⊗ P ⊗ Id⊗ · · · ⊗ Id for P =
(

0 −i
i 0

)
,

where P occurs in the jth place.
Denote by zk the operator given by

zk = 1
2(xk + ix−k).

Define the holomorphic algebra HOL(I) as the algebra over C generated by
{z1, . . . , z|I|}, i.e. all polynomials in variables zi, i ∈ I (the adjoints are not
included).

Since HOL(I) is a subalgebra of 2n×2n matrices (n being the number of
elements in I), we have on it the standard normalized trace tr. The following
lemma contains some properties of the operators z and z∗. All the statements
can be verified by easy calculations (see also [Ke]).

Lemma 1. The following properties hold:
z∗kzj + zjz

∗
k = δkj ,(1)

zkzj + zjzk = 0,(2)
(z∗j zj)

t = (z∗j zj) for t > 0,(3)
z∗j zju = uz∗j zj for u ∈ HOL(I \ {j}),(4)
zjz
∗
j = 1− z∗j zj ,(5)

zjz
∗
j zj = zj and z∗j zjz

∗
j = z∗j ,(6)

tr(z∗j zju) = tr(z∗j zj) tr(u) = 1
2 tr(u) for u ∈ HOL(I \ {j}).(7)
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Non-commutative analogs of Lp norms can be introduced, namely for
1 ≤ p <∞ we put

‖A‖p = (tr(|A|p))1/p = (tr((A∗A)p/2))1/p.

We will need an estimate of the Lp norm of an arbitrary element a ∈
HOL(I). In the next section we will show that the problem of hypercon-
tractivity can be reduced to the one generator case. The proof will go by
induction on the number of generators. We end this section with a remark
which is the first tool for that reduction.

Remark 1. Let a ∈ HOL(I). Then a can be uniquely decomposed as

a = b+ zjc

for any j ∈ I and b, c ∈ HOL(I \ {j}).

For more information about CAR algebras see [BR].

3. Complex hypercontractivity. All the statements of this section
remain true also for the so called mixed spin holomorphic algebra HOL(I, σ).
Let σ: I × I → {−1, 1} be symmetric, i.e. σ(k, j) = σ(j, k), and constantly
−1 on the diagonal, i.e. σ(k, k) = −1. Then HOL(I, σ) is the algebra over C
generated by {z1, . . . , z|I|}, where zk = 1

2(xk + ix−k) and

xkxj − σ(j, k)xjxk = 2δkj ,
x−kx−j − σ(j, k)x−jx−k = 2δkj ,
x−jxk − σ(j, k)xkx−j = 0.

Lemma 2. Let b, c ∈ HOL(I \ {j}), where j ∈ I. Then
‖b+ zjc‖2p ≤

∥∥‖b‖2p + zj‖c‖2p
∥∥

2p
.

Proof. Without loss of generality we can assume that j = 1. Denote
z1 = z. We have to prove that

tr([(b∗ + c∗z∗)(b+ zc)]p) ≤ tr([(‖b‖2p + ‖c‖2p z∗)(‖b‖2p + ‖c‖2p z)]p).
Assign to each sequence from {0, 1}2p a term from the left hand side and the
corresponding term from the right hand side in the following way:

(an) 7→ tr[α(a1) · · ·α(a2p)],

where α(a2k+1) = b∗ if a2k+1 = 0, α(a2k+1) = c∗z∗ if a2k+1 = 1, α(a2k) = b
if a2k = 0 and α(a2k) = zc if a2k = 1.

Analogously,
(an) 7→ tr[β(a1) · · ·β(a2p)],

where β(ak) = ‖b‖2p if ak = 0, β(a2k+1) = ‖c‖2pz∗ if a2k+1 = 1 and β(a2k) =
z‖c‖2p if a2k = 1.
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The corresponding terms are either zero or the term on the left hand side
is less than or equal to the term on the right hand side. Assume that there
exists a pair of indices s < j, both even, such that as = 1, aj = 1 and for all
s < k < j, ak = 0 (for l < s or l > j, al can be arbitrary). Then

tr[α(a1) · · ·α(a2p)] = tr[α(a1) · · ·α(as−1)zcb∗b · · · b∗zcα(aj+1) · · ·α(a2p)].

From Lemma 1 we have

zzj = (−1)|j|zjz, j = j1 . . . jk, js 6= 1, for s = 1, . . . , k,

where zj = zj1 · · · zjk . Also

zz∗j = (−1)|j|z∗j z, j = j1 . . . jk, js 6= 1, for s = 1, . . . , k.

Set

d̃ =
m∑
k=1

∑
|j|=k

(−1)kγjzj for d =
m∑
k=1

∑
|j|=k

γjzj .

Then since z2 = 0 we get

zcb∗b · · · b∗z = z2c̃b̃∗ · · · b̃∗ = 0.

Therefore
tr[α(a1) · · ·α(a2p)] = 0.

The same method shows that the corresponding term on the right hand side
of the inequality is also zero. In a similar way we find that if there exists
a pair of indices s < j, both odd, such that as = 1, aj = 1 and for all
s < k < j, ak = 0, then

tr[α(a1) · · ·α(a2p)] = tr[β(a1) · · ·β(a2p)] = 0.

Also if the number of indices s for which as = 1 is odd then

α(a1) · · ·α(a2p) = z1d or α(a1) · · ·α(a2p) = z∗1d

for some d which contains neither z1 nor z∗1 and

β(a1) · · ·β(a2p) = z1w or β(a1) · · ·β(a2p) = z∗1w, w ∈ R.

Therefore in this case

tr[α(a1) · · ·α(a2p)] = tr[β(a1) · · ·β(a2p)] = 0.

Take now sequences such that if as = 1, aj = 1 and ak = 0 for s < k < j
then s+ j is odd and the number of indices s for which as = 1 is even. Then

α(a1) · · ·α(a2p) = zz∗ · · · zz∗︸ ︷︷ ︸
2k

d1 · · · d2p,

where dj ∈ {b, c, b∗, c∗, b̃, c̃, b̃∗, c̃∗}. By Hölder’s inequality
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|tr((zz∗)kd1 · · · d2p)| = 1
2 |tr(d1 · · · d2p)|

≤ 1
2‖d1‖2p · · · ‖d2p‖2p = tr(β(a1) · · ·β(a2p)).

The last equality holds because the L2p norms of any element d and d̃ in our
algebra are the same. Now to end the proof it is enough to apply the triangle
inequality.

Now we calculate the norm ‖1+βz‖2p2p as a function of β. Since it depends
only on |β|, we can assume without any loss of generality that β > 0.

Lemma 3. Take β > 0 and arbitrary j. Let z = zj have the properties
listed in Lemma 1. Then for any p ∈ N we have

‖1+βz‖2p2p =
p∑

k=1

1
2
β2kb(p, k)+1, where b(p, k) =

(
p+ k

2k

)
+
(
p+ k − 1

2k

)
.

Proof. We have
‖1 + βz‖2p2p = tr ((1 + βz∗) · · · (1 + βz))︸ ︷︷ ︸

2p terms

=
∑

γ∈{0,1}2p
tr((1− γ1 + γ1βz

∗) · · · (1− γ2p + γ2pβz)).

Since zj(z∗j zj)
n = zj , z∗j (zjz

∗
j )
k = z∗j and tr(zj) = tr(z∗j ) = 0 we can exclude

all sequences such that the number of elements in {j : γj = 1} is odd.
Therefore

‖1 + βz‖2p2p =
p∑

k=0

∑
γ∈{0,1}2p

#{j : γj=1}=2k

tr((1− γ1 + γ1βz
∗) · · · (1− γ2p + γ2pβz)).

Further, since z2
j = 0, if there exists a pair of indices j < k which are either

both odd or both even, γj = γk = 1 but γs = 0 for all j < s < k then
tr((1− γ1 + γ1βz

∗) · · · (1− γ2p + γ2pβz)) = 0. Denote the set of such γ by J .
Now

‖1 + βz‖2p2p =
p∑

k=0

∑
γ∈{0,1}2p\J

#{j : γj=1}=2k

tr((1− γ1 + γ1βz
∗) · · · (1− γ2p + γ2pβz))

= 1 +
p∑

k=1

∑
γ∈{0,1}2p\J

#{j : γj=1}=2k

tr((1− γ1 + γ1βz
∗) · · · (1− γ2p + γ2pβz))

= 1 +
p∑

k=1

∑
γ∈{0,1}2p\J

#{j : γj=1}=2k

1
2
β2k.
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We are left with calculating the number of γ ∈ {0, 1}2p such that #{j :
γj = 1} = 2k and γ /∈ J for fixed k ≥ 1. Take a sequence j1, . . . , j2k such
that γ(j1) = · · · = γ(j2k) = 1. Notice that js − js−1 must be odd. Then

2p ≥ j2k = (j2k − j2k−1) + (j2k−1 − j2k−2) · · ·+ (j2 − j1) + j1.

We have two cases: j1 can be either odd or even.
If j1 is odd, then the number of such sequences is equal to the number

of sequences of 2k odd natural numbers with sum less than or equal to 2p.
This is equal to the number of sequences of 2k nonnegative even integers
with sum less than or equal to 2p − 2k. This is the same as the number of
sequences of 2k nonnegative numbers with sum less than or equal to p− k,
and finally it is the same as the number of sequences of 2k positive numbers
with sum less than or equal to p+ k. All these numbers are equal to

(
p+k
2k

)
.

Analogously, if j1−1 is odd, we are interested in the number of sequences
of 2k numbers with sum less than or equal to 2p−1. But because we sum up
2k numbers, the sum has to be even, so instead of 2p−1 we can write 2p−2.
Therefore our number is equal to

(
p+k−1

2k

)
. For p = k we set

(
2k−1
2k

)
= 0.

Lemma 4. Let β ∈ C. Take z as in the previous lemma. Then for any
natural number p,

‖1 + tβz‖2p ≤ ‖1 + βz‖2
if and only if |t|2 ≤ 1/p. Additionally, for β 6= 0 and p = |t| = 1 the above
inequality becomes an equality.

Proof. First notice that ‖1 + t1βz‖2p ≤ ‖1 + t2βz‖2p for |t1| ≤ |t2|.
Therefore it is enough to show that∥∥∥∥1 +

1
√
p
βz

∥∥∥∥2p

2p

≤
(

1 +
1
2
|β|2

)p
or equivalently

(∗) ‖1 + βz‖2p2p ≤
(

1 +
1
2
p|β|2

)p
.

Both sides of (∗) are polynomials in |β|. By comparing the corresponding
coefficients for k ≥ 2 we get

1
2

((
p+ k

2k

)
+
(
p+ k − 1

2k

))
=

1
2

(
p

k

)(
(p+ 1) · · · (p+ k − 1)(p+ k)

(k + 1) · · · (2k − 1)2k
+

(p+ 1) · · · (p+ k − 1)(p− k)
(k + 1) · · · (2k − 1)2k

)
=
(
p

k

)
1
2

(
p+ 1
k + 1

)(
p+ 2
k + 2

)
· · ·
(
p+ k − 1
2k − 1

)(
p

k

)
.
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Since p+s
k+s <

p
s for s < k ≤ p, we have

1
2

((
p+ k

2k

)
+
(
p+ k − 1

2k

))
<

(
p

k

)
pk

2k!
≤
(
p

k

)
pk

2k
.

For k = 1 we have b(p, 1) = p2. That means that the coefficient of |β|2 on
the left hand side coincides with the corresponding coefficient on the right
hand side of (∗). This ends the “if” part of the first statement. The “only if”
part is covered by Theorem 3 below in a more general setting.

Now we are ready to formulate our theorem (see also [Ke]).

Theorem 3. For any fixed index set I and any X ∈ HOL(I) and Ut
defined as a linear extension of Ut(zj1 · · · zjn) = e−tnzj1 · · · zjn for j1 <
· · · < jn, we have

‖Ut(X)‖2p ≤ ‖X‖2 if and only if e−2t ≤ 1/p.

This means that the Janson time cannot be improved in the non-com-
mutative setting.

Proof. The sufficiency follows by induction on the number of generators.
Fix j ∈ I. Assume that X /∈ HOL(I \ {j}) (i.e. it contains zj). From Re-
mark 1, X = b+zjc for some b, c ∈ HOL(I \{j}) and UtX = Utb+e−tzjUtc.
From Lemma 2,

‖UtX‖2p ≤
∥∥‖Utb‖2p + e−tzj‖Utc‖2p

∥∥
2p
.

Further using Lemma 4, for e−2t ≤ 1/p we get

‖‖Utb‖2p + e−tzj‖Utc‖2p‖2p ≤
∥∥‖Utb‖2p + zj‖Utc‖2p

∥∥
2

=
(
‖Utb‖22p +

1
2
‖Utc‖22p

)1/2

.

By inductive assumption ‖Utb‖2p ≤ ‖b‖2 and ‖Utc‖2p ≤ ‖c‖2 and so

‖UtX‖2p ≤
(
‖b‖22 +

1
2
‖c‖22

)1/2

.

Since tr(b∗zjc) = tr(zjcb∗) = 0 we have

‖b+ zjc‖22 = ‖zjc‖22 + ‖b‖22 = ‖zj‖22‖c‖22 + ‖b‖22 =
1
2
‖c‖22 + ‖b‖22.

Finally

‖UtX‖2p ≤
(
‖b‖22 +

1
2
‖c‖22

)1/2

= ‖b+ zjc‖2 = ‖X‖2.

For the necessity, let x(ε) = 1 + εz, where z = zj for some j ∈ I. Then

(4) ‖x(ε)‖2p2p = 1 +
p2

2
ε2 + o(ε2)
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and

(44) ‖x(ε)‖2p2 =
(

1 +
1
2
ε2
)p

= 1 +
1
2
pε2 + o(ε2).

Hence for ‖x(e−tε)‖2p2p ≤ ‖x(ε)‖
2p
2 we must have

1 +
p2

2
e−2tε2 + o(ε2) ≤ 1 +

1
2
pε2 + o(ε2),

and so as ε→ 0, it follows that e−2t ≤ 1/p.

Remark 2. The equalities (4) and (44) are also true without the
assumption that p is natural. The above necessary condition can be extended
to arbitrary p ≥ q ≥ 1, i.e. if ‖x(e−tε)‖2p ≤ ‖x(ε)‖2q then e−2t ≤ q/p.

4. Matrix model. In this section we present another approach to cal-
culating Lp norms of elements of the form 1+αz. Since in the one generator
case, z and z∗ are 2 × 2 matrices, we can calculate the eigenvalues of the
selfadjoint, positive operator |1 + αz|2 = (1 + αz∗)(1 + αz). Indeed,

z =
(

0 1
0 0

)
, z∗ =

(
0 0
1 0

)
.

The Lp norm is calculated using the normalized trace on 2 × 2 matrices.
Then

|1 + αz|2 =
(

1 α

α 1 + |α|2

)
.

The characteristic polynomial of that matrix is W (λ) = λ2− (2+ |α|2)λ+1,
so there are two eigenvalues λ1 and λ2 such that λ1 +λ2 = 2+ |α|2, λ1λ2 = 1
and λ1, λ2 > 0.

We need the following inequality:

λp1 + λp2
2

≤
(

1 + p
|α|2

2

)p
.

Translating the above to the language of hyperbolic functions by setting
(λ1 + λ2)/2 = cosh y we get

cosh py ≤ (p cosh y + 1− p)p for all y > 0, p ≥ 1.

Lemma 5. For all λ, p ≥ 1,

(∗∗) λp + (1/λ)p

2
≤
(
p

(
λ+ 1/λ

2
− 1
)

+ 1
)p
.

Proof. We will prove that

(λ2p + 1)2p−1 ≤ (p(λ− 1)2 + 2λ)p,
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which is equivalent to (∗∗). Both sides of the above inequality are equal for
λ = 1 and arbitrary p ≥ 1. Define

f(λ) = (p(λ− 1)2 + 2λ)p − (λ2p + 1)2p−1.

Then f(1) = 0 and

f ′(λ) = p(p(λ− 1)2 + 2λ)p−1(2p(λ− 1) + 2)− 2ppλ2p−1

= 2p[(p(λ− 1)2 + 2λ)p−1(p(λ− 1) + 1)− 2p−1λ2p−1]

= 2pλ2p−1

[(
p

(
1− 1

λ

)2

+
2
λ

)p−1(
p

(
1− 1

λ

)
+

1
λ

)
− 2p−1

]
.

Notice that f ′(1) = 0. Set x = 1− 1/λ. Then

f ′
(

1
1− x

)
= 2pp(1− x)−2p+1

[(
p

2
x2 + 1− x

)p−1

(px− x+ 1)− 1
]
.

Let g(x) = (p2x
2 + 1− x)p−1(px− x+ 1). We see that g(0) = 1. For p ≥ 1, g

is increasing in [0, 1]:

g′(x) = (p− 1)
(
p

2
x2 + 1− x

)p−2

(px− x+ 1)(px− 1)

+ (p− 1)
(
p

2
x2 + 1− x

)p−1

= (p− 1)
(
p

2
x2 + 1− x

)p−2(
p2 − p

2

)
x2 ≥ 0 for p ≥ 1 and x ∈ [0, 1].

Thus g(x) ≥ 1 for p ≥ 1 and x ∈ [0, 1]. This implies that f ′(λ) ≥ 0 for λ ≥ 1
and p ≥ 1. We therefore conclude that f(λ) ≥ 0 for λ ≥ 1, which gives the
desired result.

Corollary 1. For y = 1 + αz and p ≥ 2,

‖Ut(y)‖p ≤ ‖y‖2 if and only if e−2t ≤ 2/p.

As a corollary to the optimal complex hypercontractivity inequality we
obtain the optimal complex logarithmic Sobolev inequality.

Corollary 2. For y = 1 + αz and N(1 + αz) = αz,

tr(|y|2 ln |y|)− ‖y‖22 ln ‖y‖2 ≤
1
2
〈Ny ; y〉.

Proof. From Corollary 1, ‖e−tNy‖22 ≥ ‖y‖2p for e−2t = p/2 and p ≥ 2,
i.e. t ≤ 0. Both sides are continuously differentiable and we will obtain the
result by comparing the derivatives at t = 0. Denote f(t) = ‖e−tNy‖22 and
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g(t) = ‖y‖22e−2t . Then f ′(0) ≤ g′(0). We calculate

f ′(t) =
d

dt
‖e−tNy‖22 =

d

dt
〈e−2tNy ; y〉 = −2〈Ne−2tNy ; y〉.

For p = 2e−2t,

g′(t) =
d

dt
‖y‖22e−2t =

2‖y‖p
p
‖y‖1−pp (tr(|y|p ln |y|)− ‖y‖pp ln ‖y‖p)(−4e−2t).

We take t = 0 and obtain

g′(0) = −4 tr(|y|2 ln |y|)− ‖y‖22 ln ‖y‖2) and f ′(0) = −2〈Ny ; y〉,

which gives the required inequality.
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