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Summary. CEP stands for the compact extension property. We characterize nonlocally
convex complete metric linear spaces with convex-hereditary CEP.

1. Introduction. Let E = (E, | · |) stand for a real metric linear space
(m.l.s.), whose metric d is determined by an F -norm | · | satisfying

|x+ y| ≤ |x|+ |y| and |tx| ≤ |x|
for x, y ∈ E and |t| ≤ 1. If, additionally, E is nonlocally convex, then we
cannot assume that either the F -norm | · | is homogeneous, or the balls
{x ∈ E | |x| < ε} are convex; furthermore, such a space must be infinite-
dimensional. A m.l.s. E is referred to as an F -space if the norm | · | is
complete.

Let K be a convex subset of E. Recall that K has the compact extension
property (CEP) if every mapping from a closed subset of the Hilbert cube
to K extends over the whole cube. K has the compact extension property
if and only if, for every compact subset A of K, the inclusion mapping of
A→ K can be uniformly approximated by mappings with finite-dimensional
(equivalently, finite-dimensional convex) ranges (see [Do] and [vBvM]). The
latter property is called Klee-admissibility (cf. [K1] and [K2]). If K is com-
pact, then CEP becomes the classical absolute retract property (AR). It is
known that a compact K with CEP is homeomorphic to either a finite-
dimensional cube, or the Hilbert cube [DT]. For that reason, the following
long-standing problem is of great importance:

Problem. Does every compact K have CEP?
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This problem is also open when the compactness assumption on K is
dropped (in particular, when K is a linear subspace of E). Perhaps the
pathology goes to the extreme and every nonlocally convex F -space con-
tains a convex subset K without CEP. Specifically, it is very intriguing
whether every infinite-dimensional linear subspace of the classical F -space `p,
0 < p < 1, has CEP. Let us ask:

Question 1.1. Is there a nonlocally convex F -space all of whose convex
subsets (or all linear subspaces) have CEP?

The property required in Question 1.1 will be referred to as convex-
hereditary CEP. Recall that, in [DvM], a m.l.s. all of whose convex subsets are
AR’s has been called a convex-hereditary AR. No nonlocally convex F -space
which is a convex-hereditary AR is known either. Also it is unknown whether
CEP and the absolute retract property coincide for F -spaces. However, there
exist m.l.s. that have CEP but are not AR’s (see [vBvM] and [DK]); those
spaces are incomplete and have a complex Borel structure. Clearly, the notion
of convex-hereditary CEP can be formally extended from F -spaces to convex
sets in m.l.s. The aim of this note is to characterize convex sets that have
convex-hereditary CEP.

Independently, Le Hoang Tri and Nguyen Hoang Thanh have publicized
similar work in [TT].

2. Properties. In addition to CEP, we will also consider the follow-
ing fixed-point properties. We say that a convex set K has the compact
fixed-point property (CFPP) if every compact mapping K → K has a fixed
point. Here, and everywhere in the paper, f : X → Y is compact if the
closure of f(X) is a compact subset of Y . If K is compact, CFPP becomes
the classical fixed-point property (FPP). In [Ca3], Cauty claims that every K
has CFPP; however, his previous proof of this claim [Ca2] contains a fatal
error: see [DS].

Notation. Let E = (E, | · |) be a m.l.s. and W be a convex subset of E.
For A ⊂ E and x ∈ E, let d(A, x) = inf{|a − x| | a ∈ A}. Following the
notation in [KPR], for B ⊂ E, we write

D(A,B) = sup{d(A, x) | x ∈ B}.

Note that, for ε > 0, we have D(A,B) ≤ ε if and only if, for every x ∈ B and
every δ > 0, there exists a ∈ A such that |a− x| ≤ ε+ δ. (So, the Hausdorff
metric is H(A,B) = max{D(A,B), D(B,A)}.)

The properties introduced below describe intrinsically the convex set W ;
the case of W = E is our main interest.
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2.1. Properties related to CEP and CFPP

Property 1. There exist an ε > 0, a sequence {Kn} of convex subsets
of W , and a sequence {fn} of mappings, fn : Kn → E, satisfying

(i) limD(Kn, fn(Kn)) = 0;
(ii)

⋃
fn(Kn) is totally bounded; and

(iii) |fn(x)− x| ≥ ε for every x ∈ Kn and n ∈ N.

Property 2. There exist an ε > 0, a sequence {K ′n} of convex subsets
of W , and a sequence {A′n} of subsets of E satisfying

(i′) limD(K ′n, A
′
n) = 0;

(ii′)
⋃
A′n is totally bounded; and

(iii′) for every n ∈ N and every mapping g : A′n → K ′n there exists
x ∈ A′n with |g(x)− x| ≥ ε.

The following example shows that conditions (i) and (iii) do not contra-
dict each other in the nonlocally convex case (see [TT]).

Example 2.1. In every `p space, 0 < p ≤ 1/2, there exists a sequence of
mappings {fn}, fn : ∆n → `p, such that

(i) limD(∆n, fn(∆n)) = 0; and
(ii) |fn(x)− x|p ≥ 1 for every x ∈ ∆n and n ∈ N.

Here, ∆n is the standard simplex spanned by the unit vectors e1, . . . , en, that
is, ∆n = conv({e1, . . . , en}) ⊂ `p.

Proof. Let xn = n−1/p(e1 + · · · + en). Define fn(x) = x + xn, x ∈ ∆n.
Since |xn|p = 1, we have |fn(x)− x|p = 1 for every x ∈ ∆n.

Let x =
∑n

i=1 tiei, where 0 ≤ ti ≤ 1, tn ≤ tn−1 ≤ · · · ≤ t1, and∑n
i=1 ti = 1. Hence t1 ≥ 1/n. Thus x + xn =

∑n
i=1(ti + 1/n1/p)ei. Let

x′ =
(
1 −

∑n
i=2(ti + 1/n1/p)

)
e1 +

∑n
i=2(ti + 1/n1/p)ei. Then x′ ∈ ∆n since∑n

i=2(ti +1/n1/p) = 1− t1 +(n−1)/n1/p ≤ 1+(n−1)/n1/p−1/n ≤ 1. Now
|fn(x)−x′|p = |x+xn−x′|p = |(1/n1/p +(n−1)/n1/p, 0, 0, 0, . . . )|p = np/n.
Finally, limn→∞ n

p/n = 0.

It seems likely that a similar argument will work for every `p with 1/2 <
p < 1.

Remark 1. Example 2.1 satisfies items (i) and (iii) of Property 1 for
W = `p (or for the convex set W =

⋃
∆n). Yet, item (ii) is not satis-

fied. Namely, the sequence {xn} is discrete, and consequently the sequence
{e1 + xn} ⊂

⋃
fn(∆n) has no convergent subsequence.

Question 2.2. Is there 0 < p < 1 such that `p has Property 1 (or
Property 2)?



218 T. Dobrowolski

Later, we will show that if such a p existed then the space `p could not
serve as an example required in Question 1.1; see item (1) of the “Dichotomy”
Statement below.

2.2. Properties related to AR and FPP for compacta

Property 1′. There exist an ε > 0, a sequence {Kn} of convex subsets
of W , and a sequence of mappings {fn}, fn : Kn → E, satisfying

(i) limD(Kn, fn(Kn)) = 0;
(ii)

⋃
Kn is totally bounded; and

(iii) |fn(x)− x| ≥ ε for every x ∈ Kn and n ∈ N.

Property 2′. There exist a sequence {K ′n} of convex subsets of W and
a sequence {A′n} of subsets of E satisfying

(i′) limD(K ′n, A
′
n) = 0;

(ii′)
⋃
K ′n is totally bounded; and

(iii′) for every n ∈ N and every mapping g : A′n → K ′n there exists
x ∈ A′n with |g(x)− x| ≥ ε.

Remark 2. For every convex set W , we have

(1) Property 1′ ⇒ Property 1 ⇒ Property 2; and
(2) Property 1′ ⇒ Property 2′ ⇒ Property 2.

Proof. We show only the implication Property 1 ⇒ Property 2. (The
other implications can be proved in a similar way.) We will follow the
argument of [KPR, p. 218]. Assume Property 1. Using the fact that f(Kn)
is totally bounded, pick a finite set Dn ⊂ Kn with D(Kn, fn(Kn)) <
D(Dn, fn(Kn)) + 1/n. Define K ′n = conv(Dn). Set A′n = fn(K ′n). Note that⋃
A′n is totally bounded since A′n ⊂ fn(Kn). Let g : A′n → K ′n be a mapping.

Then, by the Brouwer Fixed-Point Theorem, g ◦fn|K ′n has a fixed point, say
k ∈ K ′n. It follows that |g(x) − x| ≥ ε for x = fn(k) ∈ A′n. So, Property 2
holds.

Remark 3. Properties 1, 1′, 2, and 2′ do not depend on the choice of
an F -norm on E.

3. Characterizing convex sets via properties

Theorem 3.1. Let E = (E, | · |) stand for a m.l.s. and W for a convex
subset of E. Every convex (resp., convex compact) subset of the convex set
W without Property 1 (resp., without Property 1′) has CFPP (resp., FPP).

Proof. Suppose there exist a convex subset K of W , an ε > 0, and a
compact mapping f : K → K such that |f(x) − x| ≥ ε for all x ∈ K (and
some F -norm | · |). Pick a 1/n-net Nn in f(K) and let Kn = conv(Nn).
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Then
⋃
f(Kn) is totally bounded and limD(Kn, f(Kn)) = 0. Hence, letting

fn = f |Kn, Property 1 follows, a contradiction.
If a compact convex set K fails FPP then, taking f as above and letting

Kn = K and fn = f , Property 1′ will hold, a contradiction.

Theorem 3.2. Let E be an F -space and W a closed convex subset of E.

1. W has Property 2 if and only if it contains a convex subset K without
CEP.

2. W has Property 2′ if and only if it contains a compact convex subset
K which is not an AR.

Moreover, if {K ′n} is as required in Property 2 (resp., Property 2′), then

K = LimK ′n(k)

for a certain sequence n(1) < n(2) < · · · ; here, LimK ′n(k) stands for the
metric limit of the sequence {K ′n(k)} (see below).

Metric limits. For a sequence of sets {Bn} in a metric space (M,ρ), we
use Kuratowski’s notation [Ku] of LiBn, LsBn, and LimBn for the standard
set-topology metric limits. The lower and upper metric limits are

LiBn = {p ∈M | p = lim bn, bn ∈ Bn},
LsBn = {p = lim bn(k) | bn(k) ∈ Bn(k), n(1) < n(2) < · · · },

respectively. In case LiBn = LsBn, the metric limit is

LimBn = LiBn = LsBn.

For general properties of those limits, see [Ku]. Let us list some:

(1) The limits are closed subsets of M and LiBn ⊂ LsBn.
(2) The limits are compact if

⋃
Bn is totally bounded and (M,ρ) is com-

plete.
(3) If M is separable then, for some subsequence n(1) < n(2) < · · · ,

LimBn(k) exists (the generalized Bolzano–Weierstrass theorem).
(4) If each Bn is convex (resp., a linear space) then the limits LiBn and

LimBn are convex (resp., linear spaces).

Proof of Theorem 3.2. We will only prove item (1); the proof of (2) is
similar.
⇒ Since

⋃
A′n is totally bounded, we can replace the original sets K ′n

by their convex subsets so that their union is separable. So, we can assume
that E is separable. Hence, for some increasing sequence (n(k)),

A0 = LimA′n(k) and K = LimK ′n(k)

exist. It follows that A0 is a nonempty compactum,K is convex, closed inW ,
and A0 ⊂ K, and A0 is a subset of A = cl(

⋃
A′n). Note that A is compact.
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We will show that K does not have CEP. Heading for a contradiction,
assume K has CEP. Then the inclusion mapping A ∩ K → K extends to
a mapping r : A → K. By the uniform continuity of r, for some δ > 0, if
x ∈ A and d(x,K) < δ then |r(x) − x| < 1/4. Since A0 ⊂ K, there exists
n0 ∈ N such that D(K,A′k(n)) < δ for every n ≥ n0. The Klee-admissibility
of K (see Introduction) implies that r can be approximated by mappings
into finite-dimensional subcompacta of K. Therefore, we may assume that
the range of r is a finite-dimensional subcompactum B of K. The following
claim yields a desired contradiction:

Claim. For every η > 0, there exists m0 ∈ N such that for every n ≥ m0

there exists a mapping ε : B → K ′k(n) such that |ε(x)−x| < 2η for all x ∈ B.

Pick n ∈ N with n > max(n0,m0), where m0 is chosen for η = 1/8. For
x ∈ A′k(n), |ε ◦ r(x)−x| ≤ |ε(r(x))− r(x)|+ |r(x)−x| < 1/4+1/4 < 1. This
violates item (iii′) of Property 2 applied to g = ε ◦ r : A′k(n) → K ′k(n).

It remains to justify the Claim. Let p = dim(B). Choose m0 so that
D(K ′k(n), B) ≤ η/2(p+1) for n ≥ m0. Now, for every b ∈ B, pick k(b) ∈ K ′k(n)

such that |b − k(b)| < η/(p + 1). Inscribe an open cover U = {U1, . . . , Ul}
of order p + 1 in the cover of B by the balls centered at b ∈ B of radius
η/(p + 1). Hence, each Uj is contained in a ball centered at bj ∈ B of
radius η/(p + 1). Let {λj}lj=1 be a partition subordinated to U and set
ε(x) =

∑l
j=1 λj(x)k(bj).

⇐ By our assumption, there exists a convex set K ⊂ W and a com-
pactum A ⊂ K such that the identity on A cannot be approximated by
mappings into finite-dimensional convex subsets of K. Let Nn be a finite
1/n-net in A. Set K ′n = conv(Nn) and A′n = A. Then limD(K ′n, A

′
n) = 0.

If there are n0 ∈ N and δ > 0 such that, for every n ≥ n0 and every map-
ping g : A → K ′n, we have |g(x) − x| ≥ δ for some x = x(n, g) ∈ A, then
Property 2 holds. Otherwise, for some sequence k(1) < k(2) < · · · , there are
mappings gk(n) : A→ K ′k(n) with lim[sup{|gk(n)(x)− x| | x ∈ A}] = 0. This
contradicts the initial statement.

“Dichotomy” Statement. Let E be an F -space.

(1) If Property 2 holds, then E contains a convex subset without CEP.
(2) If Property 2 fails, then every convex subset of E has CFPP.
(3) If Property 2′ holds, then E contains a non-AR compact convex sub-

set.
(4) If Property 2′ fails, then every compact convex subset of E has FPP.

Obviously, in the above statement, E can be replaced by a closed convex
subset W of E.
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Corollary 3.3. Property 2′ (also Property 1′) fails in each F -space E
with a separating sequence of continuous linear functionals (e.g., in each `p,
0 < p < 1).

Proof. Every convex compactum in such an E is an absolute retract (a
so-called Keller cube, see [BP, p. 98] or [BD]).

Example 2.1 shows that in `p, 0 < p < 1/2, there are sequences that
satisfy conditions (i) and (iii) of Property 1′ (resp., conditions (i′) and (iii′) of
Property 2′). However, it is not possible that these sequences meet condition
(ii) because all convex compacta in `p are absolute retracts.

4. Remarks. Possibly all nonlocally convex F -spaces have Property 2
because no example of an F -space all of whose convex subsets are absolute
retracts is known.

Remark 4. The implication Property 2′ ⇒ Property 2 in Remark 2
cannot be reversed. According to [DK] there exists an F -space C̃ without
CEP and whose convex compacta are absolute retracts. (The space C̃ is a
refined version of the famous space C constructed by Cauty [Ca1].)

It is likely that no other implications in Remark 2 can be reversed either.

Question 4.1. Does C (or C̃) have Property 1?

Obviously, C̃ fails Property 1′ because it fails Property 2′.

Remark 5. If, in Properties 1, 2, 1′, or 2′, every Kn is a linear space
then K obtained in Theorem 3.2 is a linear space.

Perhaps condition (ii′) in Property 2′ can be weakened so that its modified
variant would imply the existence of a convex set without CEP. Can this be
achieved by replacing, in (ii′), total boundedness by local total boundedness?
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