Erratum to the Paper "Fibonacci Numbers with the Lehmer Property"

(Bull. Polish Acad. Sci. Math. 55 (2007), 7-15)
by

Florian LUCA

Here, I correct an oversight from the paper mentioned in the title. In the proof of (3), in the inequality

$$
2^{K} \log K<\frac{n}{4}+\frac{\log 2}{4 \log \log n},
$$

the last term above should have been $n \log 2 /(4 \log \log n)$. Reworking the next few inequalities we arrive at

$$
\frac{n}{3}<\frac{n}{4}+\frac{n \log 2}{4 \log \log n},
$$

which implies that $\log \log n<3 \log 2$, so $n<e^{8}<3000$ (instead of $n<2$). However, since $\omega\left(F_{n}\right) \geq 14$ and F_{n} is odd, we get

$$
2^{14}\left|2^{\omega\left(F_{n}\right)}\right| \phi\left(F_{n}\right) \mid F_{n}-1
$$

and $F_{n}-1=F_{(n+\delta) / 2} L_{(n-\delta) / 2}$ for some $\delta \in\{ \pm 2, \pm 1\}$. Observing that $(n+\delta) / 2-(n-\delta) / 2=\delta \in\{ \pm 2, \pm 1\}$, we conclude that $(n+\delta) / 2$ and ($n-\delta) / 2$ cannot both be multiples of 3 . This shows that one and only one of $F_{(n+\delta) / 2}$ and $L_{(n-\delta) / 2}$ is even, so one of them is a multiple of 2^{14}. Since 8 never divides L_{m} for any positive integer m, it follows that 2^{14} divides $F_{(n+\delta) / 2}$, so $3 \cdot 2^{12}=12288$ divides $(n+\delta) / 2$, a positive integer smaller than 1500 , which is a contradiction. This proves (3). The rest of the paper is unaffected.

[^0]Acknowledgement. I thank Kevin Broughan for pointing out the error described above.

Florian Luca
Instituto de Matemáticas
Universidad Nacional Autónoma de México
C.P. 58089, Morelia, Michoacán, México

E-mail: fluca@matmor.unam.mx

[^0]: 2010 Mathematics Subject Classification: 11A20, 11B39.
 Key words and phrases: Fibonacci number, Lucas number, Euler function, Lehmer's conjecture.

