NUMBER THEORY

Erratum to the Paper "Fibonacci Numbers with the Lehmer Property"

(Bull. Polish Acad. Sci. Math. 55 (2007), 7-15)

by

Florian LUCA

Here, I correct an oversight from the paper mentioned in the title. In the proof of (3), in the inequality

$$2^K \log K < \frac{n}{4} + \frac{\log 2}{4 \log \log n},$$

the last term above should have been $n \log 2/(4 \log \log n)$. Reworking the next few inequalities we arrive at

$$\frac{n}{3} < \frac{n}{4} + \frac{n\log 2}{4\log\log n}$$

which implies that $\log \log n < 3 \log 2$, so $n < e^8 < 3000$ (instead of n < 2). However, since $\omega(F_n) \ge 14$ and F_n is odd, we get

$$2^{14} | 2^{\omega(F_n)} | \phi(F_n) | F_n - 1$$

and $F_n - 1 = F_{(n+\delta)/2}L_{(n-\delta)/2}$ for some $\delta \in \{\pm 2, \pm 1\}$. Observing that $(n+\delta)/2 - (n-\delta)/2 = \delta \in \{\pm 2, \pm 1\}$, we conclude that $(n+\delta)/2$ and $(n-\delta)/2$ cannot both be multiples of 3. This shows that one and only one of $F_{(n+\delta)/2}$ and $L_{(n-\delta)/2}$ is even, so one of them is a multiple of 2^{14} . Since 8 never divides L_m for any positive integer m, it follows that 2^{14} divides $F_{(n+\delta)/2}$, so $3 \cdot 2^{12} = 12288$ divides $(n+\delta)/2$, a positive integer smaller than 1500, which is a contradiction. This proves (3). The rest of the paper is unaffected.

²⁰¹⁰ Mathematics Subject Classification: 11A20, 11B39.

Key words and phrases: Fibonacci number, Lucas number, Euler function, Lehmer's conjecture.

Acknowledgement. I thank Kevin Broughan for pointing out the error described above.

Florian Luca Instituto de Matemáticas Universidad Nacional Autónoma de México C.P. 58089, Morelia, Michoacán, México E-mail: fluca@matmor.unam.mx

Received September 22, 2011 (7854)

290