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Summary. If n ≥ 3, then any sequence of squares of side lengths not greater than 1
whose total area does not exceed 1

4
(n + 1) can be on-line packed into n unit squares.

1. Introduction. Let C,C1, C2, . . . be planar convex bodies. We say
that (Ci) can be packed into C if there exist rigid motions σi such that⋃
σiCi ⊆ C and σiCi have pairwise disjoint interiors. The on-line version

of packing is the following: initially the first set C1 is given without any
information on the next bodies; then we find each successive set Ci only
after the motion σi−1 has been provided. The placement of each packed
set σiCi cannot be changed afterwards. The survey of results concerning
packings and on-line packings is given in [1], [2] and [5].

Moon and Moser [6] proved that any sequence of squares whose total
area does not exceed 1

2 can be packed into the unit square. The best known
upper bound is smaller for the packing with the on-line restriction. In [3] it
is shown that every sequence of squares with total area not greater than 1

3
can be on-line packed into the unit square.

We propose the problem of on-line packing squares into a number of unit
squares. Let I1, . . . , In be pairwise disjoint squares of sides of length 1 and
let Jn = I1 ∪ · · · ∪ In.

Observe that n + 1 squares of side lengths greater than 1
2 , and conse-

quently of total area greater than 1
4(n + 1), cannot be packed into Jn. The

reason is that the interior of any square of side length greater than 1
2 packed

into a unit square Im contains the center of Im.
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The aim of this paper is to show that any sequence of squares of side
lengths not greater than 1 whose total area does not exceed 1

4(n+ 1) can be
on-line packed into Jn provided n ≥ 3.

The area of C is denoted by |C|.

2. Subbrics. In the next section the method of the first free subbrick,
introduced in [4], will be used for packing small squares.

Let k be a non-negative integer. By a brick of size (3, k) we mean a
rectangle of side lengths 1/(3 · 2k) and 1/(2 · 2k). By a brick of size (4, k)
we mean a rectangle of side lengths 1/(4 · 2k) and 1/(3 · 2k).

We can dissect any brick of size (3, k) into two congruent bricks, called
subbrics, of size (4, k). Furthermore, we can dissect any brick of size (4, k)
into two congruent bricks, called subbrics, of size (3, k + 1). Consequently,
any square Im can be dissected into 6 · 4k subbricks of size (3, k) and into
12 · 4k subbricks of size (4, k). Bricks of size (3, 0) are also called subbricks.

Fig. 1

Without loss of generality we can assume that the unit squares are par-
allel as in Fig 1.

We number all subbricks of Jn of size (3, 0) by integers from 1 to 6n as
in Fig. 1. Bricks numbered 1, 2, 5, 6, 7 and 8 are contained in I1. Bricks
numbered 3, 4, 9, 10, 11 and 12 are contained in I2. Bricks numbered 6j−5,
6j − 4, . . . , 6j are contained in Ij , for j = 3, . . . , n.

Fig. 2

For each positive integer k we number all 6n · 4k subbricks of Jn of size
(3, k) by integers from 1 to 6n · 4k; also, for each non-negative integer k we
number all 12n ·4k subbricks of Jn of size (4, k) by integers from 1 to 12n ·4k

so that the following two conditions are fulfilled:
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(1) The numbers 2m − 1 and 2m are assigned to the subbricks of size
(4, k) of the subbrick of size (3, k) numbered m so that the subbrick
numbered 2m − 1 is to the left of the subbrick numbered 2m. The
only exception is the numbering of the four subbricks of size (4, 0)
contained in two subbricks of size (3, 0) numbered 9 and 10 (see
Fig. 2, where all subbricks of size (4, 0) contained in I2 are shown).

(2) The numbers 2l − 1 and 2l are assigned to the subbricks of size
(3, k+1) of the subbrick of size (4, k) numbered l so that the subbrick
number 2l − 1 is situated lower than the subbrick numbered 2l.

The subbrick of size (3, k) numbered t is denoted by (3, k, t). The subbrick
of size (4, k) numbered u is denoted by (4, k, u).

3. Packing algorithm. Let (Si) be a sequence of squares of side lengths
not greater than 1. Denote by si the side length of Si. If si ≤ 1

3 , then Si is
small, otherwise Si is big.

If 1/(4 · 2k) < si ≤ 1/(3 · 2k), then

|Si| = s2i >
1

(4 · 2k)2
>

1
3
· 1
3 · 2k

· 1
2 · 2k

.

If 1/(3 · 2k+1) < si ≤ 1/(4 · 2k), then

|Si| = s2i >
1

(6 · 2k)2
=

1
3
· 1
4 · 2k

· 1
3 · 2k

.

Consequently, for each small square Si there is a brick Bi ⊃ Si such that
|Si| > 1

3 |Bi|.
Let i ≥ 1 be an integer. We will define B′i once the square Si is packed.

Packing of small squares. If Si is small, then by a free i-subbrick we
mean a subbrick congruent to Bi whose interior is disjoint from any set B′j
for j < i. Denote by Pi the free i-subbrick of Jn with the smallest possible
number.

If (a) Pi is either the subbrick (3, 0, 13) or (3, 0, 14), then we pack Si

into Pi so that σiSi contains a vertex of I3. We set Pi = B′i.
If (b) there are small squares Sp and Sq of side lengths greater than 1

4
such that Sp is packed into the subbrick (3, 0, 13) and Sq is packed into the
subbrick (3, 0, 14), and if i is the smallest integer greater than q such that
1
4 < si ≤ 1

3 , then Si is an extra-square. We pack Si into the union of two
subbricks (3, 0, 13) and (3, 0, 14) between the squares σpSp and σqSq. We set
B′i = ∅.

If neither (a) nor (b) holds, then we pack Si into Pi and we set Pi = B′i.

Packing of big squares. If Si is big, then we find the smallest integer l
such that it is possible to pack Si into Il so that one vertex of σiSi is a vertex
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of Il. We pack Si into Il so that one vertex of σiSi is a vertex of Il and so
that σiSi contains a subbrick of size (4, 0) with the greatest possible number
(we pack big squares starting from the top of unit squares in Figs. 1 and 2).

Now we define B′i.
If si >

2
3 , then we set B′i = Il. Obviously, |Si| > 4

9 >
1
3 |B

′
i|.

If 1
2 < si ≤ 2

3 , then the packed square σiSi is contained in the union of
four subbricks of size (3, 0). Let B′i be that union. Obviously, |Si| > 1

4 >
1
3 ·

2
3 = 1

3 |B
′
i|.

If 1
3 < si ≤ 1

2 , then σiSi is contained in the union of two subbricks of size
(3, 0). Let B′i be that union. Obviously, |Si| > 1

9 = 1
3 ·

1
3 = 1

3 |B
′
i|.

4. Efficiency of the packing algorithm. First we show how effective
our method is for packing of big squares.

Lemma. If n ≥ 1 and if a sequence of big squares cannot be on-line
packed into Jn = I1 ∪ · · · ∪ In by the method described in Section 3, then the
total area of the squares exceeds 1

4(n+ 1).

Proof. Let (Si) be a sequence of big squares. Assume that they cannot
be packed into Jn by the method presented in Section 3.

Denote by Sz the first square from the sequence which cannot be packed
into Jn. Furthermore, denote by K the set of integers k ∈ {1, . . . , n} such
that at most three big squares are packed into Ik.

If K = ∅ (i.e., if four big squares are packed into each Ik), then the total
area of the squares is greater than 4

9n+ |Sz| > 4
9n+ 1

9 >
1
4(n+ 1).

Consider the case when K 6= ∅. There is at most one j ∈ K such that
only squares of side lengths not greater than 1

2 are packed into Ij . If there is
j ∈ K such that only squares of side lengths not greater than 1

2 are packed
into Ij , then let Sm be a square packed into Ij such that sm + sz > 1.
Otherwise, let j be an integer from K and let Sm be a square packed into Ij
such that sm +sz > 1. It is easy to verify that s2m +s2z >

1
2 . The total area of

the squares packed into Ik is greater than 1
4 for each k ∈ {1, . . . , n}, k 6= j.

This implies that
z∑

i=1

|Si| >
1
4
(n− 1) + s2m + s2z >

1
4
(n− 1) +

1
2

=
1
4
(n+ 1).

Theorem. If n ≥ 3, then any sequence of squares of side lengths not
greater than 1 whose total area does not exceed 1

4(n+1) can be on-line packed
into Jn.

Proof. Let n ≥ 3 and let (Si) be a sequence of squares of side lengths
not greater than 1 whose total area does not exceed 1

4(n+ 1).
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We pack the squares from the sequence by the method described in Sec-
tion 3.

Suppose that, contrary to the statement, it is impossible to pack S1,
S2, . . . into Jn by this method. Let Sz be the square which stops the packing
process and let

ζ =
z∑

i=1

|Si|.

We show that this leads to the false inequality

ζ >
1
4
(n+ 1).

Obviously, if i < z, then |Si| > 1
3 |B

′
i|. Consider four cases.

Case 1: Sz is small.

Subcase 1A: sz ≤ 1
4 . Since Sz cannot be packed, it follows that there is

no free z-subbrick of Jn. This implies that the total area of all free subbricks
is smaller than (

1
2

+
1
4

+
1
8

+ · · ·
)
|Bz| = |Bz|.

Hence

ζ >
1
3

(z−1∑
i=1

|B′i|+ |Bz|
)
≥ 1

3
|Jn| =

1
3
n.

It is easy to verify that 1
3n ≥

1
4(n+1) for n ≥ 3. Consequently, ζ > 1

4(n+1).

Subcase 1B: sz >
1
4 . If a square of side length not greater than 1

4 is
packed into I3 ∪ · · · ∪ In, then we argue as in Subcase 1A.

Assume than no square of side length not greater than 1
4 is packed into

I3 ∪ · · · ∪ In. The total area of the free subbricks is smaller than 3
2 |Bz| (now

it can happen that two subbricks of size (4, 0): (4, 0, 19) and (4, 0, 20) are
free).

Denote by U the union of the subbricks (3, 0, 13) and (3, 0, 14).
Since 1

4 < sz ≤ 1
3 , it cannot be the case that exactly two small squares

of side length greater than 1
4 are packed into U .

If three small squares of side length greater than 1
4 are packed into U ,

then the total area of the free subbricks is smaller than 3
2 |Bz| but, on the

other hand, the area of the extra-square is greater than 1
16 . Consequently,

ζ >
1
3

(z−1∑
i=1

|B′i|+ |Bz|
)
+

1
16
≥ 1

3

(
n− 3

2
|Bz|+ |Bz|

)
+

1
16

=
1
3

(
n− 1

12

)
+

1
16

>
1
4
(n+ 1).
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If at most one small square of side length greater than 1
4 is packed into U ,

then the total area of the (small and big) squares packed into I3 is greater
than 1

3 + 1
16 . Consequently,

ζ >
1
3

(
n− 1

2
|Bz|

)
+

1
16

=
1
3

(
n− 1

12

)
+

1
16

>
1
4
(n+ 1).

Case 2: Sz is big and no small square is packed into I2 ∪ · · · ∪ In.

Subcase 2A: all small packed squares are contained in the union of the
subbricks (3, 0, 1) and (3, 0, 2). If no big square is packed into I1, then all
big packed squares (and Sz) have sides longer than 2

3 , and consequently
ζ > 4

9n >
1
4(n+ 1).

Assume that at least one big square is packed into I1.
If either four or three big squares are packed into I1, then the total area

of the squares packed into I1 is greater than 3 · 1
9 . By the Lemma we know

that the total area of the big squares packed into I2 ∪ · · · ∪ In plus |Sz| is
greater than 1

4(n− 1 + 1). Consequently, ζ > 3 · 1
9 + 1

4n >
1
4(n+ 1).

If a small square is packed outside the subbrick (4, 0, 1), i.e., if the total
area of the packed small squares is greater than 1

3 ·
1
12 and if two big squares

are packed into I1, then

ζ > 2 · 1
9

+
1
3
· 1
12

+
1
4
n =

1
4
(n+ 1).

If one big square is packed into I1 or if two big squares are packed into I1
and all small squares are contained in (4, 0, 1), then arguing as in the proof
of the Lemma we obtain ζ > 1

4(n+ 1).

Subcase 2B: a small square is packed into I1 outside the union of the
subbricks (3, 0, 1) and (3, 0, 2). This implies that there is no free subbrick of
size (3, 0) contained in I2. Hence the total area of the squares packed into
I2 is greater than 4

9 . Moreover, the total area of the small squares is greater
than 1

3 ·
1
3 . Consequently, by the Lemma,

ζ >
1
9

+
4
9

+
1
4
(n− 2 + 1) ≥ 1

4
(n+ 1).

Case 3: Sz is big and a small square is packed into I3∪ · · · ∪ In. Denote
by s the greatest integer such that a small square is packed into Is. Obviously,
s ≥ 3.

If all small squares packed into Is are contained in the union of the
subbricks (3, 0, 6s − 4) and (3, 0, 6s − 5), then we argue as in Subcase 2A;
the total area of the squares packed into Is ∪ · · · ∪ In plus |Sz| is greater
than 1

4(n − s + 1 + 1). Arguing as in Case 1 we deduce that the total area
of the squares packed into I1 ∪ · · · ∪ Is−1 is greater than 1

3(s − 1 − 3
2 ·

1
6).
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Consequently,

ζ >
1
3

(
s− 1− 1

4

)
+

1
4
(n− s+ 2) >

1
4
(n+ 1).

If a small square is packed into Is outside the union of the subbricks
(3, 0, 6s− 4) and (3, 0, 6s− 5), then the total area of the squares packed into
I1 ∪ · · · ∪ Is is greater than 1

3(s− 1− 1
12 + 1

3). Consequently, by the Lemma,

ζ >
1
3

(
s− 3

4

)
+

1
4
(n− s+ 1) ≥ 1

4
(n+ 1).

Case 4: Sz is big and at least one small square is packed into I2 and no
small square is packed into I3 ∪ · · · ∪ In.

Subcase 4A: a small square is packed into I2 outside the union of the
subbricks (3, 0, 3) and (3, 0, 4). By the considerations of Case 1, the total
area of the squares packed into I1 plus the total area of the small squares
packed into I2 is greater than 4

9 .
If there is a big square packed into I2, then the total area of the squares

packed into I1 ∪ I2 is greater than 5
9 . Consequently, by the Lemma,

ζ >
5
9

+
1
4
(n− 2 + 1) >

1
4
(n+ 1).

Denote by W the union of four subbricks: (3, 0, 3), (3, 0, 4), (4, 0, 17) and
(4, 0, 18). If there is a small square packed into I2 outside W , then the total
area of squares packed into I1 ∪ I2 is greater than 1

3 ·
3
2 = 1

2 . Hence, by the
Lemma,

ζ >
1
2

+
1
4
(n− 2 + 1) =

1
4
(n+ 1).

If no big square is packed into I2 and if no small square is packed into I2
outside W , then all big squares packed into Ij , for j ∈ {3, . . . , n} (and Sz)
have side lengths greater than 2

3 . Hence ζ >
4
9 + 4

9(n− 1) > 1
4(n+ 1).

Subcase 4B: all small squares packed into I2 are contained in the union
of the subbricks (3, 0, 3) and (3, 0, 4). If there is a big square Su packed
into I1 and a big square Sv packed into I2 such that su + sv > 1, then, by
the Lemma,

ζ > s2u + s2v +
1
4
(n− 2 + 1) >

1
2

+
1
4
(n− 1) =

1
4
(n+ 1).

Consider the opposite case.
If no big square is packed into I2, then the side length of each big square

packed into I3∪· · ·∪In (and the side length of Sz) is greater than 2
3 . Moreover,

the total area of the squares packed into I1∪I2 is greater than 1
9 . This implies

that
ζ >

1
9

+
4
9
(n− 1) ≥ 1

4
(n+ 1).
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Assume that at least two big squares are packed into I2.
Denote by ξ the total area of the squares packed into I1 ∪ I2. We show

that ξ > 1
2 . If either three or four big squares are packed into I1, then

ξ > 3 · 19 + 2
9 >

1
2 . If two big squares are packed into I1, then the total area of

the small squares is greater than 1
3 ·2 ·

1
6 . Consequently, ξ > 2 · 19 + 1

9 + 2
9 >

1
2 .

If one big square is packed into I1, then a small square is packed into I1
outside the union of the subbricks (3, 0, 1) and (3, 0, 2). Consequently, the
total area of the small squares is greater than 2

9 and ξ > 1
9 + 2

9 + 2
9 >

1
2 . If

no big square is packed into I1, then the total area of the small squares is
greater than 1

3 · 5 ·
1
6 and ξ > 5

18 + 2
9 = 1

2 . By the Lemma we deduce that

ζ > ξ +
1
4
(n− 2 + 1) >

1
4
(n+ 1).

Finally, assume that exactly one big square Sv is packed into I2.
If sv ≥ 2

3 , then the total area of the squares packed into I1 ∪ I2 is greater
than 1

9 + 4
9 and, by the Lemma, ζ > 5

9 + 1
4(n− 2 + 1) > 1

4(n+ 1).
Assume that sv < 2

3 . This implies that the total area of the squares
packed into I1 ∪ I2 is greater than 1

4 + s2v (if no big square is packed into I1,
then the total area of the small squares is greater than 1

3(4 · 1
6 + 1

12) = 1
4).

If sv ≥ 1
2 , then

ζ >
1
4

+ s2v +
1
4
(n− 2 + 1) ≥ 1

4
(n+ 1).

If sv <
1
2 , then the side length of each big square packed into I3∪· · ·∪ In

(and the side length of Sz) is greater than 1− sv. It is easy to verify that

s2v + (n− 1)(1− sv)2 ≥
1
4
n.

The total area of the squares packed into I1 plus the total area of the small
squares packed into I2 is greater than 1

4 .
Consequently,

ζ >
1
4

+
1
4
n =

1
4
(n+ 1).

It remains an open question whether n ≥ 3 can be replaced by n ≥ 1 in
the statement of the Theorem.
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