Solution to a Problem of Lubelski and an Improvement of a Theorem of His

 byA. SCHINZEL

In memory of Salomon Lubelski

Summary. The paper consists of two parts, both related to problems of Lubelski, but unrelated otherwise. Theorem 1 enumerates for $a=1,2$ the finitely many positive integers D such that every odd positive integer L that divides $x^{2}+D y^{2}$ for $(x, y)=1$ has the property that either L or $2^{a} L$ is properly represented by $x^{2}+D y^{2}$. Theorem 2 asserts the following property of finite extensions k of \mathbb{Q} : if a polynomial $f \in k[x]$ for almost all prime ideals \mathfrak{p} of k has modulo \mathfrak{p} at least v linear factors, counting multiplicities, then either f is divisible by a product of $v+1$ factors from $k[x] \backslash k$, or f is a product of v linear factors from $k[x]$.
S. Lubelski [4], [5] considered the following problem: given a non-negative integer a, what positive integers D have the following property:
P_{a} : every odd positive integer L that divides $x^{2}+D y^{2}$ for $(x, y)=1$ has the property that either L or $2^{a} L$ is properly represented by $x^{2}+D y^{2}$.

For $a=0$ or $a \geq 3$ Lubelski gave a definite answer (Satz VI in [5]). For $a=1$ or 2 he only gave criteria (Satz II and III in [5], see Lemma 3 below) which enable one to check for any given D whether it has property P_{a}, but from which it is not clear whether the number of suitable D 's is finite or not. We shall prove

Theorem 1. For $a=1$ or 2 an integer $D>0$ has property P_{a} if and only if $D \in S_{a}$, where

$$
\begin{aligned}
& S_{1}=\{1,2,3,4,5,6,7,10,13,22,37,58\} \\
& S_{2}=\{1,2,3,4,7,8,11,12,16,19,28,43,67,163\} .
\end{aligned}
$$

[^0]In another paper Lubelski proved the following (Satz IV in [7): if a polynomial $f \in \mathbb{Z}[x]$ for almost all primes p has modulo p at least v linear factors, then f is divisible by a product of v factors from $\mathbb{Z}[x] \backslash \mathbb{Z}$. We shall improve and extend this theorem as follows.

Theorem 2. Let k be a finite extension of \mathbb{Q}. If a polynomial $f \in k[x]$ for almost all prime ideals \mathfrak{p} of k has modulo \mathfrak{p} at least v linear factors, counting multiplicities, then either f is divisible by a product of $v+1$ factors from $k[x] \backslash k$, or f is a product of v linear factors from $k[x]$.

For $v=1$ we obtain a result of Hasse [3].
The proof of Theorem 1 is based on five lemmas.
Lemma 1 (Weber). In every ideal class of a quadratic field there exists a prime ideal of degree one.

Proof. See [10, §165 and §166].
Lemma 2 (Lubelski). An integer $D>0$ has property P_{0} if and only if $D \in\{1,2,3,4,7\}=S_{1} \cap S_{2}$.

Proof. See [5, Satz I].
Lemma 3. For $a=1$ or 2 an integer $D>0, D \equiv \varepsilon \bmod 2, \varepsilon=0,1$, has property P_{a} if the least odd divisor $Q>1$ of any number $x^{2}+D y^{2}$ for $(x, y)=1$ satisfies

$$
\begin{equation*}
Q=\frac{D+\varepsilon^{2}}{2^{a}} . \tag{1}
\end{equation*}
$$

The condition is also necessary for $a=1, D \neq 1,2,3,4,7$ and $a=2$, $D \neq 1,2,3,4,7,8,16$.

Proof. If (1) holds, then $2^{a} Q$ is properly represented by $x^{2}+D y^{2}$ and D has property P_{a} by Satz III of [5]. Conversely, if D has property P_{a} for $a=1,2$ then either Q or $2^{a} Q$ is properly represented by $x^{2}+D y^{2}$. By Satz II of $\left[5\right.$ in the former case $Q \leq 7$, hence $D \leq 2^{a} \cdot 7$; in the latter case $Q=\left\lfloor\frac{1+D}{2^{a}}\right\rfloor$. The last equality is equivalent to (1), unless $a=2, D \equiv 2-\varepsilon^{2} \bmod 4$. However, then $2^{a} Q=x^{2}+D y^{2}$ implies $x \equiv y \bmod 2$. The remaining assertion for $D \leq 28$ can be checked case by case.

Lemma 4 (Stark). If $-d$ is a fundamental discriminant and the number of ideal classes of $\mathbb{Q}(\sqrt{-d})$ is at most two, then $d \in S$, where

$$
\begin{array}{r}
S=\{3,4,7,8,11,15,19,20,24,35,40,43,51,52,67,88,91,115,123,148, \\
163,187,232,267,403,427\} .
\end{array}
$$

Proof. See 9 .

Lemma 5 (Oesterlé). If $-d$ is a fundamental discriminant and the number of ideal classes of $\mathbb{Q}(\sqrt{-d})$ is three, then $d \in T$, where

$$
T=\{23,31,59,83,107,139,211,293,307,331,499,547,643,883,907\}
$$

Proof. See [7] for a proof that $d \leq 907$. The list is taken from [1, Tables 4 and 5].

Proof of Theorem 1. Sufficiency of the condition follows from Lemma 3. It also follows from that lemma that no $D \in S_{3-a} \backslash S_{a}(a=1$ or 2$)$ has property P_{a}. It remains to show that if $D \notin S_{1} \cup S_{2}$, then D has neither property P_{1} nor P_{2}. If $D=2^{\alpha} \notin S_{1} \cup S_{2}$, then $D \geq 32$. On the other hand, $Q=3$ for α odd and $Q=5$ for α even. Since $5<\left\lfloor\frac{1+32}{4}\right\rfloor$ it follows from Lemma 3 that D has neither property P_{1} nor P_{2}.

If $D \equiv 0 \bmod 4, D \neq 2^{\alpha}$, then $Q=D / 4$ and, by Lemma 3, D does not have property P_{1}. On the other hand, if D has property P_{2}, then $D / 4$ has property P_{0} and, by Lemma $2, D \in S_{1} \cap S_{2}$.

If $D \not \equiv 0 \bmod 4$, then taking in the definition of P_{a} for L the least odd prime factor of D we infer that

$$
\begin{equation*}
D=L \quad \text { or } \quad 2 L \tag{2}
\end{equation*}
$$

hence the discriminant of the field $\mathbb{Q}(\sqrt{-D})$ equals D for $D \equiv 3 \bmod 4$ and $4 D$ otherwise. Put $\omega=(1+\sqrt{-D}) / 2$ for $D \equiv 3 \bmod 4, \omega=\sqrt{-D}$ otherwise. If $D \equiv 3 \bmod 8$, then (2) remains prime in $\mathbb{Q}(\sqrt{-D})$. If $D \equiv 1,2 \bmod 4$, then by Dedekind's theorem, $(2)=\mathfrak{p}^{2}$, where \mathfrak{p} is a prime ideal of $\mathbb{Q}(\sqrt{-D})$. Finally, if $D \equiv 7 \bmod 8$, then $(2)=\mathfrak{p p} \mathfrak{p}^{\prime}$, where \mathfrak{p}^{\prime} is conjugate to \mathfrak{p}.

If $D \notin S_{1} \cup S_{2}$ and $D \not \equiv 0 \bmod 4$, then either d has an odd square factor >1 or $D \in\{15,35,51,91,115,123,187,267,403,427\}$ or $D \in T$ or $\operatorname{disc} \mathbb{Q}(\sqrt{-D}) \notin S \cup T$. The first two cases are excluded by (2), in the third case we find either $D \leq 211, Q \leq 5<(1+D) / 4$, or $D \geq 293, Q \leq 13<$ $(1+D) / 4$, so this case is excluded by Lemma3. In the fourth case by Lemma 4 there are at least four ideal classes in $\mathbb{Q}(\sqrt{-D})$ and, by Lemma 1 , there exists there a prime ideal \mathfrak{q} equivalent neither to (1) nor to \mathfrak{p}^{a} nor to $\mathfrak{p}^{\prime a}$. If q is the norm of \mathfrak{q}, then $\mathfrak{q}=(q, b+c \omega)$, where $b, c \in \mathbb{Z}$ and $(b, c)=1$. If $\omega=\sqrt{-D}$, then $q \mid b^{2}+D c^{2}$, while if $\omega=(1+\sqrt{-D}) / 2$, then $q \mid(2 b+c)^{2}+D c^{2}$ for c odd and $q \mid(b+c / 2)^{2}+D(c / 2)^{2}$ for c even, thus by P_{a} for some integers x, y we have either $q=N(x+y \sqrt{-D})$ or $2^{a} q=N(x+y \sqrt{-D})$. Since q is prime, this gives either $(x+y \sqrt{-D})=\mathfrak{q}$ or \mathfrak{q}^{\prime} or $\mathfrak{p}^{a} \mathfrak{q}$ or $\mathfrak{p}^{a} \mathfrak{q}^{\prime}$ or $\mathfrak{p}^{\prime a} \mathfrak{q}$ or $\mathfrak{p}^{\prime a} \mathfrak{q}^{\prime}$ or $a=2,(x+y \sqrt{D})=(2) \mathfrak{q}$ or $(x+y \sqrt{D})=(2) \mathfrak{q}^{\prime}$. In each case \mathfrak{q} is equivalent to either (1) or \mathfrak{p}^{a} or $\mathfrak{p}^{\prime a}$, contrary to the choice of \mathfrak{q}.

The problem considered by Lubelski in [6], where 2 is replaced by an odd prime p, can be solved by similar methods.

The proof of Theorem 2 is based on
Lemma 6. For a finite permutation group \mathcal{G} with the orbits O_{1}, \ldots, O_{l} let $a_{i \sigma}$ be the number of letters of the orbit O_{i} left invariant by a permutation σ of \mathcal{G}. Then for each $i \leq l$,

$$
\sum_{\sigma \in \mathcal{G}} a_{i \sigma}=|\mathcal{G}| .
$$

Proof. See [2, p. 190].
Proof of Theorem 2. Consider the polynomial

$$
f(x)=c \prod_{i=1}^{l} f_{i}(x)^{e_{i}}
$$

where $c \in k \backslash\{0\}, f_{i}$ are coprime polynomials irreducible over k, and e_{i} are positive integers. Let \mathcal{G} be the Galois group of the polynomial $\prod_{i=1}^{l} f_{i}(x)$ over k. Then \mathcal{G} has l orbits O_{1}, \ldots, O_{l} consisting of the zeros of f_{1}, \ldots, f_{l} respectively. By the Frobenius density theorem for every permutation $\sigma \in \mathcal{G}$ there exist infinitely many prime ideals \mathfrak{p} of k such that f_{i} has exactly $a_{i \sigma}$ linear factors modulo \mathfrak{p}, where $a_{i \sigma}$ is as in Lemma 6. The assumption gives

$$
\begin{equation*}
\sum_{i=1}^{l} e_{i} a_{i \sigma} \geq v \quad \text { for every } \sigma \in \mathcal{G} \tag{3}
\end{equation*}
$$

and unless

$$
\begin{equation*}
v \geq \sum_{i=1}^{l} e_{i} \tag{4}
\end{equation*}
$$

we have the assertion. For σ being the identity (id) we have $a_{i \sigma}=\left|O_{i}\right|$ $(1 \leq i \leq l)$, hence by Lemma 6,

$$
\sum_{\sigma \in \mathcal{G} \backslash\{\mathrm{id}\}} a_{i \sigma}=|\mathcal{G}|-\left|O_{i}\right| \quad(1 \leq i \leq l) .
$$

It follows that
$\sum_{\sigma \in \mathcal{G} \backslash\{\mathrm{id}\}} \sum_{i=1}^{l} e_{i} a_{i \sigma}=\sum_{i=1}^{l} e_{i} \sum_{\sigma \in \mathcal{G} \backslash\{\mathrm{id}\}} a_{i \sigma}=\sum_{i=1}^{l} e_{i}\left(|\mathcal{G}|-\left|O_{i}\right|\right)<\sum_{i=1}^{l} e_{i}(|\mathcal{G}|-1)$,
unless

$$
\begin{equation*}
\left|O_{i}\right|=1 \quad(1 \leq i \leq l) \tag{5}
\end{equation*}
$$

Therefore, unless (5) holds, there exists $\sigma \in \mathcal{G}$ such that $\sum_{i=1}^{l} e_{i} a_{i \sigma}<$ $\sum_{i=1}^{l} e_{i}$, contrary to (3) and (4).

References

[1] Z. I. Borevich and I. R. Shafarevich, Number Theory, 3rd ed., Nauka, Moscow, 1985 (in Russian).
[2] W. Burnside, Theory of Groups of Finite Order, 2nd ed., reprint Dover, 1955.
[3] H. Hasse, Zwei Bemerkungen zu der Arbeit „Zur Arithmetik der Polynome" von U. Wegner in den Mathematischen Annalen, Bd. 105, S. 628-631, Math. Ann. 106 (1932), 455-456.
[4] S. Lubelski, Über die Teiler der Form $x^{2}+D y^{2}$, in: Comptes Rendus du Premier Congrès des Mathématiciens de Pays Slaves, 1930, 233-243.
[5] -, Über die Teiler der Form $x^{2}+D y^{2}$, Prace Mat.-Fiz. 38 (1931), 41-61.
[6] -, Über die Teiler der Form $x^{2}+D y^{2}$, II, ibid. 40 (1932), 69-95.
[7] -, Zur Reduzibilität von Polynomen in der Kongruenztheorie, Acta Arith. 1 (1936), 169-183.
[8] J. Oesterlé, Nombres de classes des corps quadratiqes imaginaires, Astérisque 121122 (1985), 309-323.
[9] H. M. Stark, On complex quadratic fields with class number two, Math. Comp. 29 (1975), 289-302.
[10] H. Weber, Lehrbuch der Algebra, Bd. III, reprint Chelsea, 1961.
A. Schinzel

Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-956 Warszawa, Poland
E-mail: schinzel@impan.pl

[^0]: 2010 Mathematics Subject Classification: Primary 11E16, 11R09.
 Key words and phrases: binary quadratic form, polynomial modulo a prime ideal.

