On-line Packing Squares into n Unit Squares

by
Janusz JANUSZEWSKI
Presented by Aleksander PEECZYŃSKI

Summary. If $n \geq 3$, then any sequence of squares of side lengths not greater than 1 whose total area does not exceed $\frac{1}{4}(n+1)$ can be on-line packed into n unit squares.

1. Introduction. Let C, C_{1}, C_{2}, \ldots be planar convex bodies. We say that $\left(C_{i}\right)$ can be packed into C if there exist rigid motions σ_{i} such that $\bigcup \sigma_{i} C_{i} \subseteq C$ and $\sigma_{i} C_{i}$ have pairwise disjoint interiors. The on-line version of packing is the following: initially the first set C_{1} is given without any information on the next bodies; then we find each successive set C_{i} only after the motion σ_{i-1} has been provided. The placement of each packed set $\sigma_{i} C_{i}$ cannot be changed afterwards. The survey of results concerning packings and on-line packings is given in [1], [2] and [5].

Moon and Moser [6] proved that any sequence of squares whose total area does not exceed $\frac{1}{2}$ can be packed into the unit square. The best known upper bound is smaller for the packing with the on-line restriction. In [3] it is shown that every sequence of squares with total area not greater than $\frac{1}{3}$ can be on-line packed into the unit square.

We propose the problem of on-line packing squares into a number of unit squares. Let I_{1}, \ldots, I_{n} be pairwise disjoint squares of sides of length 1 and let $J_{n}=I_{1} \cup \cdots \cup I_{n}$.

Observe that $n+1$ squares of side lengths greater than $\frac{1}{2}$, and consequently of total area greater than $\frac{1}{4}(n+1)$, cannot be packed into J_{n}. The reason is that the interior of any square of side length greater than $\frac{1}{2}$ packed into a unit square I_{m} contains the center of I_{m}.

[^0]The aim of this paper is to show that any sequence of squares of side lengths not greater than 1 whose total area does not exceed $\frac{1}{4}(n+1)$ can be on-line packed into J_{n} provided $n \geq 3$.

The area of C is denoted by $|C|$.
2. Subbrics. In the next section the method of the first free subbrick, introduced in [4], will be used for packing small squares.

Let k be a non-negative integer. By a brick of size $(3, k)$ we mean a rectangle of side lengths $1 /\left(3 \cdot 2^{k}\right)$ and $1 /\left(2 \cdot 2^{k}\right)$. By a brick of size $(4, k)$ we mean a rectangle of side lengths $1 /\left(4 \cdot 2^{k}\right)$ and $1 /\left(3 \cdot 2^{k}\right)$.

We can dissect any brick of size ($3, k$) into two congruent bricks, called subbrics, of size $(4, k)$. Furthermore, we can dissect any brick of size $(4, k)$ into two congruent bricks, called subbrics, of size $(3, k+1)$. Consequently, any square I_{m} can be dissected into $6 \cdot 4^{k}$ subbricks of size $(3, k)$ and into $12 \cdot 4^{k}$ subbricks of size $(4, k)$. Bricks of size $(3,0)$ are also called subbricks.

6	8
5	7
1	2
I_{1}	

10	12
9	11
3	4
I_{2}	

$6 j-2$	$6 j$
$6 j-3$	$6 j-1$
$6 j-5$	$6 j-4$
$I_{j}, j \geq 3$	

Fig. 1
Without loss of generality we can assume that the unit squares are parallel as in Fig 1.

We number all subbricks of J_{n} of size $(3,0)$ by integers from 1 to $6 n$ as in Fig. 1. Bricks numbered $1,2,5,6,7$ and 8 are contained in I_{1}. Bricks numbered $3,4,9,10,11$ and 12 are contained in I_{2}. Bricks numbered $6 j-5$, $6 j-4, \ldots, 6 j$ are contained in I_{j}, for $j=3, \ldots, n$.

18	20	23	24
17	19	21	22
5	6	7	8

Fig. 2
For each positive integer k we number all $6 n \cdot 4^{k}$ subbricks of J_{n} of size $(3, k)$ by integers from 1 to $6 n \cdot 4^{k}$; also, for each non-negative integer k we number all $12 n \cdot 4^{k}$ subbricks of J_{n} of size $(4, k)$ by integers from 1 to $12 n \cdot 4^{k}$ so that the following two conditions are fulfilled:
(1) The numbers $2 m-1$ and $2 m$ are assigned to the subbricks of size $(4, k)$ of the subbrick of size $(3, k)$ numbered m so that the subbrick numbered $2 m-1$ is to the left of the subbrick numbered $2 m$. The only exception is the numbering of the four subbricks of size $(4,0)$ contained in two subbricks of size $(3,0)$ numbered 9 and 10 (see Fig. 2, where all subbricks of size $(4,0)$ contained in I_{2} are shown).
(2) The numbers $2 l-1$ and $2 l$ are assigned to the subbricks of size $(3, k+1)$ of the subbrick of size $(4, k)$ numbered l so that the subbrick number $2 l-1$ is situated lower than the subbrick numbered $2 l$.

The subbrick of size $(3, k)$ numbered t is denoted by $(3, k, t)$. The subbrick of size $(4, k)$ numbered u is denoted by $(4, k, u)$.
3. Packing algorithm. Let $\left(S_{i}\right)$ be a sequence of squares of side lengths not greater than 1. Denote by s_{i} the side length of S_{i}. If $s_{i} \leq \frac{1}{3}$, then S_{i} is small, otherwise S_{i} is big.

If $1 /\left(4 \cdot 2^{k}\right)<s_{i} \leq 1 /\left(3 \cdot 2^{k}\right)$, then

$$
\left|S_{i}\right|=s_{i}^{2}>\frac{1}{\left(4 \cdot 2^{k}\right)^{2}}>\frac{1}{3} \cdot \frac{1}{3 \cdot 2^{k}} \cdot \frac{1}{2 \cdot 2^{k}}
$$

If $1 /\left(3 \cdot 2^{k+1}\right)<s_{i} \leq 1 /\left(4 \cdot 2^{k}\right)$, then

$$
\left|S_{i}\right|=s_{i}^{2}>\frac{1}{\left(6 \cdot 2^{k}\right)^{2}}=\frac{1}{3} \cdot \frac{1}{4 \cdot 2^{k}} \cdot \frac{1}{3 \cdot 2^{k}} .
$$

Consequently, for each small square S_{i} there is a brick $B_{i} \supset S_{i}$ such that $\left|S_{i}\right|>\frac{1}{3}\left|B_{i}\right|$.

Let $i \geq 1$ be an integer. We will define B_{i}^{\prime} once the square S_{i} is packed.
Packing of small squares. If S_{i} is small, then by a free i-subbrick we mean a subbrick congruent to B_{i} whose interior is disjoint from any set B_{j}^{\prime} for $j<i$. Denote by P_{i} the free i-subbrick of J_{n} with the smallest possible number.

If (a) P_{i} is either the subbrick $(3,0,13)$ or $(3,0,14)$, then we pack S_{i} into P_{i} so that $\sigma_{i} S_{i}$ contains a vertex of I_{3}. We set $P_{i}=B_{i}^{\prime}$.

If (b) there are small squares S_{p} and S_{q} of side lengths greater than $\frac{1}{4}$ such that S_{p} is packed into the subbrick $(3,0,13)$ and S_{q} is packed into the subbrick $(3,0,14)$, and if i is the smallest integer greater than q such that $\frac{1}{4}<s_{i} \leq \frac{1}{3}$, then S_{i} is an extra-square. We pack S_{i} into the union of two subbricks $(3,0,13)$ and $(3,0,14)$ between the squares $\sigma_{p} S_{p}$ and $\sigma_{q} S_{q}$. We set $B_{i}^{\prime}=\emptyset$.

If neither (a) nor (b) holds, then we pack S_{i} into P_{i} and we set $P_{i}=B_{i}^{\prime}$.
Packing of big squares. If S_{i} is big, then we find the smallest integer l such that it is possible to pack S_{i} into I_{l} so that one vertex of $\sigma_{i} S_{i}$ is a vertex
of I_{l}. We pack S_{i} into I_{l} so that one vertex of $\sigma_{i} S_{i}$ is a vertex of I_{l} and so that $\sigma_{i} S_{i}$ contains a subbrick of size $(4,0)$ with the greatest possible number (we pack big squares starting from the top of unit squares in Figs. 1 and 2).

Now we define B_{i}^{\prime}.
If $s_{i}>\frac{2}{3}$, then we set $B_{i}^{\prime}=I_{l}$. Obviously, $\left|S_{i}\right|>\frac{4}{9}>\frac{1}{3}\left|B_{i}^{\prime}\right|$.
If $\frac{1}{2}<s_{i} \leq \frac{2}{3}$, then the packed square $\sigma_{i} S_{i}$ is contained in the union of four subbricks of size $(3,0)$. Let B_{i}^{\prime} be that union. Obviously, $\left|S_{i}\right|>\frac{1}{4}>$ $\frac{1}{3} \cdot \frac{2}{3}=\frac{1}{3}\left|B_{i}^{\prime}\right|$.

If $\frac{1}{3}<s_{i} \leq \frac{1}{2}$, then $\sigma_{i} S_{i}$ is contained in the union of two subbricks of size $(3,0)$. Let B_{i}^{\prime} be that union. Obviously, $\left|S_{i}\right|>\frac{1}{9}=\frac{1}{3} \cdot \frac{1}{3}=\frac{1}{3}\left|B_{i}^{\prime}\right|$.
4. Efficiency of the packing algorithm. First we show how effective our method is for packing of big squares.

LEMMA. If $n \geq 1$ and if a sequence of big squares cannot be on-line packed into $J_{n}=I_{1} \cup \cdots \cup I_{n}$ by the method described in Section 3, then the total area of the squares exceeds $\frac{1}{4}(n+1)$.

Proof. Let $\left(S_{i}\right)$ be a sequence of big squares. Assume that they cannot be packed into J_{n} by the method presented in Section 3.

Denote by S_{z} the first square from the sequence which cannot be packed into J_{n}. Furthermore, denote by K the set of integers $k \in\{1, \ldots, n\}$ such that at most three big squares are packed into I_{k}.

If $K=\emptyset$ (i.e., if four big squares are packed into each I_{k}), then the total area of the squares is greater than $\frac{4}{9} n+\left|S_{z}\right|>\frac{4}{9} n+\frac{1}{9}>\frac{1}{4}(n+1)$.

Consider the case when $K \neq \emptyset$. There is at most one $j \in K$ such that only squares of side lengths not greater than $\frac{1}{2}$ are packed into I_{j}. If there is $j \in K$ such that only squares of side lengths not greater than $\frac{1}{2}$ are packed into I_{j}, then let S_{m} be a square packed into I_{j} such that $s_{m}+s_{z}>1$. Otherwise, let j be an integer from K and let S_{m} be a square packed into I_{j} such that $s_{m}+s_{z}>1$. It is easy to verify that $s_{m}^{2}+s_{z}^{2}>\frac{1}{2}$. The total area of the squares packed into I_{k} is greater than $\frac{1}{4}$ for each $k \in\{1, \ldots, n\}, k \neq j$. This implies that

$$
\sum_{i=1}^{z}\left|S_{i}\right|>\frac{1}{4}(n-1)+s_{m}^{2}+s_{z}^{2}>\frac{1}{4}(n-1)+\frac{1}{2}=\frac{1}{4}(n+1)
$$

TheOrem. If $n \geq 3$, then any sequence of squares of side lengths not greater than 1 whose total area does not exceed $\frac{1}{4}(n+1)$ can be on-line packed into J_{n}.

Proof. Let $n \geq 3$ and let $\left(S_{i}\right)$ be a sequence of squares of side lengths not greater than 1 whose total area does not exceed $\frac{1}{4}(n+1)$.

We pack the squares from the sequence by the method described in Section 3.

Suppose that, contrary to the statement, it is impossible to pack S_{1}, S_{2}, \ldots into J_{n} by this method. Let S_{z} be the square which stops the packing process and let

$$
\zeta=\sum_{i=1}^{z}\left|S_{i}\right| .
$$

We show that this leads to the false inequality

$$
\zeta>\frac{1}{4}(n+1) .
$$

Obviously, if $i<z$, then $\left|S_{i}\right|>\frac{1}{3}\left|B_{i}^{\prime}\right|$. Consider four cases.
Case 1: S_{z} is small.
Subcase 1A: $s_{z} \leq \frac{1}{4}$. Since S_{z} cannot be packed, it follows that there is no free z-subbrick of J_{n}. This implies that the total area of all free subbricks is smaller than

$$
\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots\right)\left|B_{z}\right|=\left|B_{z}\right| .
$$

Hence

$$
\zeta>\frac{1}{3}\left(\sum_{i=1}^{z-1}\left|B_{i}^{\prime}\right|+\left|B_{z}\right|\right) \geq \frac{1}{3}\left|J_{n}\right|=\frac{1}{3} n .
$$

It is easy to verify that $\frac{1}{3} n \geq \frac{1}{4}(n+1)$ for $n \geq 3$. Consequently, $\zeta>\frac{1}{4}(n+1)$.
Subcase 1B: $s_{z}>\frac{1}{4}$. If a square of side length not greater than $\frac{1}{4}$ is packed into $I_{3} \cup \cdots \cup I_{n}$, then we argue as in Subcase 1A.

Assume than no square of side length not greater than $\frac{1}{4}$ is packed into $I_{3} \cup \cdots \cup I_{n}$. The total area of the free subbricks is smaller than $\frac{3}{2}\left|B_{z}\right|$ (now it can happen that two subbricks of size $(4,0):(4,0,19)$ and $(4,0,20)$ are free).

Denote by U the union of the subbricks $(3,0,13)$ and $(3,0,14)$.
Since $\frac{1}{4}<s_{z} \leq \frac{1}{3}$, it cannot be the case that exactly two small squares of side length greater than $\frac{1}{4}$ are packed into U.

If three small squares of side length greater than $\frac{1}{4}$ are packed into U, then the total area of the free subbricks is smaller than $\frac{3}{2}\left|B_{z}\right|$ but, on the other hand, the area of the extra-square is greater than $\frac{1}{16}$. Consequently,

$$
\begin{aligned}
\zeta & >\frac{1}{3}\left(\sum_{i=1}^{z-1}\left|B_{i}^{\prime}\right|+\left|B_{z}\right|\right)+\frac{1}{16} \geq \frac{1}{3}\left(n-\frac{3}{2}\left|B_{z}\right|+\left|B_{z}\right|\right)+\frac{1}{16} \\
& =\frac{1}{3}\left(n-\frac{1}{12}\right)+\frac{1}{16}>\frac{1}{4}(n+1)
\end{aligned}
$$

If at most one small square of side length greater than $\frac{1}{4}$ is packed into U, then the total area of the (small and big) squares packed into I_{3} is greater than $\frac{1}{3}+\frac{1}{16}$. Consequently,

$$
\zeta>\frac{1}{3}\left(n-\frac{1}{2}\left|B_{z}\right|\right)+\frac{1}{16}=\frac{1}{3}\left(n-\frac{1}{12}\right)+\frac{1}{16}>\frac{1}{4}(n+1) .
$$

CASE 2: S_{z} is big and no small square is packed into $I_{2} \cup \cdots \cup I_{n}$.
SUBCASE 2A: all small packed squares are contained in the union of the subbricks $(3,0,1)$ and $(3,0,2)$. If no big square is packed into I_{1}, then all big packed squares (and S_{z}) have sides longer than $\frac{2}{3}$, and consequently $\zeta>\frac{4}{9} n>\frac{1}{4}(n+1)$.

Assume that at least one big square is packed into I_{1}.
If either four or three big squares are packed into I_{1}, then the total area of the squares packed into I_{1} is greater than $3 \cdot \frac{1}{9}$. By the Lemma we know that the total area of the big squares packed into $I_{2} \cup \cdots \cup I_{n}$ plus $\left|S_{z}\right|$ is greater than $\frac{1}{4}(n-1+1)$. Consequently, $\zeta>3 \cdot \frac{1}{9}+\frac{1}{4} n>\frac{1}{4}(n+1)$.

If a small square is packed outside the subbrick $(4,0,1)$, i.e., if the total area of the packed small squares is greater than $\frac{1}{3} \cdot \frac{1}{12}$ and if two big squares are packed into I_{1}, then

$$
\zeta>2 \cdot \frac{1}{9}+\frac{1}{3} \cdot \frac{1}{12}+\frac{1}{4} n=\frac{1}{4}(n+1) .
$$

If one big square is packed into I_{1} or if two big squares are packed into I_{1} and all small squares are contained in $(4,0,1)$, then arguing as in the proof of the Lemma we obtain $\zeta>\frac{1}{4}(n+1)$.

SUBCASE 2B: a small square is packed into I_{1} outside the union of the subbricks $(3,0,1)$ and $(3,0,2)$. This implies that there is no free subbrick of size $(3,0)$ contained in I_{2}. Hence the total area of the squares packed into I_{2} is greater than $\frac{4}{9}$. Moreover, the total area of the small squares is greater than $\frac{1}{3} \cdot \frac{1}{3}$. Consequently, by the Lemma,

$$
\zeta>\frac{1}{9}+\frac{4}{9}+\frac{1}{4}(n-2+1) \geq \frac{1}{4}(n+1) .
$$

CASE 3: S_{z} is big and a small square is packed into $I_{3} \cup \cdots \cup I_{n}$. Denote by s the greatest integer such that a small square is packed into I_{s}. Obviously, $s \geq 3$.

If all small squares packed into I_{s} are contained in the union of the subbricks $(3,0,6 s-4)$ and $(3,0,6 s-5)$, then we argue as in Subcase 2A; the total area of the squares packed into $I_{s} \cup \cdots \cup I_{n}$ plus $\left|S_{z}\right|$ is greater than $\frac{1}{4}(n-s+1+1)$. Arguing as in Case 1 we deduce that the total area of the squares packed into $I_{1} \cup \cdots \cup I_{s-1}$ is greater than $\frac{1}{3}\left(s-1-\frac{3}{2} \cdot \frac{1}{6}\right)$.

Consequently,

$$
\zeta>\frac{1}{3}\left(s-1-\frac{1}{4}\right)+\frac{1}{4}(n-s+2)>\frac{1}{4}(n+1) .
$$

If a small square is packed into I_{s} outside the union of the subbricks $(3,0,6 s-4)$ and $(3,0,6 s-5)$, then the total area of the squares packed into $I_{1} \cup \cdots \cup I_{s}$ is greater than $\frac{1}{3}\left(s-1-\frac{1}{12}+\frac{1}{3}\right)$. Consequently, by the Lemma,

$$
\zeta>\frac{1}{3}\left(s-\frac{3}{4}\right)+\frac{1}{4}(n-s+1) \geq \frac{1}{4}(n+1) .
$$

Case 4: S_{z} is big and at least one small square is packed into I_{2} and no small square is packed into $I_{3} \cup \cdots \cup I_{n}$.

Subcase 4A: a small square is packed into I_{2} outside the union of the subbricks $(3,0,3)$ and $(3,0,4)$. By the considerations of Case 1, the total area of the squares packed into I_{1} plus the total area of the small squares packed into I_{2} is greater than $\frac{4}{9}$.

If there is a big square packed into I_{2}, then the total area of the squares packed into $I_{1} \cup I_{2}$ is greater than $\frac{5}{9}$. Consequently, by the Lemma,

$$
\zeta>\frac{5}{9}+\frac{1}{4}(n-2+1)>\frac{1}{4}(n+1) .
$$

Denote by W the union of four subbricks: $(3,0,3),(3,0,4),(4,0,17)$ and $(4,0,18)$. If there is a small square packed into I_{2} outside W, then the total area of squares packed into $I_{1} \cup I_{2}$ is greater than $\frac{1}{3} \cdot \frac{3}{2}=\frac{1}{2}$. Hence, by the Lemma,

$$
\zeta>\frac{1}{2}+\frac{1}{4}(n-2+1)=\frac{1}{4}(n+1) .
$$

If no big square is packed into I_{2} and if no small square is packed into I_{2} outside W, then all big squares packed into I_{j}, for $j \in\{3, \ldots, n\}$ (and S_{z}) have side lengths greater than $\frac{2}{3}$. Hence $\zeta>\frac{4}{9}+\frac{4}{9}(n-1)>\frac{1}{4}(n+1)$.

Subcase 4B: all small squares packed into I_{2} are contained in the union of the subbricks $(3,0,3)$ and $(3,0,4)$. If there is a big square S_{u} packed into I_{1} and a big square S_{v} packed into I_{2} such that $s_{u}+s_{v}>1$, then, by the Lemma,

$$
\zeta>s_{u}^{2}+s_{v}^{2}+\frac{1}{4}(n-2+1)>\frac{1}{2}+\frac{1}{4}(n-1)=\frac{1}{4}(n+1) .
$$

Consider the opposite case.
If no big square is packed into I_{2}, then the side length of each big square packed into $I_{3} \cup \cdots \cup I_{n}$ (and the side length of S_{z}) is greater than $\frac{2}{3}$. Moreover, the total area of the squares packed into $I_{1} \cup I_{2}$ is greater than $\frac{1}{9}$. This implies that

$$
\zeta>\frac{1}{9}+\frac{4}{9}(n-1) \geq \frac{1}{4}(n+1) .
$$

Assume that at least two big squares are packed into I_{2}.
Denote by ξ the total area of the squares packed into $I_{1} \cup I_{2}$. We show that $\xi>\frac{1}{2}$. If either three or four big squares are packed into I_{1}, then $\xi>3 \cdot \frac{1}{9}+\frac{2}{9}>\frac{1}{2}$. If two big squares are packed into I_{1}, then the total area of the small squares is greater than $\frac{1}{3} \cdot 2 \cdot \frac{1}{6}$. Consequently, $\xi>2 \cdot \frac{1}{9}+\frac{1}{9}+\frac{2}{9}>\frac{1}{2}$. If one big square is packed into I_{1}, then a small square is packed into I_{1} outside the union of the subbricks $(3,0,1)$ and $(3,0,2)$. Consequently, the total area of the small squares is greater than $\frac{2}{9}$ and $\xi>\frac{1}{9}+\frac{2}{9}+\frac{2}{9}>\frac{1}{2}$. If no big square is packed into I_{1}, then the total area of the small squares is greater than $\frac{1}{3} \cdot 5 \cdot \frac{1}{6}$ and $\xi>\frac{5}{18}+\frac{2}{9}=\frac{1}{2}$. By the Lemma we deduce that

$$
\zeta>\xi+\frac{1}{4}(n-2+1)>\frac{1}{4}(n+1) .
$$

Finally, assume that exactly one big square S_{v} is packed into I_{2}.
If $s_{v} \geq \frac{2}{3}$, then the total area of the squares packed into $I_{1} \cup I_{2}$ is greater than $\frac{1}{9}+\frac{4}{9}$ and, by the Lemma, $\zeta>\frac{5}{9}+\frac{1}{4}(n-2+1)>\frac{1}{4}(n+1)$.

Assume that $s_{v}<\frac{2}{3}$. This implies that the total area of the squares packed into $I_{1} \cup I_{2}$ is greater than $\frac{1}{4}+s_{v}^{2}$ (if no big square is packed into I_{1}, then the total area of the small squares is greater than $\left.\frac{1}{3}\left(4 \cdot \frac{1}{6}+\frac{1}{12}\right)=\frac{1}{4}\right)$.

If $s_{v} \geq \frac{1}{2}$, then

$$
\zeta>\frac{1}{4}+s_{v}^{2}+\frac{1}{4}(n-2+1) \geq \frac{1}{4}(n+1) .
$$

If $s_{v}<\frac{1}{2}$, then the side length of each big square packed into $I_{3} \cup \cdots \cup I_{n}$ (and the side length of S_{z}) is greater than $1-s_{v}$. It is easy to verify that

$$
s_{v}^{2}+(n-1)\left(1-s_{v}\right)^{2} \geq \frac{1}{4} n
$$

The total area of the squares packed into I_{1} plus the total area of the small squares packed into I_{2} is greater than $\frac{1}{4}$.

Consequently,

$$
\zeta>\frac{1}{4}+\frac{1}{4} n=\frac{1}{4}(n+1)
$$

It remains an open question whether $n \geq 3$ can be replaced by $n \geq 1$ in the statement of the Theorem.

References

[1] K. Böröczky, Jr., Finite Packing and Covering, Cambridge Tracts in Math. 154, Cambridge Univ. Press, Cambridge, 2004.
[2] G. Fejes Tóth and W. Kuperberg, Packing and covering with convex sets, in: Handbook of Convex Geometry, P. M. Gruber and J. M. Wills (eds.), North-Holland, 1993, 799-860.
[3] X. Han, K. Iwama and G. Zhang, Online removable square packing, Theory Comput. Syst. 43 (2008), 38-55.
[4] J. Januszewski and M. Lassak, On-line packing sequences of cubes in the unit cube, Geom. Dedicata 67 (1997), 285-293.
[5] M. Lassak, A survey of algorithms for on-line packing and covering by sequences of convex bodies, in: Intuitive Geometry (Budapest, 1995), Bolyai Soc. Math. Stud. 6, János Bolyai Math. Soc., Budapest, 1997, 129-157.
[6] J. W. Moon and L. Moser, Some packing and covering theorems, Colloq. Math. 17 (1967), 103-110.

Janusz Januszewski
Institute of Mathematics and Physics
University of Technology and Life Sciences
Kaliskiego 7
85-796 Bydgoszcz, Poland
E-mail: januszew@utp.edu.pl

[^0]: 2010 Mathematics Subject Classification: 52C15, 05B40.
 Key words and phrases: on-line packing, square.

