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Summary. Generalized reflected backward stochastic differential equations have been
considered so far only in the case of a deterministic interval. In this paper the existence and
uniqueness of solution for generalized reflected backward stochastic differential equations
in a convex domain with random terminal time is studied. Applications to the obstacle
problem with Neumann boundary conditions for partial differential equations of elliptic
type are given.

1. Introduction. Nonlinear backward stochastic differential equations,
BSDEs for short, were introduced by Pardoux and Peng in 1990 [PP]. Since
then, BSDEs have been studied extensively, due to their connections with
different mathematical fields, mainly partial differential equations (PDE for
short). Some of those results may be seen as generalizations of the cele-
brated Feynman–Kac formula. We should list here paper [P] that concerns
the Cauchy problem for parabolic PDEs and elliptic equations with Dirich-
let boundary conditions, and [PZ] that deals with parabolic equations with
Neumann boundary conditions.

The notion of reflected backward stochastic differential equations (ab-
breviated as RBSDEs) in a general convex domain was introduced in [GP].
Similarly to BSDEs, they give probabilistic formulas for appropriate obsta-
cle problems for PDEs. These connections for both parabolic and elliptic
PDEs were considered in [J1, PR]. Recently some authors have been inter-
ested in connections between so called generalized RBSDEs (GRBSDEs for
short) with deterministic terminal time and an obstacle problem of parabolic
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type with Neumann boundary conditions [J2, RX]. By generalized we mean
equations with an additional component which is a stochastic integral with
respect to an increasing process.

The aim of the present paper is to show the existence and uniqueness
of solutions of GRBSDEs in general convex domains with random terminal
time and connections with an obstacle problem of elliptic type with Neumann
boundary conditions.

The paper is organized as follows. In Section 2 we give the definition of a
solution of a GRBSDE with random terminal time and we formulate a main
theorem of the paper. We consider an equation of the form

Yt = ξ +
τ�

t∧τ
f(s, Ys, Zs) ds+

τ�

t∧τ
ϕ(s, Ys) dΛs −

τ�

t∧τ
Zs dWs +Kτ −Kt∧τ ,(1.1)

t ∈ R+, where τ is an almost surely finite stopping time,W = (Wt)t∈R+ is an
m-dimensional Wiener process and Λ = (Λt)t∈R+ is a one-dimensional con-
tinuous and increasing process with Λ0 = 0. Next, in Section 3 we show the
connection between a GRBSDE with random terminal time and the obstacle
problem of elliptic type with Neumann boundary conditions. Finally, in the
last section we prove the main result of the paper, i.e. the theorem about
existence and uniqueness of a solution of (1.1) (Theorem 2.2). We construct
a sequence of GRBSDEs for which existence of solutions follows from the
existence for GRBSDEs with deterministic terminal time (known from [J2])
and show that this sequence converges to a solution of (1.1). Moreover, we
give some properties of the solution of (1.1).

Throughout the paper we will use the following notation. By | · | we mean
the Euclidean norm in Rd, while ‖x‖ stands for (trace(x∗x))1/2, where x∗ is
the transposition of a matrix x ∈ Rd×m. For a process K = (K1, . . . ,Kd) we
denote by |K|t =

∑d
i=1 |Ki|t its variation on [0, t], where |Ki|t is the total

variation of Ki on [0, t].

2. Generalized RBSDEs. Let (Ω,G,P) be a complete probability
space carrying a standard m-dimensional Wiener process W = (Wt)t∈R+ .
Let F = (Ft)t∈R+ be the usual augmentation of the filtration generated by
W and assume that Λ = (Λt)t∈R+ is an adapted, one-dimensional continuous
and increasing process with Λ0 = 0.

Let τ be an almost surely finite F stopping time and let ξ be an Fτ
measurable, square integrable random variable with values in D̄, where D is
a convex subset of Rd. Suppose that functions f : R+×Ω×Rd×Rd×m → Rd

and ϕ : R+×Ω×Rd → Rd are measurable and there exist constants L, κ > 0,
β < 0, µ ∈ R such that for any t ∈ R+, y, y′ ∈ Rd, z, z′ ∈ Rd×m,

(A1) |f(t, y, z)− f(t, y′, z′)| ≤ L(|y − y′|+ ‖z − z′‖),
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(A2) 〈y − y′, f(t, y, z)− f(t, y′, z)〉 ≤ µ|y − y′|2,
(A3) |ϕ(t, y)− ϕ(t, y′)| ≤ L|y − y′|,
(A4) 〈y − y′, ϕ(t, y)− ϕ(t, y′)〉 ≤ β|y − y′|2,
(A5) |ϕ(·, ·, ·)| ≤ κ,
(A6) for some real numbers λ and ν such that λ > 2µ+ L2 and ν > β,

E
(τ�

0

eλt+νΛt |f(t, 0, 0)|2 dt+
τ�

0

eλt+νΛt |ϕ(t, 0)|2 dΛt
)
<∞,

(A7) Eeλτ+νΛτ (|ξ|2 + 1) <∞ and

E
(τ�

0

eλt+νΛt |f(t, ξt, ζt)|2 dt+
τ�

0

eλt+νΛt |ϕ(t, ξt)|2 dΛt
)
<∞,

where ξt = E(ξ|Ft), ζ is an F progressively measurable d × m-
dimensional process with E

	∞
0 ‖ζt‖

2dt<∞ and ξ=Eξ+
	∞
0 ζt dWt,

(A8) there exists q ≥ 2 such that for every M > 0,

E

M�

0

|f(t, 0, 0)|2q dt <∞.

Definition 2.1. A solution of the generalized reflected backward stochas-
tic differential equation (GRBSDE) with random terminal time associated
with data (τ, ξ, f, ϕ, Λ) is a triple (Y,Z,K) = (Yt, Zt,Kt)t∈R+ of F progres-
sively measurable processes in D̄ × Rd×m × Rd satisfying

Yt = ξ +
τ�

t∧τ
f(s, Ys, Zs) ds+

τ�

t∧τ
ϕ(s, Ys) dΛs(2.1)

−
τ�

t∧τ
Zs dWs +Kτ −Kt∧τ , t ∈ R+,

and such that

E
(

sup
t≤τ

eλt|Yt|2 +
τ�

0

eλt‖Zt‖2 dt+
τ�

0

eλt|Yt|2 dΛt
)
<∞,

where K is a continuous process with locally finite variation, K0 = 0 and
τ�

0

(Yt − St) dKt ≤ 0(2.2)

for every F progressively measurable process S = (St)t∈R+ with values in D̄.
Moreover, on the set {t ≥ τ} we have Yt = ξ, Zt = 0, Kt = Kτ .

Theorem 2.2. Let τ be an almost surely finite F stopping time and let
assumptions (A1)–(A8) hold. Then there exists a unique solution of (2.1).

We defer the proof of Theorem 2.2 to Section 4.
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3. Partial differential equations. In [J2] and [RX] it was shown that
a GRBSDE with deterministic terminal time gives a probabilistic formula
for a viscosity solution to an obstacle problem for a parabolic PDE with
Neumann boundary conditions. Here we will show that a GRBSDE with
random terminal time gives a probabilistic formula for an obstacle problem
for an elliptic PDE with Neumann boundary conditions.

In this section we will assume that D = (a1, b1) × · · · × (ad, bd). Let O
and G be open connected bounded and smooth subsets of Rm such that
G ∩ O 6= ∅ and ∂O ∩G 6= ∅, ∂G ∩ O 6= ∅. Suppose that O = {x; φ(x) > 0},
∂O = {x; φ(x) = 0} for some φ ∈ C2

b (Rm) such that |∇φ(x)| = 1 for x ∈ ∂O.
Let b : Rm → Rm and σ : Rm → Rm×m be such that for some L′ > 0,

and all x, x′ ∈ Rm,

(B1) |b(x)− b(x′)|+ ‖σ(x)− σ(x′)‖ ≤ L′|x− x′|,
and let (Xx, Ax) be a solution of the SDE with reflection

Xx
t = x+

t�

0

b(Xx
s ) ds+

t�

0

σ(Xx
s ) dWs +Axt , t ∈ R+,

where P (Xx ∈ Ō) = 1, Ax is a process with locally finite variation |Ax|,
which increases only if Xx

t ∈ ∂O; Ax0 = 0, X0 = x ∈ O ∩ G ([LS]). Define
τx = inf{t ≥ 0; Xx

t /∈ G}.
Assume that

(B2) functions f : Rm × Rd × Rd×m → Rd, ϕ : Rm × Rd → Rd and
g : ∂G ∩ Ō → D̄ are continuous and there exist constants κ, p ≥ 0,
L > 0, µ ∈ R and β < 0 such that µ+L2 < 0 and for any x ∈ Rm,
y, y′ ∈ Rd, z, z′ ∈ Rd×m,

|g(x)| ≤ κ(1 + |x|p),
〈y − y′, f(x, y, z)− f(x, y′, z)〉 ≤ µ|y − y′|2,
|f(x, y, z)− f(x, y′, z′)| ≤ L(|y − y′|+ ‖z − z′‖),
|f(x, y, 0)| ≤ κ(1 + |y|), |ϕ(x, y)| ≤ κ
|ϕ(x, y)− ϕ(x, y′)| ≤ L|y − y′|,
〈y − y′, ϕ(x, y)− ϕ(x, y′)〉 ≤ β|y − y′|2,

E

τx�

0

|f(Xx
t , ξt, ζt)|2 dt <∞,

where ξ = g(Xx
τx), ξt = E(g(Xx

τx)|Ft), ξ = Eξ +
	∞
0 ζt dWt.

(B3) Eτx <∞.

Let (Y x, Zx,Kx) be a solution of the GRBSDE with data (τx, g(Xx
τx),

F, Φ, |Ax|), where F (t, ω, y, z) = f(Xx
t (ω), y, z), Φ(t, ω, y) = ϕ(Xx

t (ω), y),
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t ∈ R+, ω ∈ Ω, y ∈ Rd, z ∈ Rd×m, i.e.

Y x
t∧τx = g(Xx

τx) +
τx�

t∧τx
f(Xx

θ , Y
x
θ , Z

x
θ ) dθ +

τx�

t∧τx
ϕ(Xx

θ , Y
x
θ ) d|Ax|θ

−
τx�

t∧τx
Zxθ dWθ +Kx

τx −Kx
t∧τx , t ∈ R+.

In this section we assume that µ+L2 < 0. Then assumption (A7) reduces
to E(|Xx

τx |2p + |Ax|τx) < ∞. But note that from [PZ, Proposition 3.2] one
can deduce in particular that for all x ∈ Ō and for any stopping time T such
that E|T | <∞, we have E|Ax|T <∞.

We consider the following problem for a PDE with Neumann boundary
conditions: find u : Ō ∩ Ḡ→ D̄ such that



min
(
ui(x)− ai,max

(
ui(x)− bi,−Lui(x)− fi(x, u(x), (∇uiσ)(x))

))
= 0,

x ∈ O ∩G,

min
(
ui(x)− ai,max

(
ui(x)− bi,−

∂ui
∂n

(x)− ϕi(x, u(x))
))

= 0,

x ∈ ∂O ∩G,
u(x) = g(x), x ∈ ∂G ∩ Ō,

(3.1)

for i = 1, . . . , d, where

Lui(x) =
1
2

∑
1≤j,k≤m

∂2ui
∂xj∂xk

(x)(σσ∗)jk(x) +
∑

1≤j≤m

∂ui
∂xj

(x)bj(x).

Definition 3.1 ([CIL]). (i) u ∈ C(Ō ∩ Ḡ; D̄) is called a viscosity sub-
solution of (3.1) if ui(x) ≤ gi(x), 1 ≤ i ≤ d, x ∈ ∂G ∩ Ō, and moreover for
any ψ ∈ C2(Rm), whenever x ∈ Ō ∩G is a local maximum of ui − ψ, then

(3.2) min
(
ui(x)− ai,max

(
ui(x)− bi,
−Lψ(x)− fi(x, u(x), (∇ψσ)(x))

))
≤ 0

if x ∈ O ∩G, and

min
(
ui(x)− ai,max

(
ui(x)− bi,min

(
−∂ψ
∂n

(x)− ϕi(x, u(x)),

−Lψ(x)− fi(x, u(x), (∇ψσ)(x))
)))

≤ 0, x ∈ ∂O ∩G.

(ii) u ∈ C(Ō ∩ Ḡ; D̄) is called a viscosity supersolution of (3.1) if ui(x) ≥
gi(x), 1 ≤ i ≤ d, x ∈ ∂G ∩ Ō, and moreover for any ψ ∈ C2(Rm), whenever



90 K. Jańczak-Borkowska

x ∈ Ō ∩G is a local minimum of ui − ψ, then

min
(
ui(x)− ai,max

(
ui(x)− bi,−Lψ(x)− fi(x, u(x), (∇ψσ)(x))

))
≥ 0

if x ∈ O ∩G, and

min
(
ui(x)− ai,max

(
ui(x)− bi,max

(
−∂ψ
∂n

(x)− ϕi(x, u(x)),

−Lψ(x)− fi(x, u(x), (∇ψσ)(x))
)))

≥ 0, x ∈ ∂O ∩G.

(iii) u ∈ C(Ō ∩ Ḡ; D̄) is called a viscosity solution of (3.1) if it is both a
viscosity subsolution and supersolution.

Theorem 3.2. Assume (B1)–(B3). The function u defined as u(x) = Y x
0

for x ∈ Ō ∩ Ḡ is a continuous viscosity solution of (3.1).

Proof. Note that the continuity of u follows by the same arguments as in
the proof of Proposition 4.1 in [PZ] upon using the proof of Proposition 4.1
in [P].

Of course, if x ∈ ∂G ∩ Ō, then τx = 0 and u(x) = Y x
0 = g(X0) = g(x).

We will only show that u is a subsolution of (3.1); the proof that it is a
supersolution is similar. Take any 1 ≤ i ≤ d, ψ ∈ C2(Rm) and let x ∈ Ō ∩G
be a local maximum of ui − ψ. Without loss of generality we may assume
that ui(x) = ψ(x).

First, consider the case when x ∈ O ∩ G. Note that if ui(x) = ai or
ui(x) = bi, the inequality (3.2) is obvious. Hence we can assume that ui(x) =
ψ(x) ∈ (ai, bi) and we have to show

−Lψ(x)− fi(x, u(x), (∇ψσ)(x)) ≤ 0.

Suppose for contradiction that Lψ(x) + fi(x, u(x), (∇ψσ)(x)) < 0. From
continuity of ψ and f we can choose α > 0 such that whenever |y − x| ≤ α
then ui(y) ≤ ψ(y), ψ(y) ∈ (ai, bi) and

Lψ(y) + fi(y, u(y), (∇ψσ)(y)) < 0.

Define υ = inf{t > 0; |Xx
t − x| ≥ α} ∧ τx ∧ α and let

(Ȳt, Z̄t, K̄t) = ((Y x
t∧υ)i,1[0,υ](t)(Z

x
t )i, (Kx

t∧υ)i), t ∈ [0, α].

For t ∈ [0, α], the triple (Ȳt, Z̄t, K̄t) satisfies the one-dimensional RBSDE

Ȳt = ui(Xx
υ ) +

α�

t

1[0,υ](θ)fi(X
x
θ , u(Xx

θ ), Z̄θ) dθ −
α�

t

Z̄θ dWθ + K̄α − K̄t.

On the other hand, by the Itô formula, the pair

(Ŷt, Ẑt) = (ψ(Xx
t∧υ),1[0,υ](t)(∇ψσ)(Xx

t )), t ∈ [0, α].
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is a solution of the BSDE

Ŷt = ψ(Xx
υ )−

α�

t

1[0,υ](θ)Lψ(Xx
θ ) dθ −

α�

t

Ẑθ dWθ, t ∈ [0, α].

Since Ŷt ∈ (ai, bi) for t ∈ [0, α], the triple (Ŷ , Ẑ, 0) is a solution of the
above RBSDE. Therefore by the assumption that ui ≤ ψ and the choice of α
and υ, and with the help of Lemma 4.2 below, we deduce that Ȳ0 < Ŷ0, i.e.
ui(x) < ψ(x), which is a contradiction.

Now we consider the case x ∈ ∂O ∩ G. As above we can assume that
ui(x) ∈ (ai, bi). Suppose towards a contradiction that

max
(
∂ψ

∂n
(x) + ϕi(x, u(x)), Lψ(x) + fi(x, u(x), (∇ψσ)(x))

)
< 0.

Let α > 0 be such that whenever |y − x| ≤ α then ui(y) ≤ ψ(y), ψ(y) ∈
(ai, bi) and

max
(
∂ψ

∂n
(y) + ϕi(y, u(y)), Lψ(y) + fi(y, u(y), (∇ψσ)(y))

)
< 0.

Define υ = inf{t ≥ 0; |Xx
t − x| ≥ α} ∧ α ∧ τx and let

(Ȳt, Z̄t, K̄t) = ((Y x
t∧υ)i,1[0,υ](t)(Z

x
t )i, (Kx

t∧υ)i), t ∈ [0, α].

The triple (Ȳt, Z̄t, K̄t) satisfies the one-dimensional GRBSDE

Ȳt = ui(Xx
υ ) +

α�

t

1[0,υ](θ)fi(X
x
θ , u(Xx

θ ), Z̄θ) dθ

+
α�

t

1[0,υ](θ)ϕi(X
x
θ , u(Xx

θ )) d|Ax|θ −
α�

t

Z̄θ dWθ + K̄α − K̄t.

On the other hand, by the Itô formula, the pair

(Ŷt, Ẑt) = (ψ(Xx
t∧υ),1[0,υ](t)(∇ψσ)(Xx

t )), t ∈ [0, α],

satisfies the generalized BSDE

Ŷt = ψ(Xx
υ )−

α�

t

1[0,υ](θ)Lψ(Xx
θ ) dθ −

α�

t

1[0,υ](θ)
∂ψ

∂n
(Xx

θ ) d|Ax|θ

−
α�

t

Ẑθ dWθ, t ∈ [0, α],

and Ŷt ∈ (ai, bi) for t ∈ [0, α]. From ui ≤ ψ and the choice of α and υ,
with the help of Lemma 4.2, we get Ȳ0 < Ŷ0, i.e. ui(x) < ψ(x), which is a
contradiction.
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4. Proof of the main theorem. Before proving Theorem 2.2 we will
show some useful facts.

Proposition 4.1. Let (Y,Z,K) be a solution of (2.1). Suppose that
conditions (A1)–(A4), (A6), (A7) are satisfied. Then for any a ∈ D there
exists a constant C > 0 such that

(a) E
(

sup
t≤τ

eλt|Yt − a|2 +
τ�

0

eλt|Yt − a|2 dΓt +
τ�

0

eλt‖Zt‖2 dt+
τ�

0

eλt d|K|t
)

≤ CE
(
eλτ |ξ − a|2 +

τ�

0

eλt|f(t, a, 0)|2 dt+
τ�

0

eλt|ϕ(t, a)|2 dΛt
)
,

(b) E
(

sup
t≤τ

eλt+νΛt |Yt − a|2 +
τ�

0

eλt+νΛt |Yt − a|2 dΓt +
τ�

0

eλt+νΛt‖Zt‖2 dt
)

≤ CE
(
eλτ+νΛτ |ξ − a|2 +

τ�

0

eλt+νΛt(|f(t, a, 0)|2 dt+ |ϕ(t, a)|2 dΛt)
)
,

where Γt = Λt + t.

Proof. (a) From the Itô formula, for t ∈ R+,

(4.1) eλ(t∧τ)|Yt∧τ − a|2 +
τ�

t∧τ
eλs(λ|Ys − a|2 + ‖Zs‖2) ds

= eλτ |ξ − a|2 + 2
τ�

t∧τ
eλs(Ys − a)f(s, Ys, Zs) ds

+ 2
τ�

t∧τ
eλs(Ys − a)ϕ(s, Ys) dΛs

+ 2
τ�

t∧τ
eλs(Ys − a) dKs − 2

τ�

t∧τ
eλs(Ys − a)Zs dWs.

Using (A1)–(A4) we obtain

2〈y − a, f(t, y, z)〉 ≤ 2µ|y − a|2 + 2L|y − a| ‖z‖+ 2|y − a| |f(t, a, 0)|

≤ (2µ+ L2/ε+ η)|y − a|2 + ε‖z‖2 +
1
η
|f(t, a, 0)|2,

2〈y − a, ϕ(t, y)〉 ≤ 2β|y − a|2 + 2|y − a| |ϕ(t, a)|

≤ β|y − a|2 +
1
|β|
|ϕ(t, a)|2.
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Let ε and η be such that ε̃ = 1 − ε > 0 and λ̃ = λ − (2µ + L2/ε + η) > 0.
With this notation, (4.1) has the form

(4.2) eλ(t∧τ)|Yt∧τ − a|2 +
τ�

t∧τ
eλs(λ̃|Ys − a|2 + ε̃‖Zs‖2) ds

+ |β|
τ�

t∧τ
eλs|Ys − a|2 dΛs

≤ eλτ |ξ − a|2 +
1
η

τ�

t∧τ
eλs|f(s, a, 0)|2 ds+

1
|β|

τ�

t∧τ
eλs|ϕ(s, a)|2 dΛs

+ 2
τ�

t∧τ
eλs(Ys − a) dKs − 2

τ�

t∧τ
eλs(Ys − a)Zs dWs.

Using (2.2) and integrating we get

(4.3) E
(
eλ(t∧τ)|Yt∧τ − a|2 +

τ�

t∧τ
eλs|Ys − a|2 dΓs +

τ�

t∧τ
eλs‖Zs‖2 ds

)
≤ CE

(
eλτ |ξ − a|2 +

τ�

t∧τ
eλs|f(s, a, 0)|2 ds+

τ�

t∧τ
eλs|ϕ(s, a)|2 dΛs

)
.

In order to get an estimate on E supt≤τ eλ(t∧τ)|Yt∧τ −a|2 first note that from
the Burkholder–Davis–Gundy and Schwarz inequalities we have

E sup
t≤τ

∣∣∣ τ�
t∧τ

eλs(Ys − a)Zs dWs

∣∣∣ ≤ 1
4
E sup

t≤τ
eλt|Yt − a|2 + CE

τ�

0

eλt‖Zt‖2 dt.

Therefore using (2.2) and taking supremum in (4.2) we obtain

E sup
t≤τ

eλt|Yt − a|2 ≤ CE
(
eλτ |ξ − a|2 +

τ�

0

eλs|f(s, a, 0)|2 ds

+
τ�

0

eλs|ϕ(s, a)|2 dΛs
)

+
1
2
E sup

t≤τ
eλt|Yt − a|2 + CE

τ�

0

eλs‖Zs‖2 ds.

Hence by (4.3),

E sup
t≤τ

eλt|Yt − a|2 ≤ CE
(
eλτ |ξ − a|2 +

τ�

0

eλs|f(s, a, 0)|2 ds

+
τ�

0

eλs|ϕ(s, a)|2 dΛs
)
.

It is known that for any convex set D, 〈h− a,nh〉 ≤ −dist(a, ∂D), h ∈ ∂D,
a ∈ D \ ∂D, where nh is the normal inward vector at h ∈ ∂D (see e.g. [M]).
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Therefore,
τ�

0

eλs(Ys − a) dKs =
T�

t

eλs(Ys − a)nYs d|K|s ≤ −dist(a, ∂D)
τ�

0

eλs d|K|s

and by (4.2),

E

τ�

0

eλt d|K|t ≤ CE
(
eλτ |ξ − a|2 +

τ�

0

eλt|f(t, a, 0)|2 dt+
τ�

0

eλt|ϕ(t, a)|2 dΛt
)
.

(b) We use integration by parts for eλ(t∧τ)+νΛt∧τ |Yt∧τ − a|2. Similarly
to (a), we have

Eeλ(t∧τ)+νΛt∧τ |Yt∧τ − a|2 + E

τ�

t∧τ
eλs+νΛs(λ|Ys − a|2 + ‖Zs‖2) ds

+ νE

τ�

t∧τ
eλs+νΛs |Ys − a|2 dΛs

≤ Eeλτ+νΛτ |ξ − a|2 + (2µ+ L2/ε+ η)E
τ�

t∧τ
eλs+νΛs |Ys − a|2 ds

+
1
η
E

τ�

t∧τ
eλs+νΛs |f(s, a, 0)|2 ds+ εE

τ�

t∧τ
eλs+νΛs‖Zs‖2 ds

+ βE

τ�

t∧τ
eλs+νΛs |Ys − a|2 dΛs +

1
|β|
E

τ�

t∧τ
eλs+νΛs |ϕ(s, a)|2 dΛs.

Let ε < 1 and η be such that 2µ+ L2/ε+ η < λ. Since ν > β,

E
(
eλ(t∧τ)+νΛt∧τ |Yt∧τ − a|2 +

τ�

t∧τ
eλs+νΛs(|Ys − a|2(ds+ dΛs) + ‖Zs‖2ds)

)
≤ CE

(
eλτ+νΛτ |ξ − a|2 +

τ�

t∧τ
eλs+νΛs(|f(s, a, 0)|2 ds+ |ϕ(s, a)|2 dΛs)

)
.

Again arguing as in (a) we complete the proof.

Remark. The above estimates for supt≤τ eλt|Yt−a|2,
	τ
0 e

λt‖Zt‖2 dt and	τ
0 e

λt|Yt − a|2 dΓt remain true for a ∈ D̄.

Lemma 4.2. Suppose that d = 1. Let f, f ′ and ϕ,ϕ′ satisfy (A1)–(A4).
Let (Y,Z,K), (Y ′, Z ′,K ′) be solutions of the GRBSDEs with random ter-
minal time with data (τ, ξ, f, ϕ), (τ, ξ′, f ′, ϕ′) respectively, where ξ, ξ′ sat-
isfy (A7). If ξ ≤ ξ′, f(t, y, z) ≤ f ′(t, y, z), ϕ(t, y) ≤ ϕ′(t, y), P-a.s., then
Yt ≤ Y ′t , t ∈ R+, P-a.s. Additionally, if P (ξ < ξ′) > 0, f(t, y, z) < f ′(t, y, z)
or ϕ(t, y) < ϕ′(t, y), then Y0 < Y ′0.
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Proof. From the Itô formula

eλt|(Yt∧τ −Y ′t∧τ )+|2 +
τ�

t∧τ
eλs(λ|(Ys∧τ −Y ′s∧τ )+|2 + 1{Ys>Y ′s}|Zs−Z

′
s|2) ds

= eλτ |(ξ − ξ′)+|2 + 2
τ�

t∧τ
eλs(Ys − Y ′s )+(f(s, Ys, Zs)− f ′(s, Y ′s , Z ′s)) ds

+ 2
τ�

t∧τ
eλs(Ys − Y ′s )+(ϕ(s, Ys)− ϕ′(s, Y ′s )) dΛs

+ 2
τ�

t∧τ
eλs(Ys − Y ′s )+d(Ks −K ′s)− 2

τ�

t∧τ
eλs(Ys − Y ′s )+(Zs − Z ′s) dWs

≤ (2µ+ L2/ε)
τ�

t∧τ
eλs|(Ys − Y ′s )+|2 ds+ ε

τ�

t∧τ
eλs1{Ys>Y ′s}|Zs − Z

′
s|2 ds

+ 2β
τ�

t∧τ
1{Ys>Y ′s}|Ys − Y

′
s |2 dΛs − 2

τ�

t∧τ
(Ys − Y ′s )+(Zs − Z ′s) dWs.

Since (
	t
0(Ys − Y ′s )+(Zs − Z ′s) dWs)t∈R+ is a martingale and β < 0, choosing

ε < 1 such that 2µ+ L2/ε < λ we complete the proof.

Proof of Theorem 2.2. First we will show uniqueness for (2.1). Suppose
that (Y,Z,K) and (Y ′, Z ′,K ′) are two solutions of (2.1). By the Itô formula
and arguing as in the proof of Lemma 4.2 we find that

eλ(t∧τ)|Yt∧τ − Y ′t∧τ |2 +
τ�

t∧τ
eλs(λ|Ys − Y ′s |2 + ‖Zs − Z ′s‖2) ds

≤ (2µ+ L2/ε)
τ�

t∧τ
eλs|Ys − Y ′s |2 ds+ ε

τ�

t∧τ
eλs‖Zs − Z ′s‖2 ds

+ 2β
τ�

t∧τ
eλs|Ys − Y ′s |2 dΛs − 2

τ�

t∧τ
eλs(Ys − Y ′s )(Zs − Z ′s) dWs.

Choosing ε < 1 such that 2µ+ L2/ε < λ we obtain

E
(
eλ(t∧τ)|Yt∧τ − Y ′t∧τ |2 +

τ�

t∧τ
eλs‖Zs − Z ′s‖2 ds+

τ�

t∧τ
eλs|Ys − Y ′s |2 dΛs

)
= 0,

which shows the uniqueness.
The proof of existence for (2.1) is divided into two steps. In the first step

we will construct a sequence (YM , ZM ,KM ), M ∈ N, of solutions of some
GRBSDEs and in the second step we will show that this sequence converges
to the solution of (2.1).
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Step 1. For each naturalM we will construct a solution (YM , ZM ,KM )
of a GRBSDE of the form

YM
t = ξ +

M∧τ�

t∧τ
f(s, YM

s , ZMs ) ds+
M∧τ�

t∧τ
ϕ(s, YM

s ) dΛs(4.4)

−
τ�

t∧τ
ZMs dWs +KM

M∧τ −KM
t∧τ , t ∈ R+,

in the following way. Let ξM = E(ξ|FM ) and let Λτ be a stopped process
for the stopping time τ , i.e. Λτt = Λt∧τ . For t ∈ [0,M ] consider

YM
t = ξM +

M�

t

1[0,τ ](s)f(s, YM
s , ZMs ) ds+

M�

t

ϕ(s, YM
s ) dΛτs

−
M�

t

ZMs dWs +KM
M −KM

t .

The terminal value ξM is an FM measurable random variable, the function
1[0,τ(ω)](t)f(t, ω, y, z) is Lipschitz continuous with respect to y and z, and by
(A3), ϕ(t, ω, y) is Lipschitz continuous with respect to y. Therefore by [J2]
there exists a unique solution (YM , ZM ,KM ) of (4.4) on [0,M ]. Note that
on the set {t ≥ τ} we have ξM = ξ and

YM
t = ξ + 0−

M�

t

ZMs dWs +KM
M −KM

t .

Since ξ ∈ D̄, by uniqueness of solution of BSDEs (see [P]) it follows that
KM
M = KM

t = KM
τ . Therefore YM

t = ξ −
	M
t ZMs dWs, and in particular

YM
τ = E(ξ|Fτ ) = ξ. On the other hand, by the Itô formula

E
(
|YM
τ |2 +

M�

τ

‖ZMs ‖2 ds
)

= E|ξ|2.

As a consequence, on the set {t ≥ τ}, YM
t = ξ and ZMt = 0.

For t > M we put YM
t = ξt, Z

M
t = ζt and KM

t = KM
M . Note that these

processes satisfy
YM
t = ξ −

τ�

t

ZMs dWs,

and on the set {t ≥ τ} we have YM
t = ξt = ξ, ZMt = 0.

By Proposition 4.1(a) the processes defined above satisfy

E
(

sup
t≤τ

eλt|YM
t − a|2 +

τ�

0

eλt(|YM
t − a|2 dΓt + ‖ZMt ‖2 dt+ d|KM |t)

)
≤ CE

(
eλτ |ξ − a|2 +

τ�

0

eλt|f(t, a, 0)|2 dt+
τ�

0

eλt|ϕ(t, a)|2 dΛt
)
.
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Since (YM
t , ZMt ,K

M
t ), t ∈ [0,M ], is a unique solution of (4.4), we have

E supt≤M eλt|KM
t |2 <∞ and

	M
0 (YM

t −St) dKM
t ≤ 0 for any F progressively

measurable process S = (St)t∈R+ with values in D̄ (see [J2, Definition 2.1]).
By the equality KM

t = KM
τ on the set {t ≥ τ} we also have
τ�

0

(YM
t − St) dKM

t ≤ 0.

Step 2. We will show that the sequence (YM , ZM ,KM ),M ∈ N, defined
above is a Cauchy sequence for the norm

‖(YM , ZM ,KM )‖2Λ

= E
(

sup
t≤τ

eλt|YM
t |2 +

τ�

0

eλt(|YM
t |2 dΛt + ‖ZMt ‖2 dt) + sup

t≤τ
eλt|KM

t |2
)
.

Take N,M ∈ N, N < M . For t ∈ [N,M ] we have Y N
t = ξ −

	τ
t∧τ Z

N
s dWs

and

YM
t = ξ +

M∧τ�

t∧τ
f(s, YM

s , ZMs ) ds+
M∧τ�

t∧τ
ϕ(s, YM

s ) dΛs

−
τ�

t∧τ
ZMs dWs +KM

M∧τ −KM
t∧τ .

In particular, Y N
M = ξ−

	τ
M∧τ Z

N
s dWs and YM

M = ξ−
	τ
M∧τ Z

M
s dWs. By the

uniqueness of solution of BSDE on the set {M ∧ τ ≤ t ≤ τ} it follows that
Y N
M = E(ξ|FM ) = YM

M and ZNt = ZMt (see [P]). Therefore

YM
t − Y N

t =
M∧τ�

t∧τ
f(s, YM

s , ZMs ) ds+
M∧τ�

t∧τ
ϕ(s, YM

s ) dΛs

−
M∧τ�

t∧τ
(ZMs − ZNs ) dWs +KM

M∧τ −KM
t∧τ .

And by the Itô formula for t ∈ [N,M ],

eλt|YM
t − Y N

t |2 +
M∧τ�

t∧τ
eλs(λ|YM

s − Y N
s |2 + ‖ZMs − ZNs ‖2) ds

= 2
M∧τ�

t∧τ
eλs(YM

s − Y N
s )f(s, YM

s , ZMs ) ds

+ 2
M∧τ�

t∧τ
eλs(YM

s − Y N
s )ϕ(s, YM

s ) dΛs + 2
M∧τ�

t∧τ
eλs(YM

s − Y N
s ) dKM

s

− 2
M∧τ�

t∧τ
eλs(YM

s − Y N
s )(ZMs − ZNs ) dWs.
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Arguing as in the proof of Proposition 4.1 (see (4.2)) we have

(4.5) eλt|YM
t − Y N

t |2 +
M∧τ�

t∧τ
eλs(λ̃|YM

s − Y N
s |2 + ε̃‖ZMs − ZNs ‖2) ds

+ |β|
M∧τ�

t∧τ
eλs|YM

s − Y N
s |2 dΛs

≤ 1
η

M∧τ�

t∧τ
eλs|f(s, Y N

s , ZNs )|2 ds+
1
|β|

M∧τ�

t∧τ
eλs|ϕ(s, Y N

s )|2 dΛs

+ 2
M∧τ�

t∧τ
eλs(YM

s − Y N
s ) dKM

s − 2
M∧τ�

t∧τ
eλs(YM

s − Y N
s )(ZMs − ZNs ) dWs.

Since on the set {s ≥ N} we have Y N
s = ξs, ZNs = ζs, after integrating the

above inequality and by (2.2),

Eeλt|YM
t − Y N

t |2 + E

M∧τ�

t∧τ
eλs(|YM

s − Y N
s |2 dΓs + ‖ZMs − ZNs ‖2 ds)

≤ CE
(M∧τ�
t∧τ

eλs|f(s, ξs, ζs)|2 ds+
M∧τ�

t∧τ
eλs|ϕ(s, ξs)|2 dΛs

)
.

Note that by the Burkholder–Davis–Gundy and Schwarz inequalities,

E sup
N≤t≤M

∣∣∣M∧τ�
t∧τ

eλs(YM
s − Y N

s )(ZMs − ZNs ) dWs

∣∣∣
≤ 1

4
E sup
N≤t≤M

eλt∧τ |YM
t∧τ − Y N

t∧τ |2 + CE

M∧τ�

N∧τ
eλt‖ZMt − ZNt ‖2 dt.

Hence by (4.5),

E sup
N≤t≤M

eλt|YM
t − Y N

t |2 + E

M∧τ�

N∧τ
eλs(|YM

s − Y N
s |2 dΓs + ‖ZMs − ZNs ‖2 ds)

≤ CE
(M∧τ�
N∧τ

eλs|f(s, ξs, ζs)|2 ds+
M∧τ�

N∧τ
eλs|ϕ(s, ξs)|2 dΛs

)
.

It is clear that the right hand side of the above inequality tends to zero as
N →∞. By (4.4) we also get

lim
N→∞

E sup
N≤t≤M

eλt|KM
t −KN

t |2 = lim
N→∞

E sup
N≤t≤M

eλt|KM
t |2 = 0.
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Suppose now that t ≤ N < M . Since

YM
t = YM

N +
N∧τ�

t∧τ
f(s, YM

s , ZMs ) ds+
N∧τ�

t∧τ
ϕ(s, YM

s ) dΛs

−
N∧τ�

t∧τ
ZMs dWs +KM

N −KM
t ,

we have

YM
t − Y N

t = YM
N − Y N

N +
N∧τ�

t∧τ
(f(s, YM

s , ZMs )− f(s, Y N
s , ZNs )) ds

+
N∧τ�

t∧τ
(ϕ(s, YM

s )− ϕ(s, Y N
s )) dΛs

−
N∧τ�

t∧τ
(ZMs − ZNs ) dWs +KM

N −KM
t − (KN

N −KN
t ).

Arguing as in the proof of uniqueness we obtain

E
(
eλ(t∧τ)|YM

t − Y N
t |2 +

N∧τ�

0

eλs‖ZMs − ZNs ‖2 ds
)
≤ Eeλ(N∧τ)|YM

N − Y N
N |2

≤ CE
( τ�

N∧τ
eλs|f(s, ξs, ζs)|2 ds+

τ�

N∧τ
eλs|ϕ(s, ξs)|2 dΛs

)
,

where the second inequality comes from the previous part of the proof (for
t ∈ [N,M ]). It is not difficult to see that E

	τ
N∧τ e

λs(|f(s, ξs, ζs)|2 ds +
|ϕ(s, ξs)|2 dΛs) converges to zero as N →∞. Similarly,

E sup
t≤N

eλt|YM
t − Y N

t |2

≤ CE
( τ�

N∧τ
eλs|f(s, ξs, ζs)|2 ds+

τ�

N∧τ
eλs|ϕ(s, ξs)|2 dΛs

)
,

where the right hand side tends to zero as N →∞. Hence

lim
N→∞

E sup
t≤N

eλt|KM
t −KN

t |2 = 0.

To finish the proof consider the case t > M > N . Since Y N
t = YM

t = ξt,
KN
t = KN

N and KM
t = KM

M , by uniqueness of solution we have ZNt = ZMt .
Hence, for any t ∈ R+, the sequence (YM , ZM ,KM ) defined by (4.4) is

Cauchy for the norm ‖(YM , ZM ,KM )‖Λ, and its limit (Y,Z,K) solves (2.1).
(It satisfies estimates from Proposition 4.1.) Moreover,

	τ
0(Yt − St) dKt ≤ 0

for any F progressively measurable process S = (St)t∈R+ .
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