NUMBER THEORY

Solution to a Problem of Lubelski and an Improvement of a Theorem of His

by

A. SCHINZEL

In memory of Salomon Lubelski

Summary. The paper consists of two parts, both related to problems of Lubelski, but unrelated otherwise. Theorem 1 enumerates for a = 1, 2 the finitely many positive integers D such that every odd positive integer L that divides $x^2 + Dy^2$ for (x, y) = 1 has the property that either L or $2^a L$ is properly represented by $x^2 + Dy^2$. Theorem 2 asserts the following property of finite extensions k of \mathbb{Q} : if a polynomial $f \in k[x]$ for almost all prime ideals \mathfrak{p} of k has modulo \mathfrak{p} at least v linear factors, counting multiplicities, then either f is divisible by a product of v + 1 factors from $k[x] \setminus k$, or f is a product of v linear factors from k[x].

S. Lubelski [4], [5] considered the following problem: given a non-negative integer a, what positive integers D have the following property:

 P_a : every odd positive integer L that divides $x^2 + Dy^2$ for (x, y) = 1has the property that either L or $2^a L$ is properly represented by $x^2 + Dy^2$.

For a = 0 or $a \ge 3$ Lubelski gave a definite answer (Satz VI in [5]). For a = 1 or 2 he only gave criteria (Satz II and III in [5], see Lemma 3 below) which enable one to check for any given D whether it has property P_a , but from which it is not clear whether the number of suitable D's is finite or not. We shall prove

THEOREM 1. For a = 1 or 2 an integer D > 0 has property P_a if and only if $D \in S_a$, where

$$\begin{split} S_1 &= \{1, 2, 3, 4, 5, 6, 7, 10, 13, 22, 37, 58\}, \\ S_2 &= \{1, 2, 3, 4, 7, 8, 11, 12, 16, 19, 28, 43, 67, 163\}. \end{split}$$

²⁰¹⁰ Mathematics Subject Classification: Primary 11E16, 11R09.

Key words and phrases: binary quadratic form, polynomial modulo a prime ideal.

In another paper Lubelski proved the following (Satz IV in [7]): if a polynomial $f \in \mathbb{Z}[x]$ for almost all primes p has modulo p at least v linear factors, then f is divisible by a product of v factors from $\mathbb{Z}[x] \setminus \mathbb{Z}$. We shall improve and extend this theorem as follows.

THEOREM 2. Let k be a finite extension of \mathbb{Q} . If a polynomial $f \in k[x]$ for almost all prime ideals \mathfrak{p} of k has modulo \mathfrak{p} at least v linear factors, counting multiplicities, then either f is divisible by a product of v + 1 factors from $k[x] \setminus k$, or f is a product of v linear factors from k[x].

For v = 1 we obtain a result of Hasse [3].

The proof of Theorem 1 is based on five lemmas.

LEMMA 1 (Weber). In every ideal class of a quadratic field there exists a prime ideal of degree one.

Proof. See $[10, \S165 \text{ and } \S166]$.

LEMMA 2 (Lubelski). An integer D > 0 has property P_0 if and only if $D \in \{1, 2, 3, 4, 7\} = S_1 \cap S_2$.

Proof. See [5, Satz I].

LEMMA 3. For a = 1 or 2 an integer D > 0, $D \equiv \varepsilon \mod 2$, $\varepsilon = 0, 1$, has property P_a if the least odd divisor Q > 1 of any number $x^2 + Dy^2$ for (x, y) = 1 satisfies

(1)
$$Q = \frac{D + \varepsilon^2}{2^a}.$$

The condition is also necessary for a = 1, $D \neq 1, 2, 3, 4, 7$ and a = 2, $D \neq 1, 2, 3, 4, 7, 8, 16$.

Proof. If (1) holds, then 2^aQ is properly represented by $x^2 + Dy^2$ and D has property P_a by Satz III of [5]. Conversely, if D has property P_a for a = 1, 2 then either Q or 2^aQ is properly represented by $x^2 + Dy^2$. By Satz II of [5] in the former case $Q \leq 7$, hence $D \leq 2^a \cdot 7$; in the latter case $Q = \lfloor \frac{1+D}{2^a} \rfloor$. The last equality is equivalent to (1), unless a = 2, $D \equiv 2 - \varepsilon^2 \mod 4$. However, then $2^aQ = x^2 + Dy^2$ implies $x \equiv y \mod 2$. The remaining assertion for $D \leq 28$ can be checked case by case.

LEMMA 4 (Stark). If -d is a fundamental discriminant and the number of ideal classes of $\mathbb{Q}(\sqrt{-d})$ is at most two, then $d \in S$, where

 $S = \{3, 4, 7, 8, 11, 15, 19, 20, 24, 35, 40, 43, 51, 52, 67, 88, 91, 115, 123, 148, \\163, 187, 232, 267, 403, 427\}.$

Proof. See [9].

LEMMA 5 (Oesterlé). If -d is a fundamental discriminant and the number of ideal classes of $\mathbb{Q}(\sqrt{-d})$ is three, then $d \in T$, where

 $T = \{23, 31, 59, 83, 107, 139, 211, 293, 307, 331, 499, 547, 643, 883, 907\}.$

Proof. See [7] for a proof that $d \leq 907$. The list is taken from [1, Tables 4 and 5].

Proof of Theorem 1. Sufficiency of the condition follows from Lemma 3. It also follows from that lemma that no $D \in S_{3-a} \setminus S_a$ (a = 1 or 2) has property P_a . It remains to show that if $D \notin S_1 \cup S_2$, then D has neither property P_1 nor P_2 . If $D = 2^{\alpha} \notin S_1 \cup S_2$, then $D \ge 32$. On the other hand, Q = 3 for α odd and Q = 5 for α even. Since $5 < \lfloor \frac{1+32}{4} \rfloor$ it follows from Lemma 3 that D has neither property P_1 nor P_2 .

If $D \equiv 0 \mod 4$, $D \neq 2^{\alpha}$, then Q = D/4 and, by Lemma 3, D does not have property P_1 . On the other hand, if D has property P_2 , then D/4 has property P_0 and, by Lemma 2, $D \in S_1 \cap S_2$.

If $D \not\equiv 0 \mod 4$, then taking in the definition of P_a for L the least odd prime factor of D we infer that

$$D = L \quad \text{or} \quad 2L,$$

hence the discriminant of the field $\mathbb{Q}(\sqrt{-D})$ equals D for $D \equiv 3 \mod 4$ and 4D otherwise. Put $\omega = (1 + \sqrt{-D})/2$ for $D \equiv 3 \mod 4$, $\omega = \sqrt{-D}$ otherwise. If $D \equiv 3 \mod 8$, then (2) remains prime in $\mathbb{Q}(\sqrt{-D})$. If $D \equiv 1, 2 \mod 4$, then by Dedekind's theorem, $(2) = \mathfrak{p}^2$, where \mathfrak{p} is a prime ideal of $\mathbb{Q}(\sqrt{-D})$. Finally, if $D \equiv 7 \mod 8$, then $(2) = \mathfrak{p}\mathfrak{p}'$, where \mathfrak{p}' is conjugate to \mathfrak{p} .

If $D \notin S_1 \cup S_2$ and $D \not\equiv 0 \mod 4$, then either d has an odd square factor > 1 or $D \in \{15, 35, 51, 91, 115, 123, 187, 267, 403, 427\}$ or $D \in T$ or disc $\mathbb{Q}(\sqrt{-D}) \notin S \cup T$. The first two cases are excluded by (2), in the third case we find either $D \leq 211$, $Q \leq 5 < (1 + D)/4$, or $D \geq 293$, $Q \leq 13 < (1+D)/4$, so this case is excluded by Lemma 3. In the fourth case by Lemma 4 there are at least four ideal classes in $\mathbb{Q}(\sqrt{-D})$ and, by Lemma 1, there exists there a prime ideal \mathfrak{q} equivalent neither to (1) nor to \mathfrak{p}^a nor to \mathfrak{p}'^a . If q is the norm of \mathfrak{q} , then $\mathfrak{q} = (q, b + c\omega)$, where $b, c \in \mathbb{Z}$ and (b, c) = 1. If $\omega = \sqrt{-D}$, then $q \mid b^2 + Dc^2$, while if $\omega = (1 + \sqrt{-D})/2$, then $q \mid (2b + c)^2 + Dc^2$ for codd and $q \mid (b + c/2)^2 + D(c/2)^2$ for c even, thus by P_a for some integers x, ywe have either $q = N(x + y\sqrt{-D})$ or $2^a q = N(x + y\sqrt{-D})$. Since q is prime, this gives either $(x + y\sqrt{-D}) = \mathfrak{q}$ or \mathfrak{q}' or $\mathfrak{p}^a \mathfrak{q}$ or $\mathfrak{p}'^a \mathfrak{q}$ or $\mathfrak{p}'^a \mathfrak{q}'$ or $a = 2, (x + y\sqrt{D}) = (2)\mathfrak{q}$ or $(x + y\sqrt{D}) = (2)\mathfrak{q}'$. In each case \mathfrak{q} is equivalent to either (1) or \mathfrak{p}^a or \mathfrak{p}'^a , contrary to the choice of \mathfrak{q} .

The problem considered by Lubelski in [6], where 2 is replaced by an odd prime p, can be solved by similar methods.

The proof of Theorem 2 is based on

LEMMA 6. For a finite permutation group \mathcal{G} with the orbits O_1, \ldots, O_l let $a_{i\sigma}$ be the number of letters of the orbit O_i left invariant by a permutation σ of \mathcal{G} . Then for each $i \leq l$,

$$\sum_{\sigma \in \mathcal{G}} a_{i\sigma} = |\mathcal{G}|.$$

Proof. See [2, p. 190].

Proof of Theorem 2. Consider the polynomial

$$f(x) = c \prod_{i=1}^{l} f_i(x)^{e_i},$$

where $c \in k \setminus \{0\}$, f_i are coprime polynomials irreducible over k, and e_i are positive integers. Let \mathcal{G} be the Galois group of the polynomial $\prod_{i=1}^{l} f_i(x)$ over k. Then \mathcal{G} has l orbits O_1, \ldots, O_l consisting of the zeros of f_1, \ldots, f_l respectively. By the Frobenius density theorem for every permutation $\sigma \in \mathcal{G}$ there exist infinitely many prime ideals \mathfrak{p} of k such that f_i has exactly $a_{i\sigma}$ linear factors modulo \mathfrak{p} , where $a_{i\sigma}$ is as in Lemma 6. The assumption gives

(3)
$$\sum_{i=1}^{l} e_{i}a_{i\sigma} \ge v \quad \text{for every } \sigma \in \mathcal{G}$$

and unless

(4)
$$v \ge \sum_{i=1}^{l} e_i$$

we have the assertion. For σ being the identity (id) we have $a_{i\sigma} = |O_i|$ ($1 \le i \le l$), hence by Lemma 6,

$$\sum_{\sigma \in \mathcal{G} \setminus \{ \text{id} \}} a_{i\sigma} = |\mathcal{G}| - |O_i| \quad (1 \le i \le l).$$

It follows that

$$\sum_{\sigma \in \mathcal{G} \setminus \{\mathrm{id}\}} \sum_{i=1}^{l} e_i a_{i\sigma} = \sum_{i=1}^{l} e_i \sum_{\sigma \in \mathcal{G} \setminus \{\mathrm{id}\}} a_{i\sigma} = \sum_{i=1}^{l} e_i \left(|\mathcal{G}| - |O_i| \right) < \sum_{i=1}^{l} e_i \left(|\mathcal{G}| - 1 \right),$$

unless

(5)
$$|O_i| = 1 \quad (1 \le i \le l).$$

Therefore, unless (5) holds, there exists $\sigma \in \mathcal{G}$ such that $\sum_{i=1}^{l} e_i a_{i\sigma} < \sum_{i=1}^{l} e_i$, contrary to (3) and (4).

References

- Z. I. Borevich and I. R. Shafarevich, *Number Theory*, 3rd ed., Nauka, Moscow, 1985 (in Russian).
- [2] W. Burnside, Theory of Groups of Finite Order, 2nd ed., reprint Dover, 1955.
- [3] H. Hasse, Zwei Bemerkungen zu der Arbeit "Zur Arithmetik der Polynome" von U. Wegner in den Mathematischen Annalen, Bd. 105, S. 628–631, Math. Ann. 106 (1932), 455–456.
- [4] S. Lubelski, Über die Teiler der Form $x^2 + Dy^2$, in: Comptes Rendus du Premier Congrès des Mathématiciens de Pays Slaves, 1930, 233–243.
- [5] —, Über die Teiler der Form $x^2 + Dy^2$, Prace Mat.-Fiz. 38 (1931), 41–61.
- [6] —, Über die Teiler der Form $x^2 + Dy^2$, II, ibid. 40 (1932), 69–95.
- [7] —, Zur Reduzibilität von Polynomen in der Kongruenztheorie, Acta Arith. 1 (1936), 169–183.
- [8] J. Oesterlé, Nombres de classes des corps quadratiqes imaginaires, Astérisque 121– 122 (1985), 309–323.
- [9] H. M. Stark, On complex quadratic fields with class number two, Math. Comp. 29 (1975), 289–302.
- [10] H. Weber, Lehrbuch der Algebra, Bd. III, reprint Chelsea, 1961.

A. Schinzel Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-956 Warszawa, Poland E-mail: schinzel@impan.pl

Received March 28, 2011

(7822)