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Summary. Conditions which imply Morita equivalences of functor categories are de-
scribed. As an application a Dold–Kan type theorem for functors defined on a category
associated to associative algebras with one-side units is proved.

1. Introduction. Let F denote the category whose objects are finite
sets [n] = {0, . . . , n} and whose morphisms are maps f : [n] → [m]. The
category ∆ of finite totally ordered sets is a subcategory of F with the same
object set. The morphisms of∆ are all arrows of F which preserve the natural
order {0 ≤ 1 ≤ · · · ≤ n}. Let S be the subcategory of ∆ consisting of all
order preserving surjections. Its morphisms are compositions of elementary
order preserving surjections si : [n] → [n − 1] such that si(i) = si(i + 1).
Let D be the subcategory of ∆ consisting of all order preserving injections.
Its morphisms are compositions of elementary order preserving injections
di : [n− 1]→ [n] such that i does not belong to the image of di.

We will also consider subcategories F• and F• which have the same
objects as F . The morphisms of F• (resp. F•) are based maps f : [n]→ [m]
such that f(0) = 0, (resp. f(n) = m). Let ∆• = ∆ ∩ F•, ∆• = ∆ ∩ F• and
D• = D∩F•. The maps di : [n−1]→ [n], for i = 0, . . . , n−1, belong to D•.
The categories Sop and D• are isomorphic.

We will prove the following result.
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1.1. Theorem. Let C′ be a category with the same object set as F and
with two subcategories, with the same object sets, S′ and D′, isomorphic to
S and D• respectively. If the relations

s′jd
′
i = d′i−1s

′
j for j < i− 1, s′jd

′
i = d′is

′
j−1 for i < j, s′id

′
i = id

hold in C′, then, for every functor M : (C′)op → Ab and n ≥ 1, there exists
a decomposition

M [n] =
∐

1≤k≤n

∐
s∈S′([n],[k])

⋂
0≤i≤k−1

Ker(M(d′i) : M [k]→M [k − 1]).

If C′ = ∆•, then such a decomposition can be obtained as a consequence
of the Dold–Kan Theorem [1–3] which concerns simplicial abelian groups,
i.e. contravariant functors from the simplicial category ∆ to the category Ab
of abelian groups.

In [5–6] a similar fact is proved for functors defined on the category Γ
of finite based sets. It can be obtained from 1.1 for the category C′ = QD•

described below. It follows from the definition that the categories F• and F•
are isomorphic. Usually Γ = F• but we will consider the category F•. Let
(D•)∗ be the subcategory of F•, with the same objects, whose morphisms
are compositions of the surjections d∗i : [n] → [n − 1], for i = 0, . . . , n − 1,
such that

d∗i (j) = j if j < i, d∗i (j) = j − 1 if i < j, d∗i (i) = n− 1.

Then QD• is the subcategory of F• generated by D• and (D•)∗.

1.2. Proposition. The categories ∆• and QD• satisfy the assumptions
of Theorem 1.1.

A general result which implies decompositions of functors defined on
∆• and QD• is proved in [7]. In this note we will prove that there exists
a category U satisfying the assumptions of 1.1 and such that, for every
category C′ satisfying the assumptions of 1.1, there exists an appropriate
functor U → C′. Hence decompositions for ∆• and QD• can be obtained as
special cases of the decomposition for U . The category U will be defined in
Section 2 as a subcategory of a monoidal category associated to associative
algebras with one-side units (2.4(i)). (The category ∆ can be considered
(2.2(i)) as a subcategory of a monoidal category (PRO) associated to unital
associative algebras.) The category U does not satisfy the assumptions of
the theorems proved in [7]. In Section 3 we will generalize certain results
of that paper which are consequences of Morita equivalences of appropriate
functor categories. Theorem 1.1 will be proved in Section 4, using the results
of Section 3.
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2. Categories associated to algebras with one-side units. Let R
be a commutative ring. If A is an associative R-algebra, then it induces
a monoidal functor A : S → R-Mod, where R-Mod is the category of R-
modules ([4]). For every [n] ∈ S,

A[n] = A⊗R · · · ⊗R A = A⊗n+1,

si(a0 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an.

A coassociative R-coalgebra (C, ρ) induces a functor C : Sop → R-Mod in a
similar way:

sop
i (c0 ⊗ · · · ⊗ cm) = c0 ⊗ · · · ⊗ ci−1 ⊗ ρci ⊗ ci+1 · · · ⊗ cm.

This implies the following fact.

2.1. Proposition. Let S∗ = Sop and let P be the category generated by
S, S∗ and the relations

sjs
∗
i = s∗i−1sj for j < i− 1, sjs

∗
i = s∗i sj−1 for i < j − 1.

If B has the structure of an associative R-algebra and an associative R-co-
algebra, then it induces a functor B on P such that B[n] = B⊗n+1.

The following examples and Proposition 2.4 imply Proposition 1.2.

2.2. Examples. (i) Let A be an R-algebra with unit e. Then the functor
A : S → R-Mod can be extended to a functor ∆→ R-Mod such that

di(a0 ⊗ · · · ⊗ an−1) = a0 ⊗ · · · ⊗ ai−1 ⊗ e⊗ ai · · · ⊗ an.

The unit e give us two R-coalgebra structures ρ1, ρ2 : A→ A⊗RA such that

ρ1(a) = a⊗ e, ρ2(a) = e⊗ a.
There are two functors associated with these coalgebra structures, p′1 : P →
∆• ⊂ ∆ and p′2 : P → ∆• ⊂ ∆, such that

p′1(s
∗
i ) = di+1, p′2(s

∗
i ) = di, p′1(si) = p′2(si) = si.

(ii) QD• is the category with morphisms generated by dj ∈ D• and d∗i
together with the relations

d∗jdi = di−1d
∗
j if j < i, d∗i di = id, d∗jdi = did

∗
j−1 if j > i.

There exists a natural surjection µ : P → QD• such that µ(si) = d∗i and
µ(s∗i ) = di.

Let V be an R-module with a given element e ∈ V and an R-homo-
morphism f : V → R such that f(e) = 1. Let ρ(v) = e ⊗ v and v1.v2 =
f(v1)v2. Then one can define a functor V0 : QD• → R-Mod such that
V = V0µ.

2.3. Definition. (i) P̃ is the category generated by S,D and the rela-
tions

sjdi = di−1sj for j < i− 1, sjdi = disj−1 for i < j.
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(ii) P̃r (resp. P̃l) is the factor category of P̃ associated to the relations

si−1di = id (resp. sidi = id).

(iii) U = (P̃l)• is the subcategory of P̃l generated by S and D•.

The following results are easy to prove.

2.4. Proposition.

(i) If A is an algebra with a right (resp. left) unit then the functor A
can be extended to a functor defined on P̃r (resp. P̃l).

(ii) There exist natural projections P̃ → ∆, P̃r → ∆, P̃l → ∆ and
∆ can be considered as the factor category of P̃ associated to the
relations si−1di = sidi = id.

(iii) There exists a natural projection p : P → U . The functor p′2 : P →
∆• defined in 2.2(i) factorizes through a functor U → ∆•. The factor
category of U associated to the relations si−1di = id is equal to
the ∆•. The natural surjection µ : P → QD• factorizes through a
surjection U → QD•. QD• is isomorphic to the factor category of
U associated to the relations si−1di = di−1si−1.

3. Decompositions of categories and Morita equivalences in
functor categories. Let C be a small category. The category whose mor-
phisms are all identity morphisms (resp. endomorphisms) of C will be denoted
by IdC (resp. EC). The morphism sets of C will be denoted by C(c, c′) and
the morphism set functor by C : Cop ×C → Set. The category of all functors
from C to D will be denoted by (C,D).

We will use R-categories whose morphism sets are R-modules and whose
compositions are R-module homomorphisms. If A is a small category, then
R[A] is an R-category with the same objects as A. The morphisms of R[A]
form free R-modules generated by the morphisms of A. The functor category
(A, R-Mod) is isomorphic to the category of R-functors from R[A] to R-Mod
and will be denoted by R[A]-Mod.

IfM : C → R-Mod andM ′ : Cop → R-Mod thenM ′⊗R[C]M is the coend
of the bifunctorM ′⊗RM . Every R-bifunctor U : R[Cop×C′]→ R-Mod gives
us functors

−⊗R[C′] U : (C′op
, R-Mod)→ (Cop, R-Mod),

HomR[C](U,−) : (Cop, R-Mod)→ (C′op
, R-Mod).

In particular, given an R-functor F : R[C′]→ R[C], we can take UF (c, c′) =
R[C](c, F (c′)) and U ′F (c′, c) = R[C](F (c′), c). In this case we will use the
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following notation:

TC′C = −⊗R[C′]UF = −⊗R[C′] R[C] : R[C′]op-Mod→ R[C]op-Mod,

HC′C = HomR[C′](R[C],−) = HomR[C′](U
′
F ,−) : R[C′]op-Mod→R[C]op-Mod.

3.1. Definition. Let N be the inclusion subcategory of D consisting
of all order preserving injections which are compositions of the injections
dn : [n− 1]→ [n]. We will say that A is an N -category if the morphism sets
of A are finite, and if there exists a functor π : A → N which is an inclusion
on object sets.

The following facts are immediate consequences of the definitions.

3.2. Proposition. Let A or Aop be an N -category. Let C = EA be the
endomorphism category of A.

(i) There exists a canonical projection pA : R[A]→ R[C] of R-categories.
(ii) Assume that A0 consists of all morphisms of A which are not endo-

morphisms. For every functor M : Aop → R-Mod and every functor
N : Cop → R-Mod we have

TAC(M)(x) = M(x)/
∑

a∈A0, a:x→y

ImM(a),

HAC(M)(x) =
⋂

a∈A0, a:y→x

KerM(a),

TCA(N)(x) =
⊕

y∈ObA
N(y)⊗R[C](y,y) R[A](x, y),

HCA(N)(x) =
∏

y∈ObA
HomR[C](y,y)(R[A](y, x), N(y)).

3.3. Definition. Let C, C1, C2, C′ be small categories with the same
object sets such that C1, C2 are subcategories of C′ and C = C1 ∩ C2.

(i) C′ = C1·CC2 if the morphisms of C′ can be represented as compositions
f1f2 of morphisms fi from Ci, uniquely up to morphisms from C. If
x, y ∈ Ob C′, then

C′(x, y) =
( ∐

z∈Ob C
C1(z, y)× C2(x, z)

)
∼

where (f1f, f2) ∼ (f1, ff2) for morphisms fi of Ci and f from C.
(ii) C1 ·C C2 = C1C2 if C = IdC1 = IdC2 .

3.4. Examples. ∆ = DS, ∆• = D•S, QD• = D•(D•)∗.

3.5. Proposition. Let A, B, C, D be small categories with the same
object sets such that A and Bop are N -categories, C = A ∩ B = EA = EB
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and D = A ·C B.
(i) The projection pA : R[A]→ R[C] induces a projection R[D]→ R[B]

which gives an R[Dop]-module structure on R[B].
(ii) The projection pB : R[B]→ R[C] gives an R[D]-module structure on

R[A].
(iii) For every functor M : Dop → R-Mod and every functor N : Cop →

R-Mod, there are natural isomorphisms

TBC(M) = M ⊗R[D] R[A], HAC(M) = HomR[D](R[B],M),

TCB(N) = N ⊗R[A] R[D], HCA(N) = HomR[B](R[D], N).

Proof. The result is a consequence of 3.1–3.3.

Let
u(x, y) : R[B](y, x)⊗R[C](y,y) R[A](x, y)→ R[C](x, x)

be defined by using composition in D and the projection pD = pA ⊗ pB :
R[D]→ R[C]. We will consider the following homomorphisms induced by u:

j(x, y) : R[B](y, x)→ HomR[C](x,x)(R[A](x, y), R[C](x, x)),
j′(x, y) : R[A](x, y)→ HomR[C](x,x)(R[B](y, x), R[C](x, x)).

3.6. Theorem. Suppose that the assumptions of 3.5 are satisfied and
that, for every pair x, y ∈ D, R[A](x, y) is a free R[C](x, x)-module and
j(x, y) and j′(x, y) are isomorphisms. Then the pairs of adjoint functors
TCB, HAC and HCA, TBC define Morita equivalences of categories

(Dop, R-Mod) and (Cop, R-Mod).

Proof. The result is an immediate consequence of the following facts
which can be proved by induction on the cardinality of the object set of D
using the same arguments as in the proof of 1.6 in [7].

(i) The natural transformations Id → HACTCB and TBCHCA → Id
are equivalences of endofunctors defined on (Cop, R-Mod).

(ii) The natural transformations TCBHAC → Id and Id → HCATBC
are equivalences of endofunctors defined on (Dop, R-Mod).

(iii) The composition of the natural transformations TCB → Id →
HCA of functors from (Cop, R-Mod) to (Dop, R-Mod) is a natural
equivalence.

(iv) The composition of natural transformations HAC → Id→ TBC of
functors from (Dop, R-Mod) to (Cop, R-Mod) is a natural equiva-
lence.

4. Proof of Theorem 1.1. It follows from Section 2 that U is the
category generated by S, D• and the relations

sjdi = di−1sj for j < i− 1, sjdi = disj−1 for i < j, sidi = id.
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Let C′ be a category satisfying the assumptions of 1.1. Then one can de-
fine a functor U → C′, and Theorem 1.1 is a consequence of the following
specialization.

4.1. Proposition. For every functorM : Uop → R-Mod, and for n ≥ 1,
there exists a decomposition

M [n] =
∐

1≤k≤n

∐
s∈S([n],[k])

⋂
0≤i≤k−1

Ker(M(di) : M [k]→M [k − 1]).

Proof. Let ti = si−1di : [n]→ [n] for i = 1, . . . , n+1 be a morphism of P̃l.
Let T be the subcategory of P̃l with the same objects and with morphisms
which are compositions of ti. We have t2i = ti and titj = tjti. Let

T • = T ∩ U = T ∩ P̃ •l , D̃• = D•T •, S̃• = T •S.

There exist decompositions
U = D•T •S = D̃• ·T • S̃•.

Let
M0[k] =

⋂
0≤i≤k−1

Ker(M(di) : M [k]→M [k − 1]).

It follows from the definitions that M0 consists of elements annihilated by
D• and that it is a functor defined on R[D̃•]. Using Theorem 3.6 one can
prove that

M = M0 ⊗R[D̃•] R[U ] = M0 ⊗R[T •] R[S̃•] = M0 ⊗R[IdS ] R[S].

We have to check that the composition of the multiplication
R[S̃•]⊗R[T •] R[D̃•]→ R[U ]

with the natural projection R[U ]→ R[T •] induces isomorphisms
R[S̃•](x, y)→ HomR[T •](y,y)(R[D̃•](y, x), R[T •](y, y)),

R[D̃•](x, y)→ HomR[T •](x,x))(R[S̃•](y, x), R[T •](x, x)).

Recall that D̃• = D•T • and S̃• = T •S. Now the composition rules in D̃•

and S̃• and the fact that we have isomorphisms
R[S](x, y)→ HomR(R[D•](y, x), R), R[D•](x, y)→ HomR(R[S](y, x), R)

induced by composition of morphisms in ∆ imply the result.
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