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Summary. An improved multiple Cotlar inequality is obtained. From this result, weighted
norm inequalities for the maximal operator of a multilinear singular integral includ-
ing weak and strong estimates are deduced under the multiple weights constructed re-
cently.

1. Introduction. Grafakos and Torres [4] systematically studied mul-
tilinear Calderón–Zygmund singular integral operators T : S(Rn) × · · · ×
S(Rn)→ S ′(Rn) with some boundedness properties, defined by

T (f1, . . . , fm)(x) =
�

(Rn)m

K(x, y1, . . . , ym)f1(y1) · · · fm(ym) dy1 · · · dym,

where K(x, y1, . . . , ym) is a locally integrable function supported away from
the diagonal x = y1 = · · · = ym in (Rn)m+1 and satisfies

(i) (Size estimate)

(1.1) |K(x, y1, . . . , ym)| ≤ A

(|x− y1|+ · · ·+ |x− ym|)mn

for some A > 0 and all (x, y1, . . . , ym) ∈ (Rn)m+1 with x 6= yj for
some j;
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(ii) (Smoothness estimates)

(1.2) |K(x, y1, . . . , ym)−K(x′, y1, . . . , ym)|

≤ A|x− x′|ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε

for some ε > 0 whenever |x−x′| ≤ 1
2 max1≤j≤n |x− yj |, and also, for

each j,

(1.3) |K(x, y1, . . . , yj , . . . , ym)−K(x, y1, . . . , y
′
j , . . . , ym)|

≤
A|yj − y′j |ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε

for some ε > 0 whenever |yj − y′j | ≤ 1
2 max1≤j≤n |x− yj |.

In [5], the authors considered the corresponding maximal operator defined
as

T ∗(f1, . . . , fm)(x) = sup
δ>0
|Tδ(f1, . . . , fm)(x)|,

where Tδ, the truncated operator of T , is

Tδ(f1, . . . , fm)(x)

=
�

|x−y1|2+···+|x−ym|2>δ2
K(x, y1, . . . , ym)f1(y1) · · · fm(ym) dy1 · · · dym.

Similarly to the linear setting, Cotlar’s inequality, for all η > 0,

(1.4) T ∗(f1, . . . , fm)(x) ≤ C
(
Mη(T (f1, . . . , fm))(x) +

m∏
i=1

Mfi(x)
)
,

where Mη(f)(x) = supQ3x |Q|−1
	
Q |f |

η)1/η was employed to show

Theorem 1.1 (Boundedness of T ∗, [5]). Assume that 1/p = 1/p1 + · · ·+
1/pm.

(i) If 1 < p1, . . . , pm ≤ ∞ and p <∞, then

T ∗ : Lp1(Rn)× · · · × Lpm(Rn)→ Lp(Rn).

(ii) If 1 ≤ p1, . . . , pm ≤ ∞ and p <∞, then

T ∗ : Lp1(Rn)× · · · × Lpm(Rn)→ Lp,∞(Rn).

BygeneralizingCoifman andFefferman’s good-λ inequality of [1],Grafakos
and Torres proved a weighted norm inequality for T ∗:

Theorem 1.2 (Weighted boundedness of T ∗, [5]). Assume that 1 <
p1, . . . , pm < ∞, p0 = min(p1, . . . , pm) and 1/p = 1/p1 + · · · + 1/pm. If
ω ∈ Ap0 , then

T ∗ : Lp1(ω)× · · · × Lpm(ω)→ Lp(ω).
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Recently, Lerner, Ombrosi, Pérez, Torres and Trujillo-González [6] con-
structed a new theory of multiple A~p weights.

Definition 1.1 (Multiple weights, [6]). Let 1 ≤ p1, . . . , pm < ∞ and
1/p = 1/p1 + · · · + 1/pm. Given ~ω = (ω1, . . . , ωm), set ν~ω =

∏m
i=1 ω

p/pi
i . By

definition, ~ω ∈ A~p if and only if

sup
Q

(
1
|Q|

�

Q

ν~ω

)1/p m∏
i=1

(
1
|Q|

�

Q

ω
1−p′i
i

)1/p′i
<∞.

When pi = 1, (|Q|−1
	
Q ω

1−p′i
i )1/p

′
i is understood as (infQ ωi)−1.

A more subtle multilinear maximal operatorM which is defined as

M(f1, . . . , fm)(x) = sup
Q

m∏
i=1

1
|Q|

�

Q

|fi|

was investigated to characterize the multiple weights in [6]. The authors
showed that ~ω ∈ A~p is equivalent to either of the two weighted estimates
forM:

(i) If 1 < p1, . . . , pm <∞ and 1/p = 1/p1 + · · ·+ 1/pm, then

(1.5) Lp1(ω1)× · · · × Lpm(ωm)→ Lp(ν~ω).

(ii) If 1 ≤ p1, . . . , pm <∞ and 1/p = 1/p1 + · · ·+ 1/pm, then

(1.6) Lp1(ω1)× · · · × Lpm(ωm)→ Lp,∞(ν~ω).

Further, it was proved in [6] that T satisfies both (1.5) and (1.6) by using
unweighted boundedness, Fefferman–Stein inequalities and a sharp estimate.
For more details, the readers are referred to [6].

It is natural to ask whether (1.5) and (1.6) hold for T ∗. We will give a
positive answer in this note. Instead of the good-λ inequality we will employ
Cotlar’s inequality as in [2, p. 147]. However,

∏m
i=1Mfi fails to satisfy either

(1.5) or (1.6) (see [6]), which makes us improve (1.4) by replacing the m-fold
product of M with M. After the modification, we shall obtain not only
strong type bounds but also weak endpoint estimates.

Theorem 1.3 (Weighted estimates for T ∗). Assume that 1/p = 1/p1 +
· · ·+ 1/pm and ~ω ∈ A~p. Then both (1.5) and (1.6) hold for T ∗.

Throughout this article, we write ~f = (f1, . . . , fm), ~y = (y1, . . . , ym) and	
Qm
∏m
i=1 fi(yi) dyi =

	
Q · · ·

	
Q f1(y1) · · · fm(ym) dy1 · · · dym for convenience.

2. Weighted norm inequalities. The multiple A~p weights are appro-
priate for the maximal functionM(~f ) which is more refined than

∏m
i=1Mfi.

Hence, we improve Cotlar’s inequality as follows.
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Lemma 2.1 (Improved Cotlar inequality). For any η > 0, there is a
C > 0 depending on η such that

(2.1) T ∗(~f )(x) ≤ C(Mη(T (~f ))(x) +M(~f )(x)),

where Mη(f)(x) = supQ3x(|Q|−1
	
Q |f |

η)1/η.

Proof. The basic idea is due to [5] and [6].
Fix x ∈ Rn, 0 < η < 1/m and δ > 0. Denote by Q(x, δ) the cube of

center x and edge length 2δ with sides parallel to the axes, and set Uδ(x) =
{~y ∈ (Q(x, δ))m :

∑m
i=1 |x− yi|2 > δ2}. It is clear that

|Tδ(~f )(x)| ≤
∣∣∣ �

Uδ(x)

K(x, ~y)
m∏
i=1

fi(yi) dyi
∣∣∣(2.2)

+
∣∣∣ �

((Q(x,δ))m)c

K(x, ~y)
m∏
i=1

fi(yi) dyi
∣∣∣.

By invoking the size condition (1.1), the first term on the right hand side of
(2.2) can be estimated as follows:∣∣∣ �

Uδ(x)

K(x, ~y)
m∏
i=1

fi(yi) dyi
∣∣∣ ≤ �

Uδ(x)

A

(
∑m

i=1 |yi − x|)mn
m∏
i=1

|fi(yi)| dyi

≤
�

Uδ(x)

C

δmn

m∏
i=1

|fi(yi)| dyi

≤
m∏
i=1

C

(2δ)n
�

Q(x,δ)

|fi(yi)| dyi

≤ CM(~f )(x).

We now estimate the second term in (2.2). Pick z ∈ Q(x, δ/2) and set
~f0 = (f1χQ(x,δ), . . . , fmχQ(x,δ)). Then

�

((Q(x,δ))m)c

K(z, ~y)
m∏
i=1

fi(yi) dyi = T (~f )(z)− T (~f0)(z),

which means∣∣∣ �

((Q(x,δ))m)c

K(x, ~y)
m∏
i=1

fi(yi) dyi
∣∣∣

≤
∣∣∣ �

((Q(x,δ))m)c

K(x, ~y)
m∏
i=1

fi(yi) dyi −
�

((Q(x,δ))m)c

K(z, ~y)
m∏
i=1

fi(yi) dyi
∣∣∣

+ |T (~f )(z)− T (~f0)(z)|.
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In virtue of the smoothness condition (1.2), we can deduce that∣∣∣ �

((Q(x,δ))m)c

K(x, ~y)
m∏
i=1

fi(yi) dyi −
�

((Q(x,δ))m)c

K(z, ~y)
m∏
i=1

fi(yi) dyi
∣∣∣

≤
�

((Q(x,δ))m)c

C|x− z|ε

(
∑m

i=1 |x− yi|)mn+ε

m∏
i=1

|fi(yi)| dyi

≤
∑
i1,...,il

∞∑
k=0

Cδε
∏

i∈{i1,...,il}

×
�

Q(x,δ)

|fi(yi)| dyi
�

(Q(x,2k+1δ))m−l\(Q(x,2kδ))m−l

∏
i/∈{i1,...,il} |fi(yi)| dyi

(
∑m

i=1 |x− yi|)mn+ε

≤
∑
i1,...,il

∞∑
k=0

Cδε
∏

i∈{i1,...,il}

×
�

Q(x,δ)

|fi(yi)| dyi
�

(Q(x,2k+1δ))m−l

∏
i/∈{i1,...,il} |fi(yi)| dyi

(2kδ)mn+ε

≤
∞∑
k=0

C

2kε

m∏
i=1

1
(2k+2δ)n

�

Q(x,2k+1δ)

|fi(yi)| dyi

≤ CM~f(x),

where ∅ 6= {i1, . . . , il} ( {1, . . . ,m}. This implies

(2.3)
∣∣∣ �

((Q(x,δ))m)c

K(x, ~y)
m∏
i=1

fi(yi) dyi
∣∣∣

≤ CM~f(x) + |T (~f )(z)|+ |T (~f0)(z)|.
Raising (2.3) to the power η, integrating over z ∈ Q = Q(x, δ/2) and dividing
by |Q|, we conclude that∣∣∣ �

((Q(x,δ))m)c

K(x, ~y)
m∏
i=1

fi(yi) dyi
∣∣∣η

≤ C(M~f(x))η +M(|T (~f )|η)(x) +
1
|Q|

�

Q

|T (~f0)(z)|η dz.

Finally, the proof can be finished by using the arguments in [5] which proved
|Q|−1

	
Q |T (~f0)|η ≤ C(

∏m
i=1 |Q|−1

	
Q |fi|)

η.

It is well known that M is bounded from Lp(ω) to Lp,∞(ω) when ω ∈ Ap
and p ≥ 1. Similar to the proof in [2, p. 135], we get the following lemma to
show the weak estimates in the main theorem.
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Lemma 2.2. If ω ∈ Ap and p ≥ 1, then M maps Lp,∞(ω) to Lp,∞(ω).

Proof. For any cube Q and ω ∈ Ap,(
1
|Q|

�

Q

ω

)(
λ

|Q|

�

Q∩{|f |>λ}

)p
≤
(

1
|Q|

�

Q

ω

)(
λp

|Q|

�

Q∩{|f |>λ}

ω

)(
1
|Q|

�

Q

ω1−p′
)p−1

≤ C λp

|Q|

�

Q∩{|f |>λ}

ω.

When p = 1, (|Q|−1
	
Q ω

1−p′)p−1 is understood as (infQ ω)−1. Then we ob-
tain �

Q

ω ≤ C
(
λ

|Q|

�

Q∩{|f |>λ}

)−p(
λp

�

Q∩{|f |>λ}

ω
)

≤ C
(

1
|Q|

�

Q

|f |
)−p(

λp
�

Q∩{|f |>λ}

ω
)
.

A Calderón–Zygmund decomposition for f at height 4−nλ yields a se-
quence of cubes {Qk} such that 4−nλ < |Qk|−1

	
Qk
f. Additionally, we have

{Mf > λ} ⊂
⋃
k 3Qk as in [2]. Since the function ω ∈ Ap is doubling, it is

immediate that�

{Mf>λ}

ω ≤
∑
k

�

3Qk

ω ≤ C3np
∑
k

�

Qk

ω

≤ C3np
∑
k

(
1
|Qk|

�

Qk

|f |
)−p(

λp
�

Qk∩{|f |>λ}

ω
)
≤ C12np

�

{|f |>λ}

ω,

which means ‖Mf‖Lp,∞(ω) ≤ C‖f‖Lp,∞(ω).

Proof of Theorem 1.3. Before the final proof, we should recall another
fact from [6]: if ~ω ∈ A~p, then ν~ω ∈ Amp.

When 1 ≤ p1, . . . , pm < ∞, we have a weak type result. Let η ≤ 1/m.
The improved Cotlar inequality (2.1), Lemma 2.2 and the weighted estimates
(1.6) forM and T in [6] imply
‖T ∗(~f )‖Lp,∞(ν~ω) ≤ C(‖Mη(T (~f ))‖Lp,∞(ν~ω) + ‖M(~f )‖Lp,∞(ν~ω))

= C(‖M(|T (~f )|η)‖1/η
Lp/η,∞(ν~ω)

+ ‖M(~f )‖Lp,∞(ν~ω))

≤ C(‖ |T (~f )|η‖1/η
Lp/η,∞(ν~ω)

+ ‖M(~f )‖Lp,∞(ν~ω))

= C(‖T (~f )‖Lp,∞(ν~ω)+‖M(~f )‖Lp,∞(ν~ω))≤C
m∏
i=1

‖fi‖Lpi (ωi).

The proof of the strong case is similar.
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3. Further results. X. T. Duong, R. Gong, L. Grafakos, J. Li and
L. Yan [3] studied the maximal operator of a multilinear singular integral
with non-smooth kernel. Together with the corresponding Cotlar inequalities
with

∏m
i=1Mfi and unweighted bounds, they obtained the counterpart of

Theorem 1.2 in that case. However, weighted norm inequalities with new
multiple weights for non-smooth operators as we did for Calderón–Zygmund
operators have not been proved yet.
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