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Summary. We construct explicitly piecewise affine mappings u : Rn → Rn with affine
boundary data satisfying the constraint div u = 0. As an application of the construction
we give short and direct proofs of the main approximation lemmas with constraints in
convex integration theory. Our approach provides direct proofs avoiding approximation
by smooth mappings and works in all dimensions n ≥ 2. After a slight modification of our
construction, the constraint div u = 0 can be turned into det Du = 1, giving new examples
of piecewise affine mappings u with det Du = 1.

1. Introduction. The convex integration method is a tool to construct
Lipschitz mappings u : Ω → Rm satisfying the differential inclusion Du ∈ K,
where K is a given set of matrices and Ω is an open set in Rn. The method
relies on approximating the set K using a sequence of piecewise affine map-
pings un (i.e. mappings that are continuous on Ω and affine on some sets
Ω1, Ω2, . . . that are open, disjoint and their union has measure equal to the
measure of Ω) in the following way.

Let F ∈ Rm×n. Set u1(x) = Fx and proceed inductively: Assume that
un is a piecewise affine mapping defined on Ω such that un(x) = Fx for
x ∈ ∂Ω. Denote by Ωni (i = 1, 2, . . .) the subsets of Ω on which un is affine.
To obtain un+1, replace un on each Ωni by a piecewise affine mapping ϕi
such that ϕi and un agree on ∂Ωni. We thus obtain a new piecewise affine
mapping un+1 defined on Ω.

The advantage of this approximation is that the sequence Dun is a mar-
tingale, hence it converges strongly and almost everywhere, provided it is
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bounded. Therefore if the sequence Dun(x) approaches a point of K, then
automatically the pointwise limit of Dun(x) coincides almost everywhere
with the gradient Du of a Lipschitz mapping u satisfying Du ∈ K.

For applications of this procedure as well as a parallel approach based
on Baire’s Theorem see [Na54], [Ku55], [Gr73], [Gr86], [CDK07], [AFS04],
[KMS03], [Mu99], [MS01], [MRS05], [Po10], [Sy06], [Zh06], [LS09], [DM97],
[DM99], [Ki01], [Ki02].

However, this type of approximation does not provide too much freedom.
Since the minors are Null-Lagrangians, the sequence M(Dun) is also a mar-
tingale (M(X) is the vector of all minors of the matrix X). So if for instance
detX = 1 (with m = n) for each X ∈ K, then our approximating sequence
un of piecewise affine mappings must also satisfy detDun(x) = 1.

In paper [MS99] S. Müller and V. Šverák have proved that there are suffi-
ciently many piecewise affine mappings un with detDun(x) = 1 to ensure ap-
proximation along rank-one lines. This result is known as the main approxi-
mation lemma in convex integration theory (actually S. Müller and V. Šverák
considered a more general case, where the determinant is replaced by a fixed
subdeterminant of size ≥ 2). Since in the case without constraints one usu-
ally moves along rank-one lines, their result shows that adding the extra con-
straint detX = 1 does not limit the freedom in the approximation process.

The proof in [MS99] consists of two steps. First, one proves the exis-
tence of an appropriate sequence un of smooth mappings with detDun(x)
= 1. Then one modifies carefully the sequence un, preserving the constraint
detX = 1, to obtain piecewise affine mappings. This procedure leads to very
complicated mappings that are hard to control or to deduce further use-
ful properties. In the same paper, S. Müller and V. Šverák remark [MS99,
Remark after Theorem 6.1] that in dimension 2 a direct construction of
piecewise affine mappings un with 20 gradients is possible. Influenced by the
unpublished notes of S. Müller and V. Šverák, S. Conti and F. Theil [CT05]
presented a direct construction in dimension 2 using only 5 gradients and 12
regions. Recently, S. Conti [Co08] has extended the construction to higher
dimensions, based on the results in dimension 2.

Moreover, the authors remarked in [MS99] that some other constraints
like div u = 0 or Du = (Du)T can be treated with an analogous method.
In [Ki02] B. Kirchheim confirms this by providing a detailed proof for the
case Du = (Du)T . The proof goes along the same lines as in [MS99] and
therefore the piecewise affine mappings obtained are complicated and hard
to control.

In [CT05] S. Conti and F. Theil remarked that the method of [MS99]
is too complicated to deduce further properties of the mappings (like ad-
ditional constraints). Therefore, it seems to be important to devise direct
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constructions of constrained piecewise affine mappings with simple geome-
try, allowing further modifications for various applications.

The goal of the present note is to give an explicit construction of piecewise
affine mappings having affine boundary data and preserving the constraint
div u = a. Then we use this result to give a simple proof of the corresponding
approximation lemma, without the passage through smooth mappings.

In dimension 2 the approximation lemma for the constraint div u = 0,
which after a suitable change of variables is equivalent to Du = (Du)T , is
used in the solution to the 5-gradient problem (see [Ki02], [Po10]). Since some
results concerning the 5-gradient problem are still unknown (see [Po10]), it
seems to be important to learn more about the structure of the piecewise
affine mappings u respecting the condition div u = 0, even though it is linear.

The linearity of the constraint div u = 0 does not help in the direct con-
struction. In fact, we present a slight modification of our construction, which
turns the condition div u = 0 into detDu = 1. In this way we obtain new
examples of piecewise affine mappings preserving the constraint detDu = 1,
other than those constructed in [Co08], [CT05].

2. The construction of piecewise affine maps with constraints
in dimension 2. Our construction of piecewise affine mappings u with the
constraint detDu = 1 or div u = 0 in arbitrary dimension is based on a
construction in dimension 2.

In this section we assume that Ω is an open domain in R2.

Lemma 2.1. For each ε > 0 there exists a piecewise affine mapping u :
Ω → R2 such that

(1) u(x) = x for x ∈ ∂Ω,
(2) detDu(x) = 1 for x ∈ Ω,
(3) 0 < ‖Du− Id‖∞ < ε.

Proof. By the Vitali covering theorem we may assume that Ω is an equi-
lateral triangle A0A1A2, whose center is O (identified with the center of the
coordinate system).

We divide the triangle A0A1A2 into seven regions as follows. LetM be the
midpoint of the side A1A2 (Fig. 1). Let X0X1X2 be an equilateral triangle
with center O lying inside the triangle A0A1A2 and such that X0 is close to
the line segment OM , but does not lie on it.

For each nonempty subset I of {0, 1, 2} let TI be the triangle with vertices
Xi and Aj , where i ∈ I and j ∈ {0, 1, 2}\I. In this way the triangle A0A1A2

is cut into seven triangles TI .
Now we divide the triangle A0A1A2 into diferent seven regions in a similar

way: Let Y0 be the point symmetric to X0 with respect to the line segment
OM and let Y0Y1Y2 be the equilateral triangle with center 0 (Fig. 2). Then
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the triangle Y0Y1Y2 is congruent to X0X1X2 (Y0Y1Y2 can also be obtained
from X0X1X2 by rotation about O through the angle 2∠X0OM).

For each nonempty subset I of {0, 1, 2} let SI be the triangle with vertices
Yi and Aj , where i ∈ I and j ∈ {0, 1, 2} \ I. In this way the triangle A0A1A2

is cut into seven triangles SI .

A0 A1

A2

X0

X1

X2

M

O

A0 A1

A2

Y0

Y1

Y2

Fig. 1 Fig. 2

Let now u be the piecewise affine mapping which for each nonempty
subset I of {0, 1, 2} takes the triangle TI to SI in such a way that the vertex
Xi goes to Yi and the vertex Aj stays fixed.

Then the mapping u satisfies our requirements. Indeed, (1) is obviously
satisfied and (2) follows from the observation that the triangles TI and SI
are congruent (and hence have equal areas), and the mapping u does not
change the orientation of TI . Finally (3) holds if we choose X0 close enough
to the line segment OM .

Remark 2.2. A similar construction can be done for a square A0A1A2A3

instead of the equilateral triangle A0A1A2 (see Figs. 3 and 4). Then the
corresponding piecewise affine mapping u has only five different gradients.

A0 A1

A2A3

X3

X0

X1

X2
MO

A0 A1

A2A3

Y3

Y0
Y1

Y2

Fig. 3 Fig. 4
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A similar construction can also be done to obtain an analogous result for
the affine constraint div u = 2.

Lemma 2.3. For each ε > 0, there exists a piecewise affine mapping
u : Ω → R2 such that

(1) u(x) = x for x ∈ ∂Ω,
(2) div u = 2 for x ∈ Ω,
(3) 0 < ‖Du− Id‖∞ < ε.

Proof. Without loss of generality we may assume that Ω is an equilateral
triangle A0A1A2 with center 0 and such that A0A1 is parallel to the x-axis
(Fig. 5).

Denote by Hα the linear mapping on R2 which is the rotation through
the angle α composed with the homothety with the scale 1/cosα, i.e.

Hα =
1

cosα

(
cosα − sinα

sinα cosα

)
=

(
1 − tanα

tanα 1

)
.

Fix 0 < µ < 1/2 and define Xi = −µAi and Yi = HαXi for i = 0, 1, 2.
For each nonempty subset I of {0, 1, 2} let TI be the triangle with vertices
Xi and Aj , where i ∈ I and j ∈ {0, 1, 2} \ I. Similarly, denote by SI the
triangle with vertices Yi and Aj , where i ∈ I and j ∈ {0, 1, 2} \ I. In this
way the triangle A0A1A2 is cut into seven triangles TI (Fig. 5) and also into
seven triangles SI (Fig. 6).

Let now u be the piecewise affine mapping, which takes TI to SI in such
a way that the vertex Xi goes to Yi and the vertex Aj stays fixed.

A0 A1

A2

X0X1

X2

A0 A1

A2

Y0

Y1
Y2

0

α

Fig. 5 Fig. 6

Then the mapping u satisfies our requirements. Indeed, (1) follows di-
rectly from the definition, and (4) is satisfied for sufficiently small values
of α. To see (2) denote by uI the mapping u restricted to the triangle TI .
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Then

Du{0,1,2} = Hα and Du{2} =
(

1 ∗
0 1

)
,

so tr(Du{0,1,2}) = tr(Du{2}) = 2. Moreover, if Rα denotes the rotation
through α, then

Du{1} = R−1
2π/3Du{2}R2π/3, Du{0} = R−1

−2π/3Du{2}R−2π/3,

which gives tr(Du{0}) = tr(Du{1}) = tr(Du{2}) = 2. Moreover,

Du{2,0} = R−1
−2π/3Du{1,2}R−2π/3, Du{0,1} = R−1

2π/3Du{1,2}R2π/3,

which gives tr(Du{2,0}) = tr(Du{0,1}) = tr(Du{1,2}) = a. Since trace is a
Null-Lagrangian and since tr(Id) = 2, we immediately obtain a = 2.

Remark 2.4. In the proofs of both lemmas the gradient Du consists of
seven matrices C1, . . . , C7. For each Ci, set ci = |{x ∈ Ω : Du(x) = Ci}|/|Ω|.
It is visible from the above construction that the numbers ci may depend
on ε. However, taking X0 sufficiently close to the midpoint of OM we have
ci > 1/17. This observation will be used in the proof of the next two propo-
sitions.

Denote by δij the matrix with the (i, j) entry equal to 1 and the other
entries zero.

Using the above lemmas and a scaling argument, one can obtain special
cases of the main approximation lemmas.

Proposition 2.5. Assume 0 < λ < 1. Then for each ε > 0 there exists
a piecewise affine mapping u : Ω → R2 such that

(1) u(x) = x on ∂Ω,
(2) detDu(x) = 1 a.e. on Ω,
(3) dist(Du(x), [A,B]) < ε a.e. on Ω, where A = Id − (1 − λ)δ12 and

B = Id + λδ12,
(4) the measure of the set Z = {x ∈ Ω : dist(Du(x), {A,B}) > ε} is less

than or equal to 16
17 |Ω|.

The same proof applies if the nonlinear constraint detX = 1 is replaced
by the affine one, tr(X) = 2.

Proposition 2.6. Assume 0 < λ < 1. Then for each ε > 0 there exists
a piecewise affine mapping u : Ω → R2 such that div u(x) = 2 a.e. on Ω and
conditions (1), (3), (4) of Proposition 2.5 hold.

Proof of Propositions 2.5 and 2.6. By the Vitali covering theorem it is
enough to prove the results for Ω being a fixed triangle (possibly depending
on ε).
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Fix ε > 0 and without loss of generality assume that ε2 < min(λ, 1− λ).
According to Lemma 2.1 (or Lemma 2.3, respectively), there exists a piece-
wise affine mapping v defined on an equilateral triangle Ω in R2 such that
conditions (1), (2) of Lemma 2.1 (or Lemma 2.3, respectively) are satisfied
and

(2.1) |Dv(x)− Id| < ε2 (x ∈ Ω),

where we assume that | · | is the l∞-norm in Rn×n. Define

a+ = max
{

1
λ
· ∂v1
∂x2

(x) :
∂v1
∂x2

(x) ≥ 0, x ∈ Ω
}
,

a− = max
{

1
1− λ

·
∣∣∣∣∂v1∂x2

(x)
∣∣∣∣ : ∂v1∂x2

(x) ≤ 0, x ∈ Ω
}
.

Finally, define a = max(a+, a−). Then using (2.1) and the inequality ε2 <
min(λ, 1− λ) we infer that 0 < a < 1.

Assume now that a = a+; the case a = a− can be treated analogously.
Then there exists a triangle TI such that

a =
1
λ
· ∂v1
∂x2

(x) for x ∈ TI .

Let S = diag(a1/2, a−1/2). We prove that the piecewise affine mapping

(2.2) u(y) = (S−1 ◦ v ◦ S)(y)

defined on the triangle Ω1 = S−1Ω satisfies our requirements.
Indeed (1) and (2) follow directly from the definition of u. So we concen-

trate on (3) and (4). From (2.2) we have, for x = Sy,
∂u1

∂x1
(y) =

∂v1
∂x1

(x),
∂u2

∂x2
(y) =

∂v2
∂x2

(x),

∂u1

∂x2
(y) =

1
a
· ∂v1
∂x2

(x),
∂u2

∂x1
(y) = a · ∂v2

∂x1
(x).

Therefore using 2.1 we obtain

(2.3)
∣∣∣∣∂ui∂xi

(y)− 1
∣∣∣∣ = ∣∣∣∣∂vi∂vi

(x)− 1
∣∣∣∣ < ε2 < ε (i = 1, 2).

Moreover, if ∂u1
∂x2

(y) > 0, then we obtain

(2.4)
∂u1

∂x2
(y) =

1
a
· ∂v1
∂x2

(x) ≤ λ,

and the equality in (2.4) holds for x ∈ TI . On the other hand, if ∂u1
∂x2

(y) ≤ 0,
then we obtain

(2.5)
∣∣∣∣∂u1

∂x2
(y)
∣∣∣∣ = 1

a
·
∣∣∣∣∂v1∂x2

(x)
∣∣∣∣ ≤ 1− λ.
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Finally, we have

(2.6)
∣∣∣∣∂u2

∂x1
(y)
∣∣∣∣ = a ·

∣∣∣∣∂v2∂x1
(x)
∣∣∣∣ < ε.

Inequalities (2.3)–(2.6) directly give condition (3). Moreover, the equality in
(2.4) for x ∈ TI implies property (4) if X0 is chosen to be sufficiently close
to the midpoint of OM (see Remark 2.4).

3. Application: The approximation lemmas with constraints. In
this section we use Propositions 2.5 and 2.6 to present direct proofs of the
main approximation lemmas in convex integration theory. One of them pre-
serves the constraint detDu = a 6= 0, while the other deals with div u = a.
Both cases are treated in an arbitrary dimension.

Theorem 3.1 (S. Müller, V. Šverák [MS99]). Let A,B ∈ Rn×n be such
that rank(B − A) = 1 and detA = detB = a 6= 0. Let moreover F =
λA+(1−λ)B, where λ ∈ (0, 1). Then for each ε > 0 there exists a piecewise
affine mapping u defined on Ω and having the following properties:

(1) u(x) = Fx on ∂Ω,
(2) detDu(x) = a a.e. on Ω,
(3) dist(Du(x), [A,B]) < ε a.e. on Ω,
(4) the measure of the set Z = {x ∈ Ω : dist(Du(x), {A,B}) > ε} is less

than or equal to c|Ω|, where 0 < c < 1 is a constant depending only
on the dimension n.

Remarks. The original result of S. Müller and V. Šverák is more gen-
eral. It deals with a fixed minor (subdeterminant) of order ≥ 2 instead of the
determinant. Also, condition (4) is a bit different: it says that the measure of
the set Z is less than ε. However, the above weaker condition (4) is easier to
obtain and it is still sufficient for an application in convex integration theory
(see [Po10, Appendix] ).

Theorem 3.2 (S. Müller, V. Šverák [MS99]). Let A,B ∈ Rn×n be such
that rank(B−A) = 1 and trA = trB = a. Let moreover F = λA+(1−λ)B,
where λ ∈ (0, 1). Then for each ε > 0 there exists a piecewise affine mapping
u defined on Ω and having the following properties:

(1) u(x) = Fx on ∂Ω,
(2) div u(x) = a a.e. on Ω,
(3) dist(Du(x), [A,B]) < ε a.e. on Ω,
(4) the measure of the set Z = {x ∈ Ω : dist(Du(x), {A,B}) > ε} is less

than or equal to c|Ω|, where 0 < c < 1 is a constant depending only
on the dimension n.
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Proof of Theorems 3.1 and 3.2. By the Vitali covering theorem, it is
enough to prove the statement for a fixed polyhedron in Rn.

Step 1. Assume that F = Id and B − A = δ12. If n = 2, then the
conclusion follows directly from Proposition 2.5. More precisely, there exists
a triangle Ω = A0A1A2 divided into the triangles T1, . . . , T7 and also into
the triangles S1, . . . ,S7 and a piecewise affine mapping v that is affine on
each Ti, takes Ti onto Si and satisfies (1)–(4).

Let now n = 3. Place the triangle A0A1A2, together with its partitions
{T1, . . . , T7} and {S1, . . . ,S7} on the plane x3 = 0 in such a way that the
point (0, 0, 0) lies inside the triangle A0A1A2. Define A3 = (0, 0, 1) and A4 =
(0, 0,−1). Then the tetrahedrons T +

i = conv(Ti, A3) and T −i = conv(Ti, A4)
with i = 1, . . . , 7 determine a triangulation of Ω = conv(A0, A1, . . . , A4)
into 14 parts. Similarly, the tetrahedrons S+

i = conv(Si, A3) and S−i =
conv(Si, A4) with i = 1, . . . , 7 determine another partition of Ω into 14
parts.

Let now u be the piecewise affine mapping, which is affine on each T +
i ,

T −i and which takes T +
i , T −i onto S+

i , S
−
i , respectively, in such a way that

u(x) = v(x) for x ∈ Ti and u(A3) = A3, u(A4) = A4.
Then the mapping u satisfies our requirements for n = 3. Indeed, since

u(Aj) = Aj , (1) is satisfied. To see (2), observe that the gradient of u at any
point takes each vector (x, y, z) to (u, v, z) (in other words, the gradient of u
at each point does not change the last coordinate of any vector). This yields

∂u3

∂x1
(x) =

∂u3

∂x2
(x) = 0 and

∂u3

∂x3
(x) = 1 (x ∈ Ω),

from which (2) follows.
Moreover, choosing the triangle A0A1A2 small enough we obtain∣∣∣∣∂u1

∂x3
(x)
∣∣∣∣ < ε and

∣∣∣∣∂u2

∂x3
(x)
∣∣∣∣ < ε (x ∈ Ω).

This together with the conclusion for n = 2 gives (3) and (4).
We use the same procedure to pass from an arbitrary dimension n to

the dimension n + 1. As a result we obtain a convex polyhedron Ω =
conv(A0, A1, . . . , A2n−2) in Rn divided into 7 · 2n−2 regions and a piecewise
affine mapping u : Ω → Rn satisfying assumptions (1)–(4).

Step 2. Assume that F = Id and A, B are arbitrary. By the Jordan
decomposition theorem we can find an invertible matrix T such that B−A =
T−1αδ11T (α ∈ R, α 6= 0) or B −A = T−1δ12T . Then for each real number
t we have Id + t(B − A) = T−1(Id + tαδ11)T or Id + t(B − A) = T−1(Id +
tδ12)T , respectively. Since for each t ∈ R we have det(Id+ t(B −A)) = 1 or
tr(Id + t(B −A)) = n, the former case is impossible.
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For a fixed ε > 0 we find a mapping v : Ω → Ω satisfying the conclusions
of the theorem with B − A = δ12 (Step 1). Then the mapping u(x) =
(T−1 ◦v ◦T )(x) defined on the simplex Ω1 = T−1Ω satisfies our conclusions.
Indeed, (1) and (2) follow directly from the definiton of u. Conditions (3)
and (4) follow from the fact that the mapping X 7→ T−1XT is linear, and
hence continuous on Rn×n, and for each t ∈ R takes the matrix Id + tδ12 to
Id + t(B −A).

Step 3. Assume that F , A, B are arbitrary. In the case of Theorem 3.1
we have det(F + t(B −A)) = a for each t ∈ R. Hence

det(Id + t(F−1B − F−1A)) = 1.

Therefore we may construct a mapping v like in Step 2 with F−1A and
F−1B instead of A and B, respectively. Then the mapping u(x) = (F ◦v)(x)
satisfies our requirements.

In the case of Theorem 3.2 we have tr(F + t(B−A)) = n for each t ∈ R.
Since tr(Id+t((B−F+Id)−(A−F+Id))) = n, we may construct a mapping
v as in Step 2 with A−F+Id and B−F+Id instead of A and B, respectively.
Then the mapping u(x) = Fx− x+ v(x) satisfies our requirements.

Remarks. 1. Based on the mapping u defined on the square A0A1A2A3

(see Remark 2.2) instead of on the equilateral triangle A0A1A2, one obtains
a piecewise affine mapping having 5 · 2n−2 gradients.

2. The piecewise affine mapping constructed in Step 1 of the above proof
satisfies much more constraints than only detDu = 1 or div u = 2: at each
point x ∈ Ω the matrix Du(x) is almost triangular , i.e.
∂ui
∂xj

(x) = 0 for i > j with (i, j) 6= (2, 1) and
∂ui
∂xi

(x) = 1 for i ≥ 3.

In particular, at each x ∈ Ω the characteristic polynomial p(λ) of Du(x) is
equal to

p(λ) = (λ2 + aλ+ 1)(1− λ)n−2

or

p(λ) = (λ2 − 2λ+ a)(1− λ)n−2 (a ∈ R).

(The first case corresponds to the constraint detDu = 1 and the second one
to div u = n.) This property is still preserved in Step 2, but destroyed at the
very last Step 3.

3. If n = 2, then by a linear change of variables we may transform the
constraint div u = 0 to Du = (Du)T . Hence Theorem 3.2 holds also if div u
= 0 is replaced by Du = (Du)T . However, for dimensions n ≥ 3 our method
of construction fails. In this case we refer the reader to [Ki02, Proposi-
tion 3.4], where the method uses the ideas of S. Müller and V. Šverák [MS99].
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