CONVEX AND DISCRETE GEOMETRY

On-line Packing Squares into n Unit Squares

by

Janusz JANUSZEWSKI

Presented by Aleksander PEŁCZYŃSKI

Summary. If $n \ge 3$, then any sequence of squares of side lengths not greater than 1 whose total area does not exceed $\frac{1}{4}(n+1)$ can be on-line packed into n unit squares.

1. Introduction. Let C, C_1, C_2, \ldots be planar convex bodies. We say that (C_i) can be *packed* into C if there exist rigid motions σ_i such that $\bigcup \sigma_i C_i \subseteq C$ and $\sigma_i C_i$ have pairwise disjoint interiors. The *on-line* version of packing is the following: initially the first set C_1 is given without any information on the next bodies; then we find each successive set C_i only after the motion σ_{i-1} has been provided. The placement of each packed set $\sigma_i C_i$ cannot be changed afterwards. The survey of results concerning packings and on-line packings is given in [1], [2] and [5].

Moon and Moser [6] proved that any sequence of squares whose total area does not exceed $\frac{1}{2}$ can be packed into the unit square. The best known upper bound is smaller for the packing with the on-line restriction. In [3] it is shown that every sequence of squares with total area not greater than $\frac{1}{3}$ can be on-line packed into the unit square.

We propose the problem of on-line packing squares into a number of unit squares. Let I_1, \ldots, I_n be pairwise disjoint squares of sides of length 1 and let $J_n = I_1 \cup \cdots \cup I_n$.

Observe that n + 1 squares of side lengths greater than $\frac{1}{2}$, and consequently of total area greater than $\frac{1}{4}(n + 1)$, cannot be packed into J_n . The reason is that the interior of any square of side length greater than $\frac{1}{2}$ packed into a unit square I_m contains the center of I_m .

²⁰¹⁰ Mathematics Subject Classification: 52C15, 05B40.

Key words and phrases: on-line packing, square.

The aim of this paper is to show that any sequence of squares of side lengths not greater than 1 whose total area does not exceed $\frac{1}{4}(n+1)$ can be on-line packed into J_n provided $n \geq 3$.

The area of C is denoted by |C|.

2. Subbrics. In the next section the *method of the first free subbrick*, introduced in [4], will be used for packing small squares.

Let k be a non-negative integer. By a brick of size (3, k) we mean a rectangle of side lengths $1/(3 \cdot 2^k)$ and $1/(2 \cdot 2^k)$. By a brick of size (4, k) we mean a rectangle of side lengths $1/(4 \cdot 2^k)$ and $1/(3 \cdot 2^k)$.

We can dissect any brick of size (3, k) into two congruent bricks, called *subbrics*, of size (4, k). Furthermore, we can dissect any brick of size (4, k) into two congruent bricks, called *subbrics*, of size (3, k + 1). Consequently, any square I_m can be dissected into $6 \cdot 4^k$ subbricks of size (3, k) and into $12 \cdot 4^k$ subbricks of size (4, k). Bricks of size (3, 0) are also called *subbricks*.

6	8		10	12	6 <i>j</i> -2	6 <i>j</i>
5	7		9	11	6 <i>j</i> -3	6 <i>j</i> -1
1	2		3	4	 6 <i>j</i> -5	6 <i>j</i> -4
I_1		I ₂		 $I_j, j \ge 3$		

Fig. 1

Without loss of generality we can assume that the unit squares are parallel as in Fig 1.

We number all subbricks of J_n of size (3,0) by integers from 1 to 6n as in Fig. 1. Bricks numbered 1, 2, 5, 6, 7 and 8 are contained in I_1 . Bricks numbered 3, 4, 9, 10, 11 and 12 are contained in I_2 . Bricks numbered 6j - 5, $6j - 4, \ldots, 6j$ are contained in I_j , for $j = 3, \ldots, n$.

Fig. 2

For each positive integer k we number all $6n \cdot 4^k$ subbricks of J_n of size (3, k) by integers from 1 to $6n \cdot 4^k$; also, for each non-negative integer k we number all $12n \cdot 4^k$ subbricks of J_n of size (4, k) by integers from 1 to $12n \cdot 4^k$ so that the following two conditions are fulfilled:

- (1) The numbers 2m 1 and 2m are assigned to the subbricks of size (4, k) of the subbrick of size (3, k) numbered m so that the subbrick numbered 2m 1 is to the left of the subbrick numbered 2m. The only exception is the numbering of the four subbricks of size (4, 0) contained in two subbricks of size (3, 0) numbered 9 and 10 (see Fig. 2, where all subbricks of size (4, 0) contained in I_2 are shown).
- (2) The numbers 2l 1 and 2l are assigned to the subbricks of size (3, k+1) of the subbrick of size (4, k) numbered l so that the subbrick number 2l 1 is situated lower than the subbrick numbered 2l.

The subbrick of size (3, k) numbered t is denoted by (3, k, t). The subbrick of size (4, k) numbered u is denoted by (4, k, u).

3. Packing algorithm. Let (S_i) be a sequence of squares of side lengths not greater than 1. Denote by s_i the side length of S_i . If $s_i \leq \frac{1}{3}$, then S_i is *small*, otherwise S_i is *big*.

If $1/(4 \cdot 2^k) < s_i \le 1/(3 \cdot 2^k)$, then

$$|S_i| = s_i^2 > \frac{1}{(4 \cdot 2^k)^2} > \frac{1}{3} \cdot \frac{1}{3 \cdot 2^k} \cdot \frac{1}{2 \cdot 2^k}.$$

If $1/(3 \cdot 2^{k+1}) < s_i \le 1/(4 \cdot 2^k)$, then

$$|S_i| = s_i^2 > \frac{1}{(6 \cdot 2^k)^2} = \frac{1}{3} \cdot \frac{1}{4 \cdot 2^k} \cdot \frac{1}{3 \cdot 2^k}.$$

Consequently, for each small square S_i there is a brick $B_i \supset S_i$ such that $|S_i| > \frac{1}{3}|B_i|$.

Let $i \geq 1$ be an integer. We will define B'_i once the square S_i is packed.

Packing of small squares. If S_i is small, then by a *free i-subbrick* we mean a subbrick congruent to B_i whose interior is disjoint from any set B'_j for j < i. Denote by P_i the free *i*-subbrick of J_n with the smallest possible number.

If (a) P_i is either the subbrick (3, 0, 13) or (3, 0, 14), then we pack S_i into P_i so that $\sigma_i S_i$ contains a vertex of I_3 . We set $P_i = B'_i$.

If (b) there are small squares S_p and S_q of side lengths greater than $\frac{1}{4}$ such that S_p is packed into the subbrick (3, 0, 13) and S_q is packed into the subbrick (3, 0, 14), and if *i* is the smallest integer greater than *q* such that $\frac{1}{4} < s_i \leq \frac{1}{3}$, then S_i is an *extra-square*. We pack S_i into the union of two subbricks (3, 0, 13) and (3, 0, 14) between the squares $\sigma_p S_p$ and $\sigma_q S_q$. We set $B'_i = \emptyset$.

If neither (a) nor (b) holds, then we pack S_i into P_i and we set $P_i = B'_i$.

Packing of big squares. If S_i is big, then we find the smallest integer l such that it is possible to pack S_i into I_l so that one vertex of $\sigma_i S_i$ is a vertex

of I_l . We pack S_i into I_l so that one vertex of $\sigma_i S_i$ is a vertex of I_l and so that $\sigma_i S_i$ contains a subbrick of size (4,0) with the greatest possible number (we pack big squares starting from the top of unit squares in Figs. 1 and 2). Now we define B'_i .

If $s_i > \frac{2}{3}$, then we set $B'_i = I_l$. Obviously, $|S_i| > \frac{4}{9} > \frac{1}{3}|B'_i|$.

If $\frac{1}{2} < s_i \leq \frac{2}{3}$, then the packed square $\sigma_i S_i$ is contained in the union of four subbricks of size (3,0). Let B'_i be that union. Obviously, $|S_i| > \frac{1}{4} > \frac{1}{3} \cdot \frac{2}{3} = \frac{1}{3}|B'_i|$.

If $\frac{1}{3} < s_i \leq \frac{1}{2}$, then $\sigma_i S_i$ is contained in the union of two subbricks of size (3,0). Let B'_i be that union. Obviously, $|S_i| > \frac{1}{9} = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3}|B'_i|$.

4. Efficiency of the packing algorithm. First we show how effective our method is for packing of big squares.

LEMMA. If $n \geq 1$ and if a sequence of big squares cannot be on-line packed into $J_n = I_1 \cup \cdots \cup I_n$ by the method described in Section 3, then the total area of the squares exceeds $\frac{1}{4}(n+1)$.

Proof. Let (S_i) be a sequence of big squares. Assume that they cannot be packed into J_n by the method presented in Section 3.

Denote by S_z the first square from the sequence which cannot be packed into J_n . Furthermore, denote by K the set of integers $k \in \{1, \ldots, n\}$ such that at most three big squares are packed into I_k .

If $K = \emptyset$ (i.e., if four big squares are packed into each I_k), then the total area of the squares is greater than $\frac{4}{9}n + |S_z| > \frac{4}{9}n + \frac{1}{9} > \frac{1}{4}(n+1)$.

Consider the case when $K \neq \emptyset$. There is at most one $j \in K$ such that only squares of side lengths not greater than $\frac{1}{2}$ are packed into I_j . If there is $j \in K$ such that only squares of side lengths not greater than $\frac{1}{2}$ are packed into I_j , then let S_m be a square packed into I_j such that $s_m + s_z > 1$. Otherwise, let j be an integer from K and let S_m be a square packed into I_j such that $s_m + s_z > 1$. It is easy to verify that $s_m^2 + s_z^2 > \frac{1}{2}$. The total area of the squares packed into I_k is greater than $\frac{1}{4}$ for each $k \in \{1, \ldots, n\}, k \neq j$. This implies that

$$\sum_{i=1}^{z} |S_i| > \frac{1}{4}(n-1) + s_m^2 + s_z^2 > \frac{1}{4}(n-1) + \frac{1}{2} = \frac{1}{4}(n+1). \bullet$$

THEOREM. If $n \geq 3$, then any sequence of squares of side lengths not greater than 1 whose total area does not exceed $\frac{1}{4}(n+1)$ can be on-line packed into J_n .

Proof. Let $n \geq 3$ and let (S_i) be a sequence of squares of side lengths not greater than 1 whose total area does not exceed $\frac{1}{4}(n+1)$.

We pack the squares from the sequence by the method described in Section 3.

Suppose that, contrary to the statement, it is impossible to pack S_1 , S_2, \ldots into J_n by this method. Let S_z be the square which stops the packing process and let

$$\zeta = \sum_{i=1}^{z} |S_i|.$$

We show that this leads to the false inequality

$$\zeta > \frac{1}{4}(n+1).$$

Obviously, if i < z, then $|S_i| > \frac{1}{3}|B'_i|$. Consider four cases.

CASE 1: S_z is small.

SUBCASE 1A: $s_z \leq \frac{1}{4}$. Since S_z cannot be packed, it follows that there is no free z-subbrick of J_n . This implies that the total area of all free subbricks is smaller than

$$\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots\right)|B_z| = |B_z|.$$

Hence

$$\zeta > \frac{1}{3} \left(\sum_{i=1}^{z-1} |B'_i| + |B_z| \right) \ge \frac{1}{3} |J_n| = \frac{1}{3}n.$$

It is easy to verify that $\frac{1}{3}n \ge \frac{1}{4}(n+1)$ for $n \ge 3$. Consequently, $\zeta > \frac{1}{4}(n+1)$.

SUBCASE 1B: $s_z > \frac{1}{4}$. If a square of side length not greater than $\frac{1}{4}$ is packed into $I_3 \cup \cdots \cup I_n$, then we argue as in Subcase 1A.

Assume than no square of side length not greater than $\frac{1}{4}$ is packed into $I_3 \cup \cdots \cup I_n$. The total area of the free subbricks is smaller than $\frac{3}{2}|B_z|$ (now it can happen that two subbricks of size (4,0): (4,0,19) and (4,0,20) are free).

Denote by U the union of the subbricks (3, 0, 13) and (3, 0, 14).

Since $\frac{1}{4} < s_z \leq \frac{1}{3}$, it cannot be the case that exactly two small squares of side length greater than $\frac{1}{4}$ are packed into U.

If three small squares of side length greater than $\frac{1}{4}$ are packed into U, then the total area of the free subbricks is smaller than $\frac{3}{2}|B_z|$ but, on the other hand, the area of the extra-square is greater than $\frac{1}{16}$. Consequently,

$$\zeta > \frac{1}{3} \left(\sum_{i=1}^{z-1} |B'_i| + |B_z| \right) + \frac{1}{16} \ge \frac{1}{3} \left(n - \frac{3}{2} |B_z| + |B_z| \right) + \frac{1}{16}$$
$$= \frac{1}{3} \left(n - \frac{1}{12} \right) + \frac{1}{16} > \frac{1}{4} (n+1).$$

If at most one small square of side length greater than $\frac{1}{4}$ is packed into U, then the total area of the (small and big) squares packed into I_3 is greater than $\frac{1}{3} + \frac{1}{16}$. Consequently,

$$\zeta > \frac{1}{3} \left(n - \frac{1}{2} |B_z| \right) + \frac{1}{16} = \frac{1}{3} \left(n - \frac{1}{12} \right) + \frac{1}{16} > \frac{1}{4} (n+1).$$

CASE 2: S_z is big and no small square is packed into $I_2 \cup \cdots \cup I_n$.

SUBCASE 2A: all small packed squares are contained in the union of the subbricks (3,0,1) and (3,0,2). If no big square is packed into I_1 , then all big packed squares (and S_z) have sides longer than $\frac{2}{3}$, and consequently $\zeta > \frac{4}{9}n > \frac{1}{4}(n+1)$.

Assume that at least one big square is packed into I_1 .

If either four or three big squares are packed into I_1 , then the total area of the squares packed into I_1 is greater than $3 \cdot \frac{1}{9}$. By the Lemma we know that the total area of the big squares packed into $I_2 \cup \cdots \cup I_n$ plus $|S_z|$ is greater than $\frac{1}{4}(n-1+1)$. Consequently, $\zeta > 3 \cdot \frac{1}{9} + \frac{1}{4}n > \frac{1}{4}(n+1)$.

If a small square is packed outside the subbrick (4, 0, 1), i.e., if the total area of the packed small squares is greater than $\frac{1}{3} \cdot \frac{1}{12}$ and if two big squares are packed into I_1 , then

$$\zeta > 2 \cdot \frac{1}{9} + \frac{1}{3} \cdot \frac{1}{12} + \frac{1}{4}n = \frac{1}{4}(n+1).$$

If one big square is packed into I_1 or if two big squares are packed into I_1 and all small squares are contained in (4, 0, 1), then arguing as in the proof of the Lemma we obtain $\zeta > \frac{1}{4}(n+1)$.

SUBCASE 2B: a small square is packed into I_1 outside the union of the subbricks (3,0,1) and (3,0,2). This implies that there is no free subbrick of size (3,0) contained in I_2 . Hence the total area of the squares packed into I_2 is greater than $\frac{4}{9}$. Moreover, the total area of the small squares is greater than $\frac{1}{3} \cdot \frac{1}{3}$. Consequently, by the Lemma,

$$\zeta > \frac{1}{9} + \frac{4}{9} + \frac{1}{4}(n-2+1) \ge \frac{1}{4}(n+1).$$

CASE 3: S_z is big and a small square is packed into $I_3 \cup \cdots \cup I_n$. Denote by s the greatest integer such that a small square is packed into I_s . Obviously, $s \geq 3$.

If all small squares packed into I_s are contained in the union of the subbricks (3, 0, 6s - 4) and (3, 0, 6s - 5), then we argue as in Subcase 2A; the total area of the squares packed into $I_s \cup \cdots \cup I_n$ plus $|S_z|$ is greater than $\frac{1}{4}(n - s + 1 + 1)$. Arguing as in Case 1 we deduce that the total area of the squares packed into $I_1 \cup \cdots \cup I_{s-1}$ is greater than $\frac{1}{3}(s - 1 - \frac{3}{2} \cdot \frac{1}{6})$.

Consequently,

$$\zeta > \frac{1}{3}\left(s - 1 - \frac{1}{4}\right) + \frac{1}{4}(n - s + 2) > \frac{1}{4}(n + 1).$$

If a small square is packed into I_s outside the union of the subbricks (3, 0, 6s - 4) and (3, 0, 6s - 5), then the total area of the squares packed into $I_1 \cup \cdots \cup I_s$ is greater than $\frac{1}{3}(s - 1 - \frac{1}{12} + \frac{1}{3})$. Consequently, by the Lemma,

$$\zeta > \frac{1}{3}\left(s - \frac{3}{4}\right) + \frac{1}{4}(n - s + 1) \ge \frac{1}{4}(n + 1).$$

CASE 4: S_z is big and at least one small square is packed into I_2 and no small square is packed into $I_3 \cup \cdots \cup I_n$.

SUBCASE 4A: a small square is packed into I_2 outside the union of the subbricks (3,0,3) and (3,0,4). By the considerations of Case 1, the total area of the squares packed into I_1 plus the total area of the small squares packed into I_2 is greater than $\frac{4}{9}$.

If there is a big square packed into I_2 , then the total area of the squares packed into $I_1 \cup I_2$ is greater than $\frac{5}{9}$. Consequently, by the Lemma,

$$\zeta > \frac{5}{9} + \frac{1}{4}(n-2+1) > \frac{1}{4}(n+1).$$

Denote by W the union of four subbricks: (3, 0, 3), (3, 0, 4), (4, 0, 17) and (4, 0, 18). If there is a small square packed into I_2 outside W, then the total area of squares packed into $I_1 \cup I_2$ is greater than $\frac{1}{3} \cdot \frac{3}{2} = \frac{1}{2}$. Hence, by the Lemma,

$$\zeta > \frac{1}{2} + \frac{1}{4}(n-2+1) = \frac{1}{4}(n+1).$$

If no big square is packed into I_2 and if no small square is packed into I_2 outside W, then all big squares packed into I_j , for $j \in \{3, \ldots, n\}$ (and S_z) have side lengths greater than $\frac{2}{3}$. Hence $\zeta > \frac{4}{9} + \frac{4}{9}(n-1) > \frac{1}{4}(n+1)$.

SUBCASE 4B: all small squares packed into I_2 are contained in the union of the subbricks (3,0,3) and (3,0,4). If there is a big square S_u packed into I_1 and a big square S_v packed into I_2 such that $s_u + s_v > 1$, then, by the Lemma,

$$\zeta > s_u^2 + s_v^2 + \frac{1}{4}(n-2+1) > \frac{1}{2} + \frac{1}{4}(n-1) = \frac{1}{4}(n+1).$$

Consider the opposite case.

If no big square is packed into I_2 , then the side length of each big square packed into $I_3 \cup \cdots \cup I_n$ (and the side length of S_z) is greater than $\frac{2}{3}$. Moreover, the total area of the squares packed into $I_1 \cup I_2$ is greater than $\frac{1}{9}$. This implies that

$$\zeta > \frac{1}{9} + \frac{4}{9}(n-1) \ge \frac{1}{4}(n+1).$$

Assume that at least two big squares are packed into I_2 .

Denote by ξ the total area of the squares packed into $I_1 \cup I_2$. We show that $\xi > \frac{1}{2}$. If either three or four big squares are packed into I_1 , then $\xi > 3 \cdot \frac{1}{9} + \frac{2}{9} > \frac{1}{2}$. If two big squares are packed into I_1 , then the total area of the small squares is greater than $\frac{1}{3} \cdot 2 \cdot \frac{1}{6}$. Consequently, $\xi > 2 \cdot \frac{1}{9} + \frac{1}{9} + \frac{2}{9} > \frac{1}{2}$. If one big square is packed into I_1 , then a small square is packed into I_1 outside the union of the subbricks (3, 0, 1) and (3, 0, 2). Consequently, the total area of the small squares is greater than $\frac{2}{9}$ and $\xi > \frac{1}{9} + \frac{2}{9} + \frac{2}{9} > \frac{1}{2}$. If no big square is packed into I_1 , then the total area of the small squares is greater than $\frac{1}{3} \cdot 5 \cdot \frac{1}{6}$ and $\xi > \frac{5}{18} + \frac{2}{9} = \frac{1}{2}$. By the Lemma we deduce that

$$\zeta > \xi + \frac{1}{4}(n-2+1) > \frac{1}{4}(n+1).$$

Finally, assume that exactly one big square S_v is packed into I_2 .

If $s_v \ge \frac{2}{3}$, then the total area of the squares packed into $I_1 \cup I_2$ is greater than $\frac{1}{9} + \frac{4}{9}$ and, by the Lemma, $\zeta > \frac{5}{9} + \frac{1}{4}(n-2+1) > \frac{1}{4}(n+1)$.

Assume that $s_v < \frac{2}{3}$. This implies that the total area of the squares packed into $I_1 \cup I_2$ is greater than $\frac{1}{4} + s_v^2$ (if no big square is packed into I_1 , then the total area of the small squares is greater than $\frac{1}{3}(4 \cdot \frac{1}{6} + \frac{1}{12}) = \frac{1}{4}$).

If $s_v \ge \frac{1}{2}$, then

$$\zeta > \frac{1}{4} + s_v^2 + \frac{1}{4}(n-2+1) \ge \frac{1}{4}(n+1).$$

If $s_v < \frac{1}{2}$, then the side length of each big square packed into $I_3 \cup \cdots \cup I_n$ (and the side length of S_z) is greater than $1 - s_v$. It is easy to verify that

$$s_v^2 + (n-1)(1-s_v)^2 \ge \frac{1}{4}n.$$

The total area of the squares packed into I_1 plus the total area of the small squares packed into I_2 is greater than $\frac{1}{4}$.

Consequently,

$$\zeta > \frac{1}{4} + \frac{1}{4}n = \frac{1}{4}(n+1). \quad \bullet$$

It remains an open question whether $n \ge 3$ can be replaced by $n \ge 1$ in the statement of the Theorem.

References

- K. Böröczky, Jr., *Finite Packing and Covering*, Cambridge Tracts in Math. 154, Cambridge Univ. Press, Cambridge, 2004.
- [2] G. Fejes Tóth and W. Kuperberg, Packing and covering with convex sets, in: Handbook of Convex Geometry, P. M. Gruber and J. M. Wills (eds.), North-Holland, 1993, 799–860.

- [3] X. Han, K. Iwama and G. Zhang, Online removable square packing, Theory Comput. Syst. 43 (2008), 38–55.
- [4] J. Januszewski and M. Lassak, On-line packing sequences of cubes in the unit cube, Geom. Dedicata 67 (1997), 285–293.
- [5] M. Lassak, A survey of algorithms for on-line packing and covering by sequences of convex bodies, in: Intuitive Geometry (Budapest, 1995), Bolyai Soc. Math. Stud. 6, János Bolyai Math. Soc., Budapest, 1997, 129–157.
- J. W. Moon and L. Moser, Some packing and covering theorems, Colloq. Math. 17 (1967), 103–110.

Janusz Januszewski Institute of Mathematics and Physics University of Technology and Life Sciences Kaliskiego 7 85-796 Bydgoszcz, Poland E-mail: januszew@utp.edu.pl

Received May 10, 2010

(7760)