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Summary. We study hybrid dynamic systems on time scales. Using Lyapunov-like func-
tions, we obtain sufficient conditions for practical stability and strict practical stability in
terms of two measures for hybrid dynamic systems on time scales.

1. Introduction. In this paper, we present some sufficient conditions for
practical stability and strict practical stability in terms of two measures for
hybrid dynamic systems on time scales by using Lyapunov-like functions.
The practical stability problem, introduced by LaSalle and Lefschetz [12],
deals with the question of whether the system state evolves within certain
subsets of the state-space. This is very useful in estimating the worst-case
transient and steady-state responses and in verifying pointwise in time con-
straints imposed on the state trajectories. Thus, practical stability is con-
cerned with quantitative analysis as opposed to Lyapunov analysis which
is qualitative in nature. Lyapunov analysis may not always be useful in an
engineering sense. For instance, an equilibrium point may not be stable in
the sense of Lyapunov and yet the system response may be acceptable in the
vicinity of this equilibrium; an example involving a van der Pol oscillator
is given in [12]. On the other hand, an equilibrium point may be stable in
the sense of Lyapunov, but the domain of stability (see [5] for its definition)
could be so small as to render the system practically unstable. A striking
example of this phenomenon is the Reynolds system used to study the flow
of water along a tube of circular cross-section at various speeds [1]. Laminar
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flow, i.e. smooth flow of water particles parallel to the axis, is stable at all
speeds. However, the domain of stability at very high flowrates is so absurdly
small as to render laminar flow practically unstable.

The study of hybrid systems [13] is caused by modeling, design and val-
idation of interacting systems of continuous processes and computer pro-
grams. Therefore, the identifying characteristic of hybrid systems is that
they incorporate both continuous components, usually called plants, which
are governed by differential equations, and also digital components such as
digital computers, sensors and actuators controlled by programs. Moreover,
the growing demand for control systems that are capable of controlling com-
plex nonlinear continuous plants with discrete intelligent controllers can be
addressed by the method of hybrid systems [4].

In general, a hybrid dynamic system is a system with different kinds of
time dynamics, e.g., continuous, discrete, or impulsive, in different interact-
ing parts of the system. Recently, the theory of dynamic systems on time
scales has gained impetus since it demonstrates the interplay of two different
theories, namely, the theories of continuous and discrete dynamic systems
[6, 2, 3, 9].

It is important to note that dynamic systems on time scales include hy-
brid systems in general. In the stability and practical stability aspect, Lak-
shmikantham and Vatsala [10] introduced hybrid dynamic systems on time
scales and obtained the practical stability for such systems. P. G. Wang, Liu,
Wu and Wu [16, 14, 15] studied the stability criteria in terms of two measures
for discrete systems and the practical stability of impulsive hybrid differential
systems in terms of two measures on time scales. Lakshmikantham and Mo-
hapatra [8] advanced the concept of strict stability for differential systems,
and Lakshmikantham and Zhang [11] developed the idea of strict practical
stability of delay differential systems. For all kinds of practical stability for
differential systems we refer to [7].

The main purpose of this paper is to establish criteria for practical stabil-
ity and strict practical stability in terms of two measures for hybrid dynamic
systems on time scales. Some ideas in this paper are motivated by [14–16],
and some results are extensions of those in [16] for discrete hybrid systems.

2. Preliminaries. Let T be a time scale (a closed nonempty subset
of R). On T we define the forward and backward jump operators by

σ(t) := inf{s ∈ T | s > t} and ρ(t) := sup{s ∈ T | s < t}.

A point t ∈ T is said to be left-dense if ρ(t) = t, right-dense if σ(t) = t,
left-scattered if ρ(t) < t, and right-scattered if σ(t) > t. The graininess µ of
the time scale is defined by µ(t) := σ(t)− t.
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For a function f : T→ R the delta derivative f∆(t) at t ∈ T is defined to
be the number (provided it exists) with the property that for every ε > 0,
there exists a neighborhood U of t with

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s| for all s ∈ U.

A function f : T → R is said to be rd-continuous if it is continuous
at each right-dense point and if there exists a finite left-sided limit at all
left-dense points. The set of rd-continuous functions f : T → R is denoted
by Crd(T,R).

Definition 2.1. For each t ∈ T, let N be a neighborhood of t. Then we
define the lower right Dini derivative D+u

∆(t) by the condition: for given
ε > 0, there exists a right neighborhood Nε ⊂ N of t such that

u(σ(t))− u(s)
µ∗(t, s)

> D+u
∆(t)− ε for s ∈ Nε, s > t,

where µ∗(t, s) ≡ σ(t)− s.

In case t is right-scattered and u is continuous at t, we have as in the
case of the derivative

D+u
∆(t) =

u(σ(t))− u(t)
µ(t)

= u∆(t).

Definition 2.2 ([10]). For each t ∈ T, let N be a neighborhood of t.
Then we define the upper right Dini derivative D+u∆(t) by the condition:
for given ε > 0, there exists a right neighborhood Nε ⊂ N of t such that

u(σ(t))− u(s)
µ∗(t, s)

< D+u∆(t) + ε for s ∈ Nε, s > t.

In case t is right-scattered and u is continuous at t, we have as in the
case of the derivative

D+u∆(t) =
u(σ(t))− u(t)

µ(t)
= u∆(t).

Definition 2.3. A function f(u, v) is said to be quasimonotone nonde-
creasing (respectively, nonincreasing) if for fixed u (or v), f is nondecreasing
(respectively, nonincreasing) in v (or u).

We now state a result on existence of extremal solutions of the initial
value problem for the dynamic system

(2.1) u∆ = g(t, u), u(t0) = u0,

where g ∈ Crd[I0 × B,Rn] is such that ‖g(t, u)‖ ≤ M , (t, u) ∈ I0 × B,
I0 = [t0 ≤ t ≤ t0 + a]∩T, B = {u ∈ Rn : |u−u0| ≤ b}, and M is a constant.
‖ · ‖ denotes the Euclidean norm in Rn.
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Lemma 2.1 ([9, Theorem 2.3.1]). Assume that g(t, u) is quasimonotone
nondecreasing in u and for each i, 1 ≤ i ≤ n, gi(t, u)µ(t)+ui is nondecreasing
in ui for each t ∈ T. Then there exist minimal and maximal solutions of (2.1)
on [t0, t0 + η] ∩ T, where η = min(a, b/(2M + b)).

We now state a variational comparison result.

Lemma 2.2 ([9, Theorem 2.4.1]). Let all the assumptions of Lemma 2.1
hold and let m : I ≡ [t0, t0 +a)∩T→ Rn be differentiable for each t ∈ I and
satisfy m∆(t) ≤ g(t,m(t)), t ∈ I. Then m(t) ≤ β(t), t ∈ I, where β(t) is the
maximal solution of (2.1).

Remark 2.1. Lemma 2.2 is also valid withm∆(t) replaced by D+m∆(t).

Lemma 2.3. Let all the assumptions of Lemma 2.1 hold and let m : I ≡
[t0, t0 + a) ∩ T → Rn be differentiable for each t ∈ I and satisfy m∆(t) ≥
g(t,m(t)), t ∈ I. Then m(t) ≥ r(t), t ∈ I, where r(t) is the minimal solution
of (2.1).

Proof. The proof is similar to that of Theorem 2.4.1 in [9], and so we
omit it here.

Remark 2.2. Lemma 2.3 is also valid when m∆(t) is replaced by
D+m

∆(t).

3. Comparison theorems. We consider the dynamic system

(3.1) x∆ = f(t, x), x(t0) = x0,

on T, where f ∈ Crd[T × Rn,Rn], t0 ∈ T, and x0 ∈ Rn. We assume, for
convenience, that the solution x(t) = x(t, t0, x0) of (3.1) exists and is unique
for t ≥ t0 on T.

Following Definition 2.1, we defineD+V
∆(t, x(t)) for V ∈ Crd[T×Rn,R+]

by the condition: for given ε > 0, there exists a right neighborhood Nε ⊂ N
of t such that

1
µ(t, s)

[V (σ(t), x(σ(t)))−V (s, x(σ(t)))−µ(t, s)f(t, x(t))] > D+V
∆(t, x(t))−ε

for s ∈ Nε, s > t. As before, if t is right-scattered and V (t, x(t)) is continuous
at t, this reduces to

D+V
∆(t, x(t)) =

V (σ(t), x(σ(t)))− V (t, x(t))
µ(t)

= V ∆(t, x(t)).

Following Definition 2.2, we defineD+V ∆(t, x(t)) for V ∈Crd[T×Rn,R+]
by the condition: for given ε > 0, there exists a right neighborhood Nε ⊂ N
of t such that

1
µ(t, s)

[V (σ(t), x(σ(t)))−V (s, x(σ(t)))−µ(t, s)f(t, x(t))]<D+V ∆(t, x(t))+ε
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for s ∈ Nε, s > t. As before, if t is right-scattered and V (t, x(t)) is continuous
at t, this reduces to

D+V ∆(t, x(t)) =
V (σ(t), x(σ(t)))− V (t, x(t))

µ(t)
= V ∆(t, x(t)).

From Lemmas 2.2 and 2.3, it is now easy to get necessary results in terms
of Lyapunov-like functions.

Lemma 3.1 ([9, Th. 3.1.2]). Assume that the solution x(t, t0, x0) of (3.1)
is rd-continuous with respect to the initial data and ‖x(t, t0, x0)‖ is locally
Lipschitzian in x0. Suppose that

(i) for V ∈ Crd[T×Rn,R+], V (t, x) is locally Lipschitzian in x for each
right-dense point t ∈ T, and for t0 < s ≤ t, z ∈ Rn,

D+V ∆(s, x(t, s, z)) ≤ G(s, V (s, x(t, s, z)));

(ii) for G ∈ Crd[Tk × R+,R+], G(t, u)µ(t) + u is nondecreasing in u for
each t ∈ T, and the maximal solution r(t) = r(t, t0, u0) of u∆ =
G(t, u), u(t0) = u0 ≥ 0, exists for t ∈ T.

Then if y(t, t0, x0) is any solution of

(3.2) y∆ = G(t, y), y(t0) = x0,

we have

V (t, y(t, t0, x0)) ≤ r(t, t0, V (t0, x(t, t0, x0))), t ∈ T,

provided V (t0, x(t, t0, x0)) ≤ u0.

Lemma 3.2. Assume that the solution x(t, t0, x0) of (3.1) is rd-continuous
with respect to the initial data and ‖x(t, t0, x0)‖ is locally Lipschitzian in x0.
Suppose that

(i) for V ∈ Crd[T×Rn,R+], V (t, x) is locally Lipschitzian in x for each
t ∈ T which is right-dense, and for t0 < s ≤ t, z ∈ Rn,

D+V
∆(s, x(t, s, z)) ≥ G(s, V (s, x(t, s, z)));

(ii) for G ∈ Crd[T × R+,R+], G(t, u)µ(t) + u is nondecreasing in u for
each t ∈ T, and the minimal solution r(t) = r(t, t0, u0) of u∆ =
G(t, u), u(t0) = u0 ≥ 0, exists for t ∈ T.

Then if y(t, t0, x0) is any solution of

(3.3) y∆(t) = G(t, y), y(t0) = x0,

we have

V (t, y(t, t0, x0)) ≥ r(t, t0, V (t0, x(t, t0, x0))), t ∈ T,

provided V (t0, x(t, t0, x0)) ≥ u0.
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Proof. The proof is similar to that of Theorem 3.1.2 in [9], and so we
omit it here.

We now consider the hybrid dynamic system

(3.4)
x∆(t) = f(t, x, λk(τk, zk)), t ∈ [τk, τk+1],
x(τk) = zk ∈ Rn, k = 0, 1, 2, . . . ,

and the perturbed hybrid dynamic system

(3.5)
y∆ = g(t, y, λk(τk, zk)), t ∈ [τk, τk+1],
y(τk) = zk ∈ Rn, k = 0, 1, 2, . . . ,

on T, where
(i) τk ∈ T with 0 ≤ t0 = τ0 < τ1 < τ2 < · · · and τk →∞ as k →∞,
(ii) f, g ∈ Crd[T × Rn × Rn,Rn], zk ∈ Rn and λk : T × Rn → Rn,

k = 0, 1, 2, . . . .

Remark 3.1. If T = N, then equations (3.4) and (3.5) are equations
(2.1) and (2.2) of [16]. In the case of T = R they coincide with equations
(2.1.1) and (2.2.2) in [7].

Remark 3.2. The term “practical stability” is used to describe the abil-
ity of a time-delay system to be stable in the presence of small perturbations.
Any equation governing the behavior of a perturbation is called a perturbed
system. Sometimes, it may be convenient to involve perturbations in the def-
inition of practical stability itself since one can then deal with perturbations
directly as constraints [7].

By a solution x(t) = x(t, t0, x0) of (3.4) we mean the following:

x(t) =



x0(t), t0 ≤ t ≤ τ1,

x1(t), τ1 ≤ t ≤ τ2,
...
xk(t), τk ≤ t ≤ τk+1,
...

where xk(t) = xk(t, τk, zk) is the solution of the dynamic system

(3.6) x∆
k (t) = f(t, xk(t), λk(τk, zk)), xk(τk) = zk ∈ Rn,

for each k = 0, 1, 2, . . . , and τk ≤ t ≤ τk+1. The description of solutions of
system (3.5) can be related to above. We assume that solutions of (3.4) and
(3.5) exist and are unique for t ≥ t0.

We also need the scalar comparison hybrid dynamic system

(3.7)
u∆(t) = G(t, u, δk(uk)), t ∈ [τk, τk+1],
u(τk) = vk ∈ R+,
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where G ∈ Crd[T × R+ × R+,R] and δk ∈ C[R+,R+]. By a solution r(t) =
r(t, t0, u0) of (3.7), we mean the following:

r(t) =



r0(t), t0 ≤ t ≤ τ1,

r1(t), τ1 ≤ t ≤ τ2,
...
rk(t), τk ≤ t ≤ τk+1,
...

where rk(t) = rk(t, τk, uk) is the solution of

(3.8) u∆
k = G(t, uk(t), δk(vk)), uk(τk) = vk ∈ R+,

for each k = 0, 1, 2, . . . and τk ≤ t ≤ τk+1.
We can now prove the required comparison result in terms of a Lyapunov-

like function which is useful in discussing the qualitative behavior of solutions
of (3.4) and (3.5).

Relating to system (3.1), we assume the following:

(H) The solution x(t, t0, x0) of (3.1) is rd-continuous with respect to the
initial data and ‖x(t, t0, x0)‖ is locally Lipschitzian in x0.

Theorem 3.1. Assume that condition (H) holds and

(i) for V ∈ Crd[T×Rn,R+], V (t, x) is locally Lipschitzian in x for each
right-dense t ∈ T, and for τj ≤ t ≤ τj+1, j = 0, 1, 2, . . . ,

D+V
∆(s, x(t, s, xs)) ≥ G(s, V (s, x(t, s, xs)), δj(V (τj , xj))), τj ≤ s ≤ t,
where G ∈ Crd[T×R+,R+], G(t, u, v)µ(t) + u is nondecreasing in v
for each (t, u) and in u for each (t, v), xs = xj(s, τj , xj), and δj(v)
is nondecreasing in v for all j,

(ii) the minimal solution r(t) = r(t, t0, u0) of (3.7) exists for t ≥ t0,
t ∈ T.

Then for any solution y(t, t0, x0) of (3.5) we have

(3.9) V (t, y(t, t0, x0)) ≥ r(t, t0, V (t0, x(t, t0, x0))), t ∈ T,
provided V (t0, x(t, t0, x0)) ≥ u0.

Proof. Let yj(t, τj , xj) be the solution of system (3.5) in the interval
[τj , τj+1] existing for t ≥ t0, t ∈ T, where xj = yj−1(τj , τj−1, xj−1), j =
1, 2, . . . . Set

m(s) = V (s, x(t, s, xs)), τj ≤ s ≤ t ≤ τj+1,

where xs = xj(s, τj , xj). Then by condition (i), it is easy to derive the dif-
ferential inequality

D+m
∆(s) ≥ G(s,m(s), δr(mr)), s ∈ [τj , τj+1],

where mj = V (τj , xj).
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Consider the interval [t0, τ1], and set m0 = m(t0) = V (t0, x(t, t0, x0))
= u0. For t0 ≤ t ≤ τ1, t0 ≤ s ≤ t, we have

D+m
∆(s) ≥ G(s,m(s), δ0(m0)).

Hence, by Lemma 3.2, we get

V (t, y0(t, t0, x0)) ≥ r0(t, t0, V (t0, x(t, t0, x0))),

where r0(t, t0, u0) is the minimal solution of

u∆
0 (t) = G(t, u0(t), δ0(u0)), u0(t0) = u0, t ∈ [t0, τ1],

and y0(t) = y0(t, t0, x0) is the solution of

y∆
0 (t) = g(t, y0(t), λ0(x0)), y0(t0) = x0, t ∈ [t0, τ1].

Next, consider the interval [τ1, τ2]. Choosing u1 = r0(τ1, t0, u0) and x1 =
y0(τ1, t0, x0), we have

D+m
∆(s) ≥ G(s,m(s), δ1(m1)),

where m1 = V (τ1, y0(τ1, t0, x0)) ≥ r0(τ1, t0, u0) = u1. In the interval [τ1, τ2],
using the monotonicity properties of g(t, u, v) and δ1(v) with respect to v
and assumption (i), we have

D+m
∆(s) ≥ G(s,m(s), δ1(u1)).

Again, by Lemma 3.2 with u1 = V (τ1, x(t, τ1, x1)), we have

V (t, y1(t, τ1, x1)) ≥ r1(t, τ1, V (τ1, x(t, τ1, x1))),

where r1(t, t1, u1) is the minimal solution of

u∆
1 (t) = G(t, u1(t), δ1(u1)), u1(τ1) = u1, t ∈ [τ1, τ2],

and y1(t) = y1(t, τ1, x1) is the solution of

y∆
1 (t) = g(t, y1(t), λ1(x1)), y1(τ1) = x1, t ∈ [τ1, τ2].

We repeat the process using the special choice of xj =yj−1(τj , τj−1, xj−1),
j = 1, 2, . . . , to get

V (t, xj(t)) ≥ rj(t, τj , V (τj , x(t, τj , xj))),

where rj(t, τj , uj) is the minimal solution of

u∆
j (t) = G(t, uj(t), δj(uj)), uj(τj) = uj , t ∈ [τj , τj+1],

and yj(t) = yj(t, τj , xj) is the solution of

y∆
j (t) = g(t, yj(t), λj(xj)), yj(τr) = xj , t ∈ [τj , τj+1].
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Defining for t ∈ T, t ≥ t0,

V (t, y(t)) =



V (t, y0(t)), t0 ≤ t ≤ τ1,

V (t, y1(t)), τ1 ≤ t ≤ τ2,
...
V (t, yj(t)), τj ≤ t ≤ τj+1,
...

with V (t, x(t, t0, x0)) = u0, we have the desired estimate (3.9) for t ≥ t0 and
the proof is complete.

Estimate (3.9) shows a connection between solutions of systems (3.4)
and (3.5) in terms of the minimal solution of (3.7). Similarly, we can give
a connection between solutions of systems (3.4) and (3.5) in terms of the
maximal solution of (3.7).

Theorem 3.2. Assume that condition (H) holds and

(i) for V ∈ Crd[T×Rn,R+], V (t, x) is locally Lipschitzian in x for each
right-dense t ∈ T, and for τj ≤ t ≤ τj+1, j = 0, 1, 2, . . . ,

D+V ∆(s, x(t, s, xk)) ≤ G(s, V (s, x(t, s, xs)), δj(V (τj , xj))), τj ≤ s ≤ t,

where G ∈ Crd[Tk × R+,R+], G(t, u, v)µ(t) + u is nondecreasing in
v for each (t, u) and in u for each (t, v), and δj(v) is nondecreasing
in v for all j,

(ii) the maximal solution β(t) = β(t, t0, u0) of (3.7) exists for t ≥ t0,
t ∈ T.

Then for any solution y(t, t0, x0) of (3.5) we have

(3.10) V (t, y(t, t0, x0)) ≤ β(t, t0, V (t0, x(t, t0, x0))), t ∈ T,
provided V (t0, x(t, t0, x0)) ≤ u0.

4. Practical stability in terms of two measures. Using the compar-
ison Theorems 3.1 and 3.2, we prove some results on practical stability and
strict practical stability of system (3.5) in terms of two measures when infor-
mation about systems (3.4) and (3.7) is known. For the sake of convenience,
we introduce the following function classes:

K = {α ∈ C[R+,R+] : α is strictly increasing and α(0) = 0},

Γ = {h ∈ Crd[T× Rn,R+] : inf
(t,x)

h(t, x) = 0},

Σ = {Q ∈ C[R+,R+] : Q(0) = 0 and Q is increasing},
S(h, γ) = {(t, x) ∈ T× Rn : h ∈ Γ and h(t, x) < γ, γ > 0}.
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Definition 4.1. The hybrid dynamic system (3.4) is said to be

(i) practically stable if for given 0 < λ < A, the condition ‖x0‖ < λ
implies ‖x(t)‖ < A, t ≥ t0 for some t0 ∈ T, where x(t) = x(t, t0, x0)
is any solution of (3.4);

(ii) practically quasi-stable if for given λ,B, T > 0 and some t0 ∈ T with
t0 + T ∈ T, the condition ‖x0‖ < λ implies ‖x(t)‖ < B, t ≥ t0 + T ,
t ∈ T;

(iii) strongly practically stable if (i) and (ii) hold simultaneously;
(iv) practically asymptotically stable if (i) holds and for any given ε > 0

there exists T0 > 0 such that t0 + T0 ∈ T and ‖x0‖ < λ implies
‖x(t)‖ < ε, t ≥ t0 + T0;

(v) strictly practicallly stable if there exist 0 < λ1 ≤ A1 such that ‖x0‖ <
λ1 implies ‖x(t)‖ < A1, t ≥ t0, for some t0 ∈ T, and for every
0 < λ2 ≤ λ1 there exists A2 ≤ λ2 such that ‖x0‖ > λ2 implies
‖x(t)‖ > A2, t ≥ t0.

Definition 4.2. Let h, h0 ∈ Γ . The hybrid dynamic system (3.4) is said
to be

(PS1) (h0, h)-practically stable if for given 0 < λ < A, the condition
h0(t0, x0) < λ implies h(t, x(t)) < A, t ≥ t0, for some t0 ∈ T,
where x(t) = x(t, t0, x0) is any solution of (3.4);

(PS2) (h0, h)-practically quasi-stable if for given λ,B, T > 0 and some
t0 ∈ T with t0 + T ∈ T, the condition h0(t0, x0) < λ implies
h(t, x(t)) < B, t ≥ t0 + T , t ∈ T;

(PS3) (h0, h)-strongly practically stable if (PS1) and (PS2) hold simulta-
neously;

(PS4) (h0, h)-practically asymptotically stable if (PS1) holds and for any
given ε > 0 there exists T0 > 0 such that t0 + T0 ∈ T and
h0(t0, x0) < λ implies h(t, x(t)) < ε, t ≥ t0 + T0;

(PS5) (h0, h)-strictly practically stable if there exist 0 < λ1 ≤ A1 such
that h0(t0, x0) < λ1 implies h(t, x(t)) < A1, t ≥ t0, for some
t0 ∈ T, and for every 0 < λ2 ≤ λ1 there exists A2 ≤ λ2 such that
h0(t0, x0) > λ2 implies h(t, x(t)) > A2, t ≥ t0.

One can similarly define corresponding notions for the scalar comparison
dynamic system (3.7).

Definition 4.3. Let Q0, Q ∈ Σ. Then we say that the scalar comparison
hybrid dynamic system (3.7) is (Q0, Q)-practically stable if for given 0 < λ
< A, the condition Q0(t0, u0) < λ implies Q(t, u(t)) < A, t ≥ t0, t ∈ T,
where u(t) = u(t, t0, u0) is any solution of (3.7).

Other practical stability notions can be defined similarly.
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Theorem 4.1. Assume condition (H) holds and

(A1) 0 < λ < A;
(A2) h0, h

∗, h ∈ Γ , h∗(t, x) is nondecreasing in t and h0 is uniformly
finer than h, i.e.,

h(t, x) ≤ φ(h0(t, x)), φ ∈ K, whenever h0(t, x) < λ;

(A3) there exists V ∈ Crd[T × Rn, R+] such that V (t, u) is locally Lip-
schitzian in u for each right-dense t ∈ T, and for a, b ∈ K,

V (t, x) ≥ b(h(t, x)) if (t, x) ∈ S(h,A),
V (t, x) ≤ a(h∗(t, x)) if (t, x) ∈ S(h∗, λ);

(A4) for (t, x) ∈ S(h,A),

D+V ∆(s, x(t, s, xk)) ≤ G(s, V (s, x(t, s, xk)), δr(V (τj , xj))),

where G ∈ Crd[Tk × R+ × R+,R+], G(t, u, v)µ(t) + u is nonde-
creasing in v for each (t, u) and in u for each (t, v), and δj(v) is
nondecreasing in v for all j;

(A5) φ(λ) < A and a(λ) < b(A);
(A6) system (3.4) is (h0, h

∗)-practically stable with respect to (λ, λ), i.e.,

(4.1) h0(t0, x0) < λ implies h∗(t, x(t, t0, x0)) < λ, t ≥ t0.

Then practical stability properties of system (3.7) imply the corre-
sponding (h0, h)-practical stability properties of the perturbed sys-
tem (3.5).

Proof. Assume that (3.7) is practically stable. Then for given (a(λ), b(A)),

(4.2) u0 < a(λ) implies u(t, t0, u0) < b(A), t ≥ t0,

where u(t, t0, u0) is any solution of (3.7). Since (3.4) is (h0, h
∗)-practically

stable with respect to (λ, λ), (4.1) holds. Then by (A2) and (A5), it follows
that

h(t0, x0) ≤ φ(h0(t0, x0)) < φ(λ) < A.

We claim that h(t, y(t)) < A, t ≥ t0, where y(t) = y(t, t0, x0) is any solution
of (3.5). Indeed, if this were not true, there would exist a solution y(t, t0, x0)
of (3.5) with h0(t0, x0) < λ and a t1 > t0, t1 ∈ T, such that

(4.3) h(t1, y(t1, t0, x0)) ≥ A, h(t, y(t, t0, x0)) < A, t0 ≤ t < t1.

As h0(t0, x0) < λ, Theorem 3.2 together with (A2), (A3) and (4.3) imply

(4.4) V (t, y(t, t0, x0)) ≤ β(t, t0, V (t0, x(t, t0, x0))), t0 ≤ t ≤ t1,

and

V (t0, x(t1, t0, x0)) ≤ a(h∗(t0, x(t1, t0, x0))) ≤ a(h∗(t1, x(t1, t0, x0))) < a(λ).
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Using (A3), (4.1), (4.3) and (4.4), we have

b(A) ≤ b(h(t1, y(t1, t0, x0))) ≤ V (t1, y(t1, t0, x0))
≤ β(t1, t0, V (t0, x(t1, t0, x0))) < b(A),

and this contradiction proves that h0(t0, x0)<λ implies h(t, y(t, t0, x0))<A,
t ≥ t0.

Next, we prove that system (3.5) is (h0, h)-strongly practically stable for
given positive numbers λ, A, B, T . To do this, suppose that (3.7) is strongly
practically stable for positive numbers a(λ), b(A), b(B), T . This means we
only need to prove (h0, h)-practical quasi-stability of system (3.5). Practical
quasi-stability of (3.7) means that

u0 < a(λ) implies u(t, t0, u0) < b(B), t ≥ t0 + T, with t0 + T ∈ T.
From the foregoing argument, since V (t0, x(t, t0, x0))<a(λ) if h0(t0, x0)<λ,
we have

b(h(t, y(t, t0, x0))) ≤ V (t, y(t, t0, x0)) ≤ u(t, t0, V (t0, x(t, t0, x0))) < b(B)

for all t ≥ t0 + T if h0(t0, x0) < λ. Thus we have h(t, x(t)) < B, t ≥ t0 + T ,
provided h0(t0, x0) < λ. Hence system (3.5) is (h0, h)-strongly practically
stable.

Finally, we show that system (3.5) is (h0, h)-practically asymptotically
stable. Now, let us suppose that (3.7) is practically asymptotically stable.
This implies we only need to prove that for any given ε > 0 there exists
T0 > 0 with t0 + T0 ∈ T such that t0 + T0 ≥ T and h0(t0, x0) < λ implies
h(t, x(t)) < B, t ≥ t0 + T0, for system (3.5). Practical asymptotic stability
of (3.7) means that

u0 < a(λ) implies u(t, t0, u0) < b(B), t ≥ t0 + T0.

From the argument above, since V (t0, x(t, t0, x0)) < a(λ) whenever h0(t0, x0)
< λ, we obtain

b(h(t, y(t, t0, x0))) ≤ V (t, y(t, t0, x0)) ≤ u(t, t0, V (t0, x(t, t0, x0))) < b(B)

for all t ≥ t0 + T0 if h0(t0, x0) < λ. Thus we have h(t, x(t)) < B, t ≥ t0 + T0

provided h0(t0, x0) < λ. Hence system (3.5) is (h0, h)-strongly practically
stable, and the proof is complete.

Theorem 4.2. Suppose that conditions of Theorem 4.1 are satisfied ex-
cept that condition (A3) is replaced by

(A7) Q0, Q ∈ Σ, and for a, b ∈ K
Q(V (t, x)) ≥ b(h(t, x)) if (t, x) ∈ S(h,A),
Q0(V (t, x)) ≤ a(h∗(t, x)) if (t, x) ∈ S(h∗, λ).

Then (Q0, Q)-practical stability properties of system (3.7) imply the corre-
sponding (h0, h)-practical stability properties of the perturbed system (3.5).
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Proof. Assume that (3.7) is (Q0, Q)-practically stable. Then we have
(a(λ), b(A)) such that

(4.5) Q0(u0) < a(λ) implies Q(u(t, t0, u0)) < b(A), t ≥ t0.

Suppose that the (h0, h)-practical stability of (3.5) does not hold. Then
arguing as in Theorem 4.1, by (A2), (A7) and (4.3) we can show that

Q0(V (t0, x(t1, t0, x0))) ≤ a(h∗(t0, x(t1, t0, x0)))
≤ a(h∗(t1, x(t1, t0, x0))) < a(λ).

Then using (A7), (4.1), (4.3) and (4.4), we have

b(A) ≤ b(h(t1, y(t1, t0, x0))) ≤ Q(V (t1, y(t1, t0, x0)))
≤ Q(u(t1, t0, V (t0, x(t1, t0, x0)))) < b(A),

which is a contradiction. The proof is complete.

Remark 4.1. If h0 = h∗ = h = ‖x‖, then we get the usual practical
stability of system (3.5).

Remark 4.2. If Q0(u) = Q(u) = u, we deduce Theorem 4.1.

The following result concerns (h0, h)-strict practical stability of (3.5).

Theorem 4.3. Assume that condition (H) holds and

(B1) h0, h
∗, h ∈ Γ , h∗(t, x) is nondecreasing in t and h0 is uniformly finer

than h, i.e., h(t, x) ≤ φ(h0(t, x)), φ ∈ K, whenever h0(t, x) < λ,
and h(t, x) ≥ φ(h0(t, x)), φ ∈ K, whenever h0(t, x) > λ;

(B2) for each 0 < η ≤ Ai, there exist Vi ∈ Crd[T × Rn,R+] such that
Vi(t, x) is locally Lipschitzian in x for each right-dense t ∈ T, and
there exist ai, bi ∈ K, i = 1, 2, such that

V1(t, x) ≥ b1(h(t, x)) if h(t, x) ≤ η,
V1(t, x) ≤ a1(h∗(t, x)) if h∗(t, x) ≤ η,

and

V2(t, x) ≤ a2(h(t, x)) if h(t, x) ≥ η,
V2(t, x) ≥ b2(h∗(t, x)) if h∗(t, x) ≥ η;

(B3)

D+V ∆
1 (s, x(t, s, xk)) ≤ G(s, V (s, x(t, s, xk)), δr(V (τr, xr)))

for h(t, x) ≤ A1,

D+V
∆

2 (s, x(t, s, xk)) ≥ G(s, V (s, x(t, s, xk)), δr(V (τr, xr)))
for h(t, x) ≥ A2,
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where G ∈ Crd[Tk × R+ × R+,R+], G(t, u, v)µ(t) + u is nonde-
creasing in v for each (t, u) and in u for each (t, v), and δr(v) is
nondecreasing in v for all r;

(B4) φ(λ1) < A1, φ(λ2) > A2, a1(λ1) < b1(A1) and a2(A2) < b2(λ2);
(B5) system (3.4) is (h0, h

∗)-strictly practically stable with respect to
(λ1, λ1) and (λ2, λ2), i.e., h0(t0, x0) < λ1 implies h∗(t, x(t, t0, x0))
< λ1 and h0(t0, x0) > λ2 implies h∗(t, x(t, t0, x0)) > λ2, t ≥ t0.

Then strict practical stability properties of system (3.7) imply the correspond-
ing strict (h0, h)-practical stability properties of the perturbed system (3.5).

Proof. Assume that (3.7) is strictly practically stable. Then there exist
0 < λ1 ≤ A1 such that a1(λ1) < b1(A1) and u0 < a1(λ1) implies u(t) <
b1(A1), t ≥ t0, for some t0 ∈ T, and for every 0 < λ2 ≤ λ1 there exists
A2 ≤ λ2 such that v0 > b2(λ2) implies v(t) > a2(A2), t ≥ t0, where u(t) =
u(t, t0, u0) and v(t) = v(t, t0, u0) are maximal and minimal solutions of (3.7),
respectively.

Since (3.4) is (h0, h
∗)-strictly practically stable with respect to (λ1, λ1)

and (λ2, λ2), it follows that

h0(t0, x0) < λ1 implies h∗(t, x(t, t0, x0)) < λ1, t ≥ t0,(4.6)
h0(t0, x0) > λ2 implies h∗(t, x(t, t0, x0)) > λ2, t ≥ t0.(4.7)

Then by (B1) and (B4),

h(t0, x0) ≤ φ(h0(t0, x0)) < φ(λ1) < A1 whenever h0(t0, x0) < λ1,

h(t0, x0) ≥ φ(h0(t0, x0)) > φ(λ2) > A2 whenever h0(t0, x0) > λ2.

Now we claim that h0(t0, x0) < λ1 implies h(t, y(t)) < A1, t ≥ t0, where
y(t) = y(t, t0, x0) is any solution of (3.5). If this were not true, there would
exist a solution y(t, t0, x0) of (3.5) with h0(t0, x0) < λ1 and a t1 ∈ T, t1 > t0,
such that

(4.8) h(t1, y(t1, t0, x0)) ≥ A1, h(t, y(t, t0, x0)) < A1, t0 ≤ t < t1.

Then by Theorem 3.2, we obtain

(4.9) V1(t, y(t, t0, x0)) ≤ u1(t, t0, V1(t0, x(t, t0, x0))), t0 ≤ t ≤ t1.

Because of (B1), (B2) and (4.6), we have

V1(t0, x(t1, t0, x0)) ≤ a1(h∗(t0, x(t1, t0, x0)))
≤ a1(h∗(t1, x(t1, t0, x0))) < a1(λ1)

for h0(t0, x0) < λ1. Using (B2), (4.8) and (4.9), we have

b1(A1) ≤ b1(h(t1, y(t1, t0, x0))) ≤ V1(t1, y(t1, t0, x0))
≤ u1(t1, t0, V1(t0, x(t1, t0, x0))) < b(A1),
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and this contradiction proves that h0(t0, x0) < λ1 implies h(t, y(t, t0, x0))
< A1, t ≥ t0.

On the other hand, for every 0 < λ2 ≤ λ1, we claim that h0(t0, x0) > λ2

implies h(t, y(t)) > A2, t ≥ t0. If this were not true, there would exist a
solution y(t, t0, x0) of (3.5) with h0(t0, x0) > λ2 and a t1 ∈ T with t1 > t0
such that

(4.10)
h(t, y(t)) ≤ A2 for t ≥ t1,
A2 ≤ h(t, y(t)) ≤ A1 for t0 ≤ t < t1.

Then by Theorem 3.1, we get

(4.11) V2(t, y(t, t0, x0)) ≥ u2(t, t0, V2(t0, x(t, t0, x0))), t0 ≤ t ≤ t1.
By (B1), (B2) and (3.7), we have

V2(t0, x(t1, t0, x0)) ≥ b2(h∗(t0, x(t1, t0, x0))) > b2(λ2)

for h0(t0, x0) > λ2. Using (B2), (4.10) and (4.11), we have

a2(A2) ≥ a2(h(t1, y(t1, t0, x0))) ≥ V2(t1, y(t1, t0, x0))
≥ u2(t1, t0, V2(t0, x(t1, t0, x0))) > a2(A2),

which is a contradiction. Hence system (3.5) is (h0, h)-strictly practically
stable, and the proof is complete.

Theorem 4.4. Suppose that the conditions of Theorem 4.3 are satisfied
except that the condition (B2) is replaced by

(B6) for any 0 < η ≤ Ai, there exist Vi ∈ Crd[T × Rn,R+] such that
Vi(t, x) is locally Lipschitzian in x for each right-dense t ∈ T, and
there exist Q0, Q ∈ Σ and ai, bi ∈ K, i = 1, 2, such that

Q(V1(t, x)) ≥ b1(h(t, x)) if h(t, x) ≤ η,
Q0(V1(t, x)) ≤ a1(h∗(t, x)) if h∗(t, x) ≤ η

and

Q(V2(t, x)) ≤ a2(h(t, x)) if h(t, x) ≥ η,
Q0(V2(t, x)) ≥ b2(h∗(t, x)) if h∗(t, x) ≥ η.

Then (Q0, Q)-strict practical stability properties of system (3.7) im-
ply the corresponding (h0, h)-strict practical stability properties of
the perturbed system (3.5).

The proof of Theorem 4.4 is similar to the proof of Theorem 4.2 and
hence is omitted.

Remark 4.3. If T = R, then Theorems 3.2, 4.1 and 4.2 of this paper
coincide with Theorems 2.1, 3.1 and 3.2 in [16].
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