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Summary. The existence of a continuous periodic and almost periodic solutions of the
nonlinear integral inclusion is established by means of the generalized Schauder fixed point
theorem.

In [7] O’Regan and Meehan obtained some results on the existence of
periodic and almost periodic solutions of the nonlinear Fredholm integral
equation. Their method was based on the nonlinear alternative. Employing
similar approach we prove the existence of periodic and almost periodic
solutions for the integral inclusion

(1) y(t) ∈ h(t) +
�

I

k(t, s)F (s, y(s)) ds, t ∈ I,

where I is an interval of R (finite or infinite), h : I → Rn, k : I × I → R
and F : I × Rn ( Rn is a multimap. Our conclusions rely on the following
fixed point principle for so called admissible set-valued maps (see Corollary
(41.13) in [6]).

Theorem 1 (The Schauder fixed point theorem). Let X be a convex sub-
set of a normed space and let ϕ : X ( X be a compact admissible multimap.
Then there exists a point x ∈ X such that x ∈ ϕ(x).

Remark 1. For our purposes it is sufficient to know that any acyclic
map ϕ : X ( X, i.e. any upper semicontinuous multimap with compact
acyclic values is admissible.
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Remark 2. Observe that the composition of two acyclic mappings is an
admissible map: in particular, the composition of two u.s.c. mappings with
compact contractible values and the composition of two u.s.c. mappings with
compact convex values are again admissible maps (see Section 40 in [6]).

Let us assume that 0 < T < ∞ and I is an interval of R that contains
at least one compact subinterval of length T , which is denoted by IT . We
denote by PT (I,Rn) the space of T -periodic continuous mappings from I
to Rn. These mappings form a closed subspace of the space of bounded
continuous functions BC(I,Rn) and for that reason they form a Banach
space equipped with the usual supremum norm ‖ · ‖∞. AP (Rn) stands for
the space of continuous almost periodic functions, in the Bohr sense, with
values in Rn. It is important for our considerations that continuous almost
periodic functions are bounded and AP (Rn) endowed with the supremum
norm ‖·‖∞ also forms a Banach space (see [4]). Finally we have the following
compactness theorem, the proof of which is given in [4, Theorem 6.10].

Theorem 2. A necessary and sufficient condition for a family F of func-
tions from AP (Rn) to be relatively compact is that the following properties
hold true:

(i) for any t ∈ R, the set of values of functions from F is relatively
compact in Rn,

(ii) F is equi-continuous,
(iii) F is equi-almost periodic.

We now formulate two existence theorems which follow from Theorem 1.
Recall first the definition of an Lp-Carathéodory multifunction.

Definition 1. We say that a multimap F : I×Rn ( Rn is Lp-Carathé-
odory if the following conditions hold:

(F1) F (·, x) is measurable for every x ∈ Rn,
(F2) F (t, ·) is upper semicontinuous for almost every t ∈ I,
(F3) for any M > 0, there exists µM ∈ Lp(I,R+) such that |x| ≤ M

implies that |F (t, x)| = sup{|y| : y ∈ F (t, x)} ≤ µM (t) for almost
all t ∈ I.

Theorem 3. Let p ∈ [1,∞), let q be such that p−1+q−1 = 1, T ∈ (0,∞),
and let I be an interval of R (finite in the case p = 1) that contains at least
one compact subinterval IT of length T . Assume that F : I × Rn ( Rn

is an Lp-Carathéodory multimap with nonempty compact convex values and
h : I → Rn is continuous and T -periodic. Let k : I × I → R be such that
k(t, ·) ∈ Lq(I) for every t ∈ I and

(2) the map I 3 t 7→ k(t, ·) ∈ Lq(I) is continuous and T -periodic.
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In addition suppose that for some M > 0,

(3) ‖h‖∞ + sup
t∈I
‖k(t, ·)‖q‖µM‖p ≤M.

Then the inclusion (1) has a continuous T -periodic solution.

Proof. First, observe that I 3 t 7→ ‖k(t, ·)‖q ∈ R is T -periodic (cf. [7]).
From (2) it follows that it is also continuous and thus

sup
t∈I
‖k(t, ·)‖q = sup

t∈IT

‖k(t, ·)‖q <∞.

This proves condition (3) makes sense.
We can assign to each 1 ≤ p < ∞ a set-valued Nemytskĭı operator

NF : PT (I,Rn)( Lp(I,Rn) by letting

NF (y) = {w ∈ Lp(I,Rn) : w(s) ∈ F (s, y(s)) for a.a. s ∈ I}.
Next we define the integral operator K : Lp(I,Rn)→ PT (I,Rn) such that

K(w)(t) = h(t) +
�

I

k(t, s)w(s) ds, t ∈ I.

In view of the continuity of h and t 7→ k(t, ·), Hölder’s inequality implies
that K(w) ∈ C(I,Rn). Obviously, K(w) is also T -periodic, which proves the
correctness of the definition of the operator K.

Now, the periodic solutions of the inclusion (1) are fixed points of the
set-valued operator G : PT (I,Rn)( PT (I,Rn) defined by G = K ◦ NF . In
fact, the inequality (3) and the property (F3) of the multimap F guarantee
that G : D(0,M)( D(0,M), where D(0,M) is the closed ball with radius
M in the supremum norm of the space PT (I,Rn). We will see that this
operator is an admissible multimap in the sense of Theorem 1. To this end
we prove that G is a compact multimap with nonempty convex values and
closed graph.

G has nonempty values. Indeed, since F takes nonempty and compact
values and satisfies (F1)–(F2), which means that F is upper Carathéodory,
for every y ∈ D(0,M) there exists a measurable selection w of F (·, y(·))
in view of Theorem 7, p. 124 in [1]. Then property (F3) implies that w ∈
Lp(I,Rn). Therefore v = K(w) ∈ G(y).

G(y) is convex for every y. This is true because the multimap F has
convex values and the operator K is affine.

G is compact. Take any sequence (vn)∞n=1 in G(D(0,M)). Then (vn)∞n=1

is uniformly bounded on I and in particular on IT . Let vn = K(wn). From
the inequality

(4) |K(wn)(t)−K(wn)(τ)| ≤ |h(t)− h(τ)|+ ‖k(t, ·)− k(τ, ·)‖q‖µM‖p
for every n ≥ 1, it follows that the sequence (vn)∞n=1 is also equi-continuous
on IT . Thus we can assume without loss of generality that (vn)∞n=1 converges
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uniformly on IT to some v. Let v(t+T ) = v(t) for every t such that t+T ∈ I.
Since

‖vn − v‖∞ = sup
t∈I
|vn(t)− v(t)| = sup

t∈IT

|vn(t)− v(t)| →
n→∞

0,

the sequence (vn) tends to v in PT (I,Rn) and G(D(0,M)) is relatively com-
pact.

G has closed graph. To show this, take a sequence (yn, vn)∞n=1 in the
graph of G such that ‖vn − v‖∞ → 0 and ‖yn − y‖∞ → 0 as n → ∞. Let
vn = K(wn), where wn ∈ Lp(I,Rn) satisfies wn(s) ∈ F (s, yn(s)) a.e. in I.
Assume p = 1 and I is a finite interval. Then the set

{f ∈ L1(I,Rn) : |f(t)| ≤ µM (t) for a.a. t ∈ I}
is compact in the weak topology of L1(I,Rn) (see [5] for the proof), which
means that (wn) has an L1-weakly convergent subsequence. It is well known
that Lp(I,Rn) is reflexive for 1 < p < ∞, whether or not I is bounded
(i.e. I can be R). Clearly the sequence (wn)∞n=1 is bounded in the Lp norm.
So if p ∈ (1,∞) then in view of the Eberlein–Shmul’yan theorem (wn) also
has a convergent subsequence (again denoted by (wn)). Let w be its limit.
From Mazur’s theorem it follows that w belongs to the strong closure of
co{wn : n ≥ l} for every l ≥ 1. Thus there is a sequence (zl)∞l=1 converging
to w in the Lp norm such that zl ∈ co{wn : n ≥ l} for every l ≥ 1. Further,
there is a subsequence (again denoted by) (zl) converging to w a.e. in I. Let
J be a set of full measure in the interval I satisfying:

zl(s)→ w(s) as l→∞ for every s ∈ J,(5)
x 7→ F (s, x) is u.s.c. for every s ∈ J,(6)

wn(s) ∈ F (s, yn(s)) for every s ∈ J, n ≥ 1.(7)

Take an arbitrary t ∈ J and ε > 0. From (6) we get δ > 0 such that
F (t, x) ⊂ B(F (t, y(t)), ε) for every x ∈ B(y(t), δ). Since yn(t) → y(t) as
n → ∞, there is N ∈ N such that wn(t) ∈ B(F (t, y(t)), ε) for every n ≥ N
(by (7)). Observe that (zl)∞l=N ⊂ co{wn : n ≥ N}. By (5) it follows that
w(t) ∈ D(F (t, y(t)), ε). Since ε > 0 and t ∈ J was arbitrary we have w(s) ∈
F (s, y(s)) for almost all s ∈ I, i.e. w ∈ NF (y). Keeping in mind that vn =
K(wn) and zl ∈ co{wn : n ≥ l} we find that K(zl) ∈ co{vn : n ≥ l}, since K
is affine. Hence

(8) ‖K(zl)− v‖∞ ≤ diam co {vn : n ≥ l}
for every l ≥ 1. Notice that (vn) is a Cauchy sequence. Therefore

∀ε > 0 ∃l ∈ N ∀n ≥ l vn ∈ B(vl, ε),

which implies

∀ε > 0 ∃L ∈ N ∀l ≥ L diam co {vn : n ≥ l} ≤ 2ε.
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Obviously diam co {vn : n ≥ l} → 0 as l →∞, which means that K(zl)⇒ v
as l→∞, by (8). Applying again the Hölder inequality we see that

‖K(zl)−K(w)‖∞ ≤ sup
t∈I

�

I

|k(t, s)| |zl(s)− w(s)| ds

≤ sup
t∈I
‖k(t, ·)‖q‖zl − w‖p.

As (zl) tends to w in the Lp norm we conclude K(zl) ⇒ K(w). Thus v =
K(w) and v ∈ G(y), i.e. the graph of G is closed.

According to Corollary 1 in [2, p. 42] the operatorG : D(0,M)(D(0,M)
is upper semicontinuous. Therefore it is an admissible multimap and from
Theorem 1 it follows that G has a fixed point, i.e. there is y in PT (I,Rn) with
‖y‖∞ ≤ M such that y ∈ G(y). Hence the inclusion (1) has a continuous
T -periodic solution.

Remark 3. If the multifunction F is Lp-integrably bounded, i.e. there
exists µ ∈ Lp(I,R+) such that |F (t, x)| ≤ µ(t) for all x and for almost all t,
condition (3) is superfluous. In the proof of the theorem one can simply take
M = ‖h‖∞ + supt∈I ‖k(t, ·)‖q‖µ‖p.

Our second result establishes the existence of continuous almost periodic
solutions of the integral inclusion (1).

Theorem 4. Let p ∈ (1,∞), let q be such that p−1 + q−1 = 1, and
I = R. Assume that F : I × Rn ( Rn is an Lp-Carathéodory multimap
with nonempty compact convex values and h : I → Rn is continuous almost
periodic. Let k : I × I → R be such that k(t, ·) ∈ Lq(I) for every t ∈ I and

(9) the map I 3 t 7→ k(t, ·) ∈ Lq(I) is continuous almost periodic.

In addition suppose that for some M > 0,

(10) ‖h‖∞ + sup
t∈I
‖k(t, ·)‖q‖µM‖p ≤M.

Then the inclusion (1) has a continuous almost periodic solution.

Proof. Take ε > 0. Then condition (9) implies that there exists an l(ε)
> 0 such that any interval of length l(ε) contains a number τ such that

| ‖k(t+ τ, ·)‖q − ‖k(t, ·)‖q| ≤ ‖k(t+ τ, ·)− k(t, ·)‖q

=
( �

I

|k(t+ τ, s)− k(t, s)|q ds
)1/q

< ε

for all t ∈ R. Hence the function t 7→ ‖k(t, ·)‖q is continuous almost periodic.
Since almost periodic functions are bounded (see [4]), supt∈I ‖k(t, ·)‖q <∞
and the inequality (10) is justified.

Let G : AP (Rn)( AP (Rn) be as in the proof of the previous theorem,
i.e. G = K ◦NF . We have to show that the operator K acts from Lp(I,Rn)
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to AP (Rn). Indeed, let ε > 0 and w ∈ Lp(I,Rn) with ‖w‖p > 0. Then since
t 7→ k(t, ·) and h are almost periodic, there exists l > 0 such that any interval
of length l contains a τ such that

‖k(t+ τ, ·)− k(t, ·)‖q <
ε

2‖w‖p
and |h(t+ τ)− h(t)| < ε

2

for all t ∈ R. Thus any interval of length l contains an element τ such that
for all t ∈ R,

|K(w)(t+ τ)−K(w)(t)| ≤ |h(t+ τ)− h(t)|+ ‖k(t+ τ, ·)− k(t, ·)‖q‖w‖p
<
ε

2
+

ε

2‖w‖p
‖w‖p = ε.

Therefore K(w) ∈ AP (Rn) for every w ∈ Lp(I,Rn).
Using arguments similar to those in the proof of Theorem 3 we can show

that G : D(0,M)( D(0,M) has nonempty convex values and closed graph.
The only difference is that we must use the compactness criteria (see Theo-
rem 2) for the space AP (Rn) to prove that G is a compact multimap.

Condition (i) is easily verified since G(D(0,M)) is uniformly bounded
on R by M . Theorem 6.2 in [4] says that an almost periodic function with
values in a Banach space is uniformly continuous on R. Thus condition (ii)
for the family F = G(D(0,M)) follows from the uniform continuity of h and
t 7→ k(t, ·) and inequality (4). Finally, the inequality

|K(w)(t+ τ)−K(w)(t)| ≤ |h(t+ τ)− h(t)|+ ‖k(t+ τ, ·)− k(t, ·)‖q‖µM‖p
for every w ∈ NF (y) and y ∈ D(0,M), together with the almost periodicity
of h and t 7→ k(t, ·), implies condition (iii). Therefore the set G(D(0,M)) is
relatively compact.

Concluding, the operator G : D(0,M)( D(0,M) is an admissible mul-
timap and in view of Theorem 1 has a fixed point. This fixed point is a
continuous almost periodic solution of the inclusion (1).

Example 1. (a) If for T = 2π and I a finite interval of R that contains
at least one compact subinterval of length 2π,

k(t, s) = sin(t+ s), t, s ∈ I,

then k satisfies the assumptions in Theorem 3.
(b) If for some 0 < T <∞ and I an interval of R that contains at least

one compact interval of length T ,

k(t, s) = a(t)b(s), t, s ∈ I,

where a ∈ PT (I) and b ∈ Lq(I) then k satisfies the assumption of Theorem 3.
If I = R, a ∈ AP (R) and b ∈ Lq(I) then k satisfies the assumption of
Theorem 4.
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