On BPI Restricted to Boolean Algebras of Size Continuum

by
Eric HALL and Kyriakos KEREMEDIS
Presented by Stanisław KWAPIEŃ

Summary. We show:
(i) The statement $\mathbf{P}(\omega)=$ "every partition of \mathbb{R} has size $\leq|\mathbb{R}|$ " is equivalent to the proposition $\mathbf{R}(\omega)=$ "for every subspace Y of the Tychonoff product $\mathbf{2}^{\mathcal{P}(\omega)}$ the restriction $\mathcal{B} \mid Y=\{Y \cap B: B \in \mathcal{B}\}$ of the standard clopen base \mathcal{B} of $\mathbf{2}^{\mathcal{P}(\omega)}$ to Y has size $\leq|\mathcal{P}(\omega)| "$.
(ii) In $\mathbf{Z F}, \mathbf{P}(\omega)$ does not imply "every partition of $\mathcal{P}(\omega)$ has a choice set".
(iii) Under $\mathbf{P}(\omega)$ the following two statements are equivalent:
(a) For every Boolean algebra of size $\leq|\mathbb{R}|$ every filter can be extended to an ultrafilter.
(b) Every Boolean algebra of size $\leq|\mathbb{R}|$ has an ultrafilter.

1. Notation and terminology. Let $\mathbf{X}=(X, T)$ be a topological space. We shall denote topological spaces by boldface letters and underlying sets by lightface letters.
\mathbf{X} is said to be compact iff every open cover \mathcal{U} of \mathbf{X} has a finite subcover \mathcal{V}. Equivalently, \mathbf{X} is compact iff every family \mathcal{G} of closed subsets of \mathbf{X} with the finite intersection property, fip for abbreviation, has a non-empty intersection.

A subset A of X is called a regular open set if $A=\operatorname{int}(A)$. It is known that the set of all regular open sets of \mathbf{X} forms a Boolean algebra under the following set of operations:

- $1=X$ and $0=\emptyset$,
- $U \wedge V=U \cap V$,

2010 Mathematics Subject Classification: 03E25, 03G05, 06E25.
Key words and phrases: weak axioms of choice, filters, ultrafilters, Boolean prime ideal theorem, regular open sets.

- $U \vee V=\operatorname{int}(\overline{U \cup V})$,
- $U^{\prime}=X \backslash \bar{U}$.

Given a set X, we introduce the following notions and notations:

1. $\mathbf{B P I}(X)$: Every filter of X is included in an ultrafilter of X.
2. $\mathbf{U F}(X)$: There is a free ultrafilter on X.
3. $\mathbf{P}(X)$: Every partition of $\mathcal{P}(X)$ has size $\leq|\mathcal{P}(X)|$.
4. A family \mathcal{A} of subsets of X is called independent iff for any two nonempty finite, disjoint subsets $\mathcal{C}, \mathcal{B} \subseteq \mathcal{A}$ the set $\bigcap \mathcal{C} \cap \bigcap\left\{B^{c}: B \in \mathcal{B}\right\}$ is infinite.
5. A family $\mathcal{A}=\left\{A_{i}: i \in I\right\} \subseteq \mathcal{P}(X)$ is almost disjoint iff each A_{i} is infinite and for all $i, j \in I, i \neq j,\left|A_{i} \cap A_{j}\right|<\aleph_{0}$.
6. $\mathbf{2}^{X}$ denotes the Tychonoff product of the discrete space $\mathbf{2}(2=\{0,1\})$ and

$$
\mathcal{B}(X)=\{[p]: p \in \operatorname{Fn}(X, 2)\}
$$

where $\operatorname{Fn}(X, 2)$ is the set of all finite partial functions from X into 2, and

$$
[p]=\left\{f \in 2^{\mathbb{R}}: p \subset f\right\}
$$

will denote the standard (clopen) base for the product topology on $\mathbf{2}^{X}$.
7. $\mathcal{F}(X)$ will denote the set of all filters of X together with the topology $T_{\mathcal{F}}$ generated by the family

$$
\mathcal{C}_{X}=\{[\mathcal{A}]: A \in \mathcal{P}(X)\}, \quad \text { where } \quad[A]=\{\mathcal{F} \in \mathcal{F}(X): A \in \mathcal{F}\}
$$

Since the function $H: \mathcal{P}(X) \rightarrow \mathcal{C}_{X}, H(A)=[A]$, is clearly $1: 1$ and onto it follows that $\left|\mathcal{C}_{X}\right|=|\mathcal{P}(X)|$.
8. $S(X)$ will denote the Stone space of the Boolean algebra of all subsets of X, i.e., the set of all ultrafilters on X together with the topology it inherits as a subspace of $\mathcal{F}(X)$.
Even though $[A]$ for $A \in \mathcal{P}(X)$ may not be a closed set in $\mathcal{F}(X)$ (if $a \in A, b \in A^{c}$ and $C=\{a, b\}$ then $\mathcal{H}_{C} \notin[A]$ where \mathcal{H}_{C} is the filter of all supersets of C; since for every basic neighborhood $[H]$ of \mathcal{H}_{C}, the filter $\mathcal{H}_{\{a\}}$ of all supersets of $\{a\}$ is in $[A] \cap[H]$, it follows that $[A]$ is not closed), it turns out that the restriction $[A] \cap S(X)$ is a closed subset of $S(X)$ and, in addition,

$$
\mathcal{B}_{X}=\{[A] \cap S(X): A \in \mathcal{P}(X)\}
$$

is a (clopen) base for $S(X)$.
9. $S^{*}(X)$ will denote the subspace of all free ultrafilters of $S(X)$ and

$$
\mathcal{B}_{X}^{*}=\left\{\langle A\rangle=[A] \cap S^{*}(X): A \in \mathcal{P}(X)\right\}, \text { where }\langle A\rangle=[A] \cap S^{*}(X)
$$

is the restriction of the base \mathcal{B}_{X} to $S^{*}(X)$. We point out here that $\neg \mathbf{U F}(X)$ implies $S^{*}(X)=\emptyset$ and consequently $\mathcal{B}_{X}^{*}=\emptyset$. Hence, $\mathcal{B}_{X}^{*} \neq \emptyset$ $\leftrightarrow \mathbf{U F}(X)$.
10. \sim will denote the equivalence relation on $\mathcal{P}(X)$ given by: $A \sim B$ iff $|A \triangle B|<\aleph_{0}$, where \triangle denotes the operation of symmetric difference, and $\mathcal{P}(X) /$ fin stands for the quotient set of \sim. For every $A \in \mathcal{P}(X)$, (A) will denote the \sim equivalence class of A, i.e., $(A)=\{B \in \mathcal{P}(X)$: $\left.|A \triangle B|<\aleph_{0}\right\}$.
11. $\mathbf{B F}(X)$: For every $Y \subseteq \mathcal{F}(X),|\{[A] \cap Y: A \in \mathcal{P}(X)\}| \leq|\mathcal{P}(X)|$.
12. BPI (Boolean Prime Ideal Theorem, Form 14 in [6]): Every Boolean algebra has a prime ideal.
2. Introduction and preliminary results. There is a plethora of characterizations of BPI in several branches of mathematics. For most of these characterizations we refer the reader to the book by P. Howard and J. E. Rubin [6]. Well-known equivalents related to Boolean algebras are listed in the next theorem:

Theorem 1. The following are equivalent:
(i) BPI.
(ii) Every ideal J of a Boolean algebra \mathcal{B} is a subset of a prime ideal I of \mathcal{B}.
(iii) Every Boolean algebra has an ultrafilter.
(iv) Every filter \mathcal{H} of a Boolean algebra \mathcal{B} is a subset of an ultrafilter \mathcal{F} of \mathcal{B}.
(v) For every set $X, \operatorname{BPI}(X)$.

We recall here that for the proof of (i) \rightarrow (ii) one applies BPI to the quotient \mathcal{B} / J to get a prime ideal P of \mathcal{B} / J. Then the inverse image I of P under the canonical homomorphism is a prime ideal including J.

For $X=\omega$ the following characterizations of $\operatorname{BPI}(\omega)$ have been established in [3] and [8] respectively.

Theorem 2 ([3). " $S(\omega)$ is compact" iff $\mathbf{B P I}(\omega)$.
Theorem 3 (8]). The following are equivalent:
(i) $\operatorname{BPI}(\omega)$.
(ii) The product $\mathbf{2}^{\mathbb{R}}$ is compact.
(iii) In a Boolean algebra \mathcal{B} of size $\leq|\mathbb{R}|$ every filter extends to an ultrafilter.

Proof. (iii) \rightarrow (i) is straightforward. For a proof of $(\mathrm{ii}) \leftrightarrow$ (i) different than the one given in [8] see [3].

To complete the proof of the theorem, fix a Boolean algebra $(\mathcal{B}, \mathbf{0}, \mathbf{1},+, \cdot)$ of size $\leq|\mathbb{R}|$ (the operations + and \cdot of \mathcal{B} denote symmetric difference and join, respectively). Let \mathcal{H} be a filter of \mathcal{B}. By our hypothesis the Tychonoff
product $\mathbf{2}^{\mathcal{B}}$ is compact. We claim that for every $b \in \mathcal{B}$ the set

$$
\begin{aligned}
G_{b}=\left\{f \in 2^{\mathcal{B}}: \mathbf{0} \notin f^{-1}(1)\right. & \wedge\left(\forall a, c \in f^{-1}(1), f(a . c)=1\right) \\
& \left.\wedge(f(b)=1 \vee f(\mathbf{1}+b)=1) \wedge \mathcal{H} \subseteq f^{-1}(1)\right\}
\end{aligned}
$$

is closed. Indeed, fix $h \in G_{b}^{c}$. We consider the following cases:

- $h(\mathbf{0})=1$. Clearly, $V=[\{(\mathbf{0}, 1)\}]$ is a neighborhood of h missing G_{b}.
- $\exists a, c \in h^{-1}(1), h(a \cdot c)=0$. Clearly, $V=[\{(a, 1),(b, 1),(a \cdot c, 0)\}]$ is a neighborhood of h disjoint from G_{b}.
- $h(b)=0$ and $h(\mathbf{1}+b)=0$. It is easy to see that $V=[\{(b, 0),(\mathbf{1}+b, 0)\}]$ is a neighborhood of h avoiding G_{b}.
- There exists $a \in \mathcal{H}$ with $h(a)=0$. In this case, $V=[\{(a, 0)\}]$ is a neighborhood of h with $V \cap G_{b}=\emptyset$.
It is straightforward to verify that the family $\mathcal{G}=\left\{G_{b}: b \in \mathcal{B}\right\}$ has the fip. Thus, by the compactness of $\mathbf{2}^{\mathcal{B}}, \bigcap \mathcal{G} \neq \emptyset$. Clearly, for every $g \in \bigcap \mathcal{G}, g^{-1}(1)$ is an ultrafilter of \mathcal{B} including \mathcal{H}.

In view of Theorems 1 and 3, the most natural question which pops up at this point, is the following question which was also asked in [8]:

Question 1. Can the statement: $\mathbf{W B P I}(\omega)=$ Every Boolean algebra \mathcal{B} of size $\leq|\mathbb{R}|$ has an ultrafilter be added to the list of Theorem 3.

Remark 4. (i) In 5 it has been shown that there exists a ZF model $\mathcal{N}[\Gamma]$ which is an extension of the basic Cohen model \mathcal{M} satisfying $\mathbf{U F}(\omega)$ but not $\operatorname{BPI}(\omega)$. Thus, in $\mathcal{N}[\Gamma]$ the Boolean algebra $\mathcal{B}=(\mathcal{P}(\omega), \triangle, \cap)$, has free ultrafilters but there is a filter of \mathcal{B} which is not a subset of any ultrafilter of \mathcal{B}.
(ii) Regarding Question 1, we point out here that we cannot use the argument with the quotient Boolean algebra following Theorem11. Indeed, \mathcal{B} / J is a partition of \mathcal{B} and since $|\mathcal{B}| \leq|\mathbb{R}|$, we may consider \mathcal{B} / J as a partition of \mathbb{R}. Hence, if $\mathbf{P}(\omega)$ holds true, then $|\mathcal{B} / J| \leq|\mathbb{R}|$ and $\operatorname{BPI}(\omega)$ is equivalent to $\mathbf{W B P I}(\omega)$. However, $\mathbf{P}(\omega)$ is unprovable in $\mathbf{Z F}$ as the forthcoming Theorem 13 shows.

The research in this paper is motivated by Question 1. Using a different technique than the one outlined after Theorem 1, we will prove in Theorem 11 that under $\mathbf{B F}(\omega)$ the statements $\mathbf{B P I}(\omega)$ and $\mathbf{W B P I}(\omega)$ are equivalent. Surprisingly enough, we will see in Theorem 13 that $\mathbf{B F}(\omega)$ is just a disguised form of $\mathbf{P}(\omega)$.
3. Compactness of certain subspaces of $\mathcal{F}(\omega)$ in ZF. It is very well known that in ZFC the subspaces $S(\omega)$ and $S^{*}(\omega)$ of $\mathcal{F}(\omega)$ are compact. $S(\omega)$ is homeomorphic to the Čech-Stone compactification $\beta(\omega)$ of the discrete space ω, and $S^{*}(\omega)=S(\omega) \backslash\{\omega\}$ is a closed subspace of $S(\omega)$. However,
in ZF, $S(\omega)$ need not be compact. So, one may ask whether it could be the case that in some model \mathcal{M} of $\mathbf{Z F}, S^{*}(\omega)$ is compact but $S(\omega)$ fails to be compact.

Surprisingly enough, the question has a trivial answer. Indeed, suppose ω has no free ultrafilters (that is, $\mathbf{U F}(\omega)$ fails), In this case, $S^{*}(\omega)$ is empty, hence compact. Furthermore, $\mathbf{B P I}(\omega)$ must fail in this case, so $S(\omega)$ is not compact, by Theorem 2. (One model of $\mathbf{Z F}+\neg \mathbf{U F}(\omega)$ is Feferman's model $\mathcal{M} 2$ in [6].)

However, the next theorem says that the possibility of $S^{*}(\omega)=\emptyset$ is in fact the only impediment to the equivalence of compactness of $S^{*}(\omega)$ and $S(\omega)$.

Theorem 5.

(i) " $S^{*}(\omega)$ is compact" iff $\neg \mathbf{U F}(\omega) \vee$ " $S(\omega)$ is compact".
(ii) $\mathbf{U F}(\omega) \wedge$ " $S^{*}(\omega)$ is compact "iff " $S(\omega)$ is compact".
(iii) UF (ω) does not imply " $S^{*}(\omega)$ is compact".
(iv) " $S^{*}(\omega)$ is compact" $\rightarrow \mathbf{U F}(\omega)$.

Proof. (i) We show (\rightarrow) as the converse is straightforward (recall that $S^{*}(\omega)$ is a closed subspace of $S(\omega)$). If $\mathbf{U F}(\omega)$ fails there is nothing to show. Assume $\mathbf{U F}(\omega) \wedge$ " $S^{*}(\omega)$ is compact". We shall prove that " $S(\omega)$ is compact". To this end, it suffices by Theorem 2 to show that $\operatorname{BPI}(\omega)$ holds true. Let \mathcal{H} be a free filter of ω. Clearly, $\mathbf{U F}(\omega)$ implies that

$$
\{\langle H\rangle: H \in \mathcal{H}\}
$$

is a family of non-empty sets of the clopen base \mathcal{B}_{ω} with the fip. Hence, by the compactness of $S^{*}(\omega)$,

$$
W=\bigcap\{\langle H\rangle: H \in \mathcal{H}\} \neq \emptyset .
$$

It is easy to see that every $\mathcal{F} \in W$ is an ultrafilter of ω extending \mathcal{H}.
(ii) (\rightarrow) is immediate from (i). For (\leftarrow), use Theorem 2, which implies that " $S(\omega)$ is compact" implies UF (ω).
(iii) It is known that in the model $\mathcal{N}[\Gamma]$ (see Remark 44), $\mathbf{U F}(\omega)$ holds but $\operatorname{BPI}(\omega)$ fails. Hence, by (i) and Theorem 2. " $S^{*}(\omega)$ is compact" fails in $\mathcal{N}[\Gamma]$.
(iv) Note that in any model \mathcal{M} of $\mathbf{Z F}$ and $\neg \mathbf{U F}(\omega)$, " $S^{*}(\omega)$ is compact" holds true.
4. The size of $\left|\mathcal{B}_{\omega}^{*}\right|$ and $\mid \mathcal{P}(\omega) /$ fin \mid in ZF. If $\mathbf{U F}(\omega)$ fails then $\mathcal{B}_{\omega}^{*}=\emptyset$ and there is nothing to say about $\left|\mathcal{B}_{\omega}^{*}\right|$. Regarding $\mathcal{P}(\omega) /$ fin however, we observe that in $\mathbf{Z F}$,

$$
\begin{equation*}
\mid \mathcal{P}(\omega) / \text { fin }|\geq|\mathbb{R}| . \tag{1}
\end{equation*}
$$

Indeed, if $\mathcal{A}=\left\{A_{i}: i \in \mathbb{R}\right\}$ is an almost disjoint family of ω (one can easily define such families in $\mathbf{Z F}$), then, for all distinct $i, j \in \mathbb{R}$, we have $\left(A_{i}\right) \neq\left(A_{j}\right)$ and the function $T: \mathbb{R} \rightarrow \mathcal{P}(\omega) /$ fin given by $T(i)=\left(A_{i}\right)$ is easily seen to be $1: 1$.

We point out here that the inequality given in (1) can consistently be strict in ZF. Indeed, A. Blass has shown in 11, Proposition 3.2, p. 745 and Proposition 3.7, p. 748] that in his model $\mathcal{M}\left[\mathbb{R}_{0}\right], \mathbf{U F}(\omega)$ fails but $\mathcal{P}(\omega) /$ fin has a free ultrafilter. Since $\mathbf{U F}(\omega)$ is equivalent to saying that \mathbb{R} has a free ultrafilter (see [5] for a proof), we see that possibly $\mid \mathcal{P}(\omega) /$ fin $|\neq|\mathbb{R}|$. Thus, in view of $(1), \mathcal{M}\left[\mathbb{R}_{0}\right]$ satisfies $\mid \mathcal{P}(\omega) /$ fin $|>|\mathbb{R}|$. With no free ultrafilters on ω in this model, $\left|\mathcal{B}_{\omega}^{*}\right|=0$. In particular,

$$
\mathcal{M}\left[\mathbb{R}_{0}\right] \vDash\left|\mathcal{B}_{\omega}^{*}\right|<|\mathbb{R}|<\mid \mathcal{P}(\omega) / \text { fin } \mid .
$$

In $\mathbf{Z F}+\mathbf{U F}(\omega)$ things are different. We observe that for every $A \in$ $\mathcal{P}(\omega),\langle A\rangle \neq \emptyset$, and for every $A, B \in \mathcal{P}(\omega)$,

$$
\begin{equation*}
\langle A\rangle=\langle B\rangle \quad \text { iff } \quad(A)=(B) \quad\left(\text { iff }|A \triangle B|<\aleph_{0}\right) \tag{2}
\end{equation*}
$$

To see (\rightarrow) assume that $\langle A\rangle=\langle B\rangle$ but $|A \triangle B|=\aleph_{0}$. Then either $|A \backslash B|=\aleph_{0}$ or $|B \backslash A|=\aleph_{0}$. Assume that $|A \backslash B|=\aleph_{0}$ and let, by $\mathbf{U F}(\omega), \mathcal{U}$ be a free ultrafilter of $A \backslash B$. Clearly, the filter \mathcal{F} of ω generated by \mathcal{U} is easily seen to be a free ultrafilter on ω such that $\mathcal{F} \in\langle A\rangle \backslash\langle B\rangle$, a contradiction. Thus, $|A \triangle B|<\aleph_{0}$.

To see (\leftarrow) assume that $|A \triangle B|<\aleph_{0}$ and $\langle A\rangle \neq\langle B\rangle$. Clearly, either $\langle A\rangle \backslash\langle B\rangle \neq \emptyset$ or $\langle B\rangle \backslash\langle A\rangle \neq \emptyset$. Assume $\langle A\rangle \backslash\langle B\rangle \neq \emptyset$ and fix $\mathcal{F} \in\langle A\rangle \backslash\langle B\rangle$. Clearly, $A, B^{c} \in \mathcal{F}$. Hence, $A \cap B^{c} \in \mathcal{F}$ and since \mathcal{F} is free, it follows easily that $\left|A \cap B^{c}\right|=\aleph_{0}$. Thus, $|A \triangle B|=\aleph_{0}$, a contradiction.

Hence, by (2), the function $f: \mathcal{P}(\omega) /$ fin $\rightarrow \mathcal{B}_{\omega}^{*}$ given by the formula $f(G)=\bigcup\{\langle A\rangle: A \in G\}$ is well defined, 1:1 and onto. Thus, UF (ω) implies $\left|\mathcal{B}_{\omega}^{*}\right|=\mid \mathcal{P}(\omega) /$ fin \mid. The converse also holds, since if $\left|\mathcal{B}_{\omega}^{*}\right| \neq 0$ then $\mathbf{U F}(\omega)$. Thus

$$
\begin{equation*}
\mathbf{U F}(\omega) \quad \text { iff } \quad\left|\mathcal{B}_{\omega}^{*}\right|=\mid \mathcal{P}(\omega) / \text { fin } \mid . \tag{3}
\end{equation*}
$$

Hence, in view of (3) and (1), we have a proof of part (i) of the next theorem.
Theorem 6.
(i) $\mid \mathcal{P}(\omega) /$ fin $|\leq|\mathbb{R}| \wedge \mathbf{U F}(\omega)$ iff $| \mathcal{B}_{\omega}^{*}|=|\mathbb{R}|$.
(ii) " $\mathcal{P}(\omega) /$ fin is well-orderable" iff " $\mathcal{P}(\omega)$ is well-orderable". Hence, " $\mathcal{P}(\omega)$ /fin is well-orderable" implies $\left|\mathcal{B}_{\omega}^{*}\right|=\mid \mathcal{P}(\omega) /$ fin $|=|\mathbb{R}|$.

Proof. (ii) (\rightarrow) If $\mathcal{P}(\omega) /$ fin is well-orderable, then by (1), \mathbb{R} is wellorderable. Hence, $\mathcal{P}(\omega) /$ fin has a choice set, and UF (ω) holds true.
(\leftarrow) This is straightforward.

Remark 7. Since $\mathcal{P}(\omega) /$ fin is a partition of $\mathcal{P}(\omega)$, it follows that if " $\mathcal{P}(\omega)$ /fin has a choice set" then $\mid \mathcal{P}(\omega) /$ fin $|\leq|\mathbb{R}|$. Thus, " $\mathcal{P}(\omega) /$ fin has a choice set" $\wedge \mathbf{U F}(\omega) \rightarrow \mid \mathcal{P}(\omega) /$ fin $\left|=\left|\mathcal{B}_{\omega}^{*}\right|=|\mathbb{R}|\right.$.

Next we show that the size of each of the bases \mathcal{C}_{ω} and \mathcal{B}_{ω} is equal to $|\mathbb{R}|$.
Theorem 8. $\left|\mathcal{C}_{\omega}\right|=\left|\mathcal{B}_{\omega}\right|=|\mathbb{R}|$.
Proof. The functions $T: \mathcal{P}(\omega) \rightarrow \mathcal{C}_{\omega}, T(A)=[A]$, and $H: \mathcal{P}(\omega) \rightarrow \mathcal{B}_{\omega}$, $H(A)=[A] \cap S(\omega)$, are clearly 1:1 and onto. Indeed, if $A \neq B$ then either $A \backslash B \neq \emptyset$ or $B \backslash A \neq \emptyset$. Assume $A \backslash B \neq \emptyset$. Then the filter \mathcal{F} of all supersets of $A \backslash B$ is in $[A] \backslash[B]$, and the fixed ultrafilter \mathcal{F}_{x} generated by any element $x \in A \backslash B$ is in $[A] \cap S(\omega)$ but not in $[B] \cap S(\omega)$. Hence, $T(A) \neq T(B)$ and $H(A) \neq H(B)$.

Question 2.
(a) Does UF (ω) imply $\left|\mathcal{B}_{\omega}^{*}\right| \leq|\mathbb{R}|$?
(b) What is the status of the implications between " $\left|\mathcal{B}_{\omega}^{*}\right|=|\mathbb{R}|$ " and " $\mathcal{P}(\omega)$ /fin has a choice set"?
Remark 9. Regarding Question 2(a), we note that $\left|[\mathbb{R}]^{\omega}\right|=|\mathbb{R}|$ (Form 368 in [6]) implies the inequality $\left|\mathcal{B}_{\omega}^{*}\right| \leq|\mathbb{R}|$. However, the status of the implication between $\mathbf{U F}(\omega)$ and " $\mid \mathbb{R}]^{\omega}|=|\mathbb{R}|$ " is unknown to us. It is also indicated as unknown in [6].

In [4] it has been shown, in $\mathbf{Z F}$, that the function

$$
T: S(\omega) \rightarrow \mathbf{2}^{\mathcal{P}(\omega)}, \quad T(\mathcal{F})=\chi_{\mathcal{F}},
$$

is $1: 1$, onto, continuous and such that for every $A \in \mathcal{P}(\omega)$,

$$
T([A])=[\{(A, 1)\}] \cap T(S(\omega)) .
$$

If $\mathbf{U F}(\omega)$ holds true, then for every $A \in \mathcal{P}(\omega),\langle A\rangle \neq \emptyset$ and consequently the restriction $T^{*}: S^{*}(\omega) \rightarrow \mathbf{2}^{\mathcal{P}(\omega)}$ of T to $S^{*}(\omega)$ is an embedding such that

$$
T^{*}(\langle A\rangle)=[\{(A, 1)\}] \cap T^{*}\left(S^{*}(\omega)\right) .
$$

Hence,

$$
\left|\mathcal{B}_{\omega}^{*}\right| \leq|\mathbb{R}| \quad \text { iff } \quad\left|\left\{[p] \cap T^{*}\left(S^{*}(\omega)\right): p \in \operatorname{Fn}(\mathcal{P}(\omega), 2)\right\}\right| \leq|\mathbb{R}| .
$$

Thus, $\mathbf{U F}(\omega)$ and $\mathbf{R}(\omega)\left(=\right.$ For every $H \subset 2^{\mathcal{P}(\omega)},|\{[p] \cap H: p \in \operatorname{Fn}(\mathcal{P}(\omega), 2)\}|$ $\leq|\mathbb{R}|)$ together imply $\left|\mathcal{B}_{\omega}^{*}\right|=|\mathbb{R}|$.

We shall come back again to $\mathbf{R}(\omega)$ in Section 6, where we will show that $\mathbf{R}(\omega), \mathbf{B F}(\omega)$ and $\mathbf{P}(\omega)$ are all equivalent.
5. $\operatorname{BPI}(\omega)$ and $\operatorname{WBPI}(\omega)$ are equivalent in $\mathbf{Z F}+\mathbf{B F}(\omega)$. Before we state and prove the main result of this section, we need to establish some auxiliary results.

Proposition 10.
(i) $\mathcal{C}_{\omega}(=\{[A]: A \in \mathcal{P}(\omega)\})$ is a base for $T_{\mathcal{F}}$ of size $\mathcal{P}(\omega)$.
(ii) Let $A \in \mathcal{P}(\omega)$. Then $\mathcal{F} \in \overline{[A]}$ iff $\mathcal{F} \cup\{A\}$ has the fip.
(iii) For all $A \in \mathcal{P}(\omega),[A]$ is a regular open set.

Proof. (i) Clearly \mathcal{C}_{ω} is closed under finite intersections $(\mathcal{F} \in[A] \cap[B]$ iff $A, B \in \mathcal{F}$ iff $A \cap B \in \mathcal{F}$ iff $\mathcal{F} \in[A \cap B])$ and covers $\mathcal{F}(\omega)$. The second assertion follows from Theorem 8 .
(ii) Fix $A \in \mathcal{P}(\omega)$. We have: $\mathcal{F} \in \overline{[A]}$ iff $\forall F \in \mathcal{F},[F] \cap[A] \neq \emptyset$ iff $\forall F \in \mathcal{F},[F \cap A] \neq \emptyset$ iff $\forall F \in \mathcal{F}, F \cap A \neq \emptyset(\rightarrow$ of the last equivalence is straightforward, and for the other implication note that the filter \mathcal{G} generated by $\mathcal{F} \cup\{A\}$ satisfies $\mathcal{G} \in[A \cap F]$; hence $[A \cap F] \neq \emptyset)$ iff $\mathcal{F} \cup\{A\}$ has the fip.
(iii) Fix $A \in \mathcal{P}(\omega)$. Obviously, $[A] \subseteq \operatorname{int}(\overline{[A]})$. To show $\operatorname{int}(\overline{([A]}) \subseteq[A]$, let $[B]$ be any basic open set such that $[B] \subseteq \overline{[A]}$. It suffices to show $[B] \subseteq[A]$. Suppose $[B] \nsubseteq[A]$. Then $B \nsubseteq A$, so let \mathcal{F} be the filter generated by $\{B \backslash A\}$. Then $\mathcal{F} \in[B]$, but by (ii), $\mathcal{F} \notin[A]$, a contradiction.

Theorem 11. Assume $\mathbf{B F}(\omega)$. The following are equivalent:
(i) In every Boolean algebra of size $\leq|\mathbb{R}|$ every filter can be extended to an ultrafilter.
(ii) Every Boolean algebra of size $\leq|\mathbb{R}|$ has an ultrafilter.
(iii) $\mathbf{B P I}(\omega)$.

Proof. In view of Theorem 3 and the obvious implication (i) \rightarrow (ii), it suffices to show that (ii) implies (iii). Fix a free filter \mathcal{H} of ω and consider the subspace $\mathcal{H}(\omega)=\{\mathcal{F} \in \mathcal{F}(\omega): \mathcal{H} \subseteq \mathcal{F}\}$ of $\mathcal{F}(\omega)$.

Claim. For every $A \in \mathcal{P}(\omega),[A] \cap \mathcal{H}(\omega)$ is a regular open subset of $\mathcal{H}(\omega)$.
Proof of the Claim. Fix $A \in \mathcal{P}(\omega)$. Clearly, $\operatorname{int}_{\mathcal{H}(\omega)}(\overline{([A] \cap \mathcal{H}(\omega)})=$ $\operatorname{int}_{\mathcal{H}(\omega)}(\overline{[A]} \cap \mathcal{H}(\omega))$. We show that this set is equal to $[A] \cap \mathcal{H}(\omega)$. Since $[A] \cap \mathcal{H}(\omega) \subseteq \overline{[A]} \cap \mathcal{H}(\omega)$, it follows that

$$
\begin{equation*}
[A] \cap \mathcal{H}(\omega) \subseteq \operatorname{int}_{\mathcal{H}(\omega)}(\overline{[A]} \cap \mathcal{H}(\omega)) . \tag{4}
\end{equation*}
$$

For the reverse inclusion, we relativize the proof of Proposition 10(iii). Assume $[B] \cap \mathcal{H}(\omega) \subseteq[A] \cap \mathcal{H}(\omega)$. Let $\mathcal{F} \in[B] \cap \mathcal{H}(\omega)$, and suppose toward a contradiction that $\mathcal{F} \notin[A]$. Since $A \notin \mathcal{F}$, the collection $\mathcal{F} \cup\{B \backslash A\}$ has the fip, so it generates a filter \mathcal{G}. But then $\mathcal{G} \in[B] \cap \mathcal{H}(\omega)$ and $\mathcal{G} \notin[\overline{A]}$, a contradiction. Thus $\mathcal{F} \in[A] \cap \mathcal{H}(\omega)$, and

$$
\begin{equation*}
\operatorname{int}_{\mathcal{H}(\omega)}(\overline{[A]} \cap \mathcal{H}(\omega)) \subseteq[A] \cap \mathcal{H}(\omega) . \tag{5}
\end{equation*}
$$

From (4) and (5) we have int $\mathcal{H}_{\mathcal{H}(\omega)}(\overline{[A] \cap \mathcal{H}(\omega)})=[A] \cap \mathcal{H}(\omega)$ as required.
By the claim, $\mathcal{A}=\{[A] \cap \mathcal{H}(\omega): A \in \mathcal{P}(\omega)\}$ is a family of regular open sets of $\mathcal{H}(\omega)$ and by $\operatorname{BF}(\omega),|\mathcal{A}| \leq|\mathbb{R}|$.

Let \mathcal{B} be the Boolean algebra of all regular open sets of $\mathcal{H}(\omega)$ generated by the family \mathcal{A}. Clearly, $|\mathcal{B}| \leq|\mathbb{R}|$. Let, by our hypothesis, \mathcal{U} be an ultrafilter of \mathcal{B} and put

$$
\mathcal{F}=\{A \in \mathcal{P}(\omega):[A] \cap \mathcal{H}(\omega) \in \mathcal{U}\} .
$$

To complete the proof of the theorem it suffices to show:
Claim. \mathcal{F} is an ultrafilter of ω and $\mathcal{H} \subseteq \mathcal{F}$.
Proof of the Claim. Since, for every $H \in \mathcal{H},[H] \cap \mathcal{H}(\omega)=\mathcal{H}(\omega)$ and \mathcal{U} is a filter, it follows that $H \in \mathcal{F}$, and consequently $\mathcal{H} \subseteq \mathcal{F}$. Since $\omega \in \mathcal{H}$, it follows that $\omega \in \mathcal{F}$. Furthermore, it is trivially true that $\emptyset \notin \mathcal{F}$.

We next show that \mathcal{F} is a filter. Fix $A, B \in \mathcal{F}$. Then, $[A] \cap \mathcal{H}(\omega),[B] \cap$ $\mathcal{H}(\omega) \in \mathcal{U}$, and consequently $[A] \cap \mathcal{H}(\omega) \cap[B] \cap \mathcal{H}(\omega)=[A \cap B] \cap \mathcal{H}(\omega) \in \mathcal{U}$. Thus, $A \cap B \in \mathcal{F}$.

Fix $A \in \mathcal{F}$ and $B \in \mathcal{P}(\omega)$ with $A \subseteq B$. We show that $B \in \mathcal{F}$. Clearly, $[A] \cap \mathcal{H}(\omega) \in \mathcal{U}$ and $[A] \cap \mathcal{H}(\omega) \subseteq[B] \cap \mathcal{H}(\omega)$. Thus, $[B] \cap \mathcal{H}(\omega) \in \mathcal{U}$ and $B \in \mathcal{F}$ as required.

Next we show that \mathcal{F} is maximal. Fix $A \in \mathcal{P}(\omega)$. For every filter $\mathcal{G} \in$ $\mathcal{H}(\omega)$, one of $\mathcal{G} \cup\{A\}$ or $\mathcal{G} \cup\left\{A^{c}\right\}$ has the fip, so $\mathcal{G} \in \overline{[A]} \cup \overline{\left[A^{c}\right]}$. It follows that $\overline{([A] \cap \mathcal{H}(\omega)) \cup\left(\left[A^{c}\right] \cap \mathcal{H}(\omega)\right)}=\mathcal{H}(\omega)$, and hence $[A] \vee\left[A^{c}\right]=\mathbf{1}$ in the regular open algebra \mathcal{B}. Thus either $[A] \in \mathcal{U}$ or $\left[A^{c}\right] \in \mathcal{U}$, and either $A \in \mathcal{F}$ or $A^{c} \in \mathcal{F}$.

Remark 12. Let $\mathcal{H}(\omega)$ and \mathcal{A} be as in the proof of Theorem 11. Clearly, for every $A, B \in \mathcal{P}(\omega)$ satisfying

$$
\begin{equation*}
\exists H \in \mathcal{H} \text { such that } H \cap(A \backslash B)=H \cap(B \backslash A)=\emptyset \tag{6}
\end{equation*}
$$

we have $[A] \cap \mathcal{H}(\omega)=[B] \cap \mathcal{H}(\omega)$. Furthermore, the binary relation \sim on $\mathcal{P}(\omega)$ given by

$$
A \sim B \quad \text { iff } \quad \exists H \in \mathcal{H} \text { satisfying (6) }
$$

is easily seen to be an equivalence relation on $\mathcal{P}(\omega)$. Hence, if $\mathbf{P}(\omega)$ holds true, then $|\mathcal{A}|=|\mathcal{P}(\omega) / \sim| \leq|\mathbb{R}|$, and the conclusion of Theorem 11 goes through if we replace the hypothesis $\mathbf{B F}(\omega)$ with $\mathbf{P}(\omega)$.
6. Some equivalents of $\mathbf{B F}(\omega)$. Remarks 9 and 12 indicate that the statements $\mathbf{B F}(\omega), \mathbf{R}(\omega)$ and $\mathbf{P}(\omega)$ might be equivalent. We show next that this is the case.

Theorem 13. The following are equivalent:
(a) $\mathbf{B F}(\omega)$.
(b) $\mathbf{R}(\omega)$: For every $H \subset 2^{\mathcal{P}(\omega)},|\{[p] \cap H: p \in \operatorname{Fn}(\mathcal{P}(\omega), 2)\}| \leq|\mathcal{P}(\omega)|$.
(c) $\mathbf{P}(\omega)$: Every disjoint family of subsets of $\mathcal{P}(\omega)$ has size $\leq|\mathcal{P}(\omega)|$. In particular, "every partition of \mathbb{R} has a selector" implies $\mathbf{B F}(\omega)$.

Proof. (a) \rightarrow (b). Fix an independent family \mathcal{A} of subsets of ω of size $|\mathbb{R}|$ (such a family is known to exist in $\mathbf{Z F}$) and let $H \subseteq 2^{\mathcal{A}}$. We will show that $|\{H \cap[p]: p \in \operatorname{Fn}(\mathcal{A}, 2)\}| \leq|\mathbb{R}|$.

Let $S=\left\{\mathcal{F}_{h}: h \in H\right\}$ where, for every $h \in H, \mathcal{F}_{h}$ is the filter on ω generated by the filterbase
$\mathcal{W}_{h}=\left\{B_{0} \cap \cdots \cap B_{n-1}: 0<n<\omega\right.$ and $\forall i \in n\left(h\left(B_{i}\right)=1\right.$ or $\left.\left.h\left(B_{i}^{c}\right)=0\right)\right\}$.
It is straightforward to verify that for all $h, f \in H, f \neq h \leftrightarrow \mathcal{F}_{f} \neq \mathcal{F}_{h}$. Hence, $|H|=|S|$.

For every $p \in \operatorname{Fn}(\mathcal{A}, 2)$ let

$$
A_{p}=\bigcap\left\{B \in \mathcal{A}: p(B)=1 \text { or } p\left(B^{c}\right)=0\right\} .
$$

By our hypothesis,

$$
\begin{equation*}
\left|\left\{S \cap\left[A_{p}\right]: p \in \operatorname{Fn}(\mathcal{A}, 2)\right\}\right| \leq|\{S \cap[A]: A \in \mathcal{P}(\omega)\}| \leq|\mathbb{R}| \tag{7}
\end{equation*}
$$

Claim. For every $h \in H$ and $p \in \operatorname{Fn}(\mathcal{A}, 2), \mathcal{F}_{h} \in\left[A_{p}\right] \leftrightarrow h \in[p]$.
Proof of the Claim. To see (\rightarrow) we assume that $\mathcal{F}_{h} \in\left[A_{p}\right]$ but $h \notin[p]$. This means that there exists $A \in \operatorname{Dom}(p)$ such that $h(A) \neq p(A)$. We consider the following cases:

- $h(A)=1$ and $p(A)=0$. Since $\mathcal{F}_{h} \in\left[A_{p}\right]$ and $h(A)=1$ we have $A_{p} \in \mathcal{F}_{h}$ and $A \in \mathcal{F}_{h}$. Since $p(A)=0$ we infer that $A^{c} \supseteq A_{p}$, hence $A^{c} \in \mathcal{F}_{h}$, a contradiction.
- $h(A)=0$ and $p(A)=1$. Since $h(A)=0$ we have $A^{c} \in \mathcal{F}_{h}$. Since $p(A)=1$ we see that $A \supseteq A_{p}$, hence $A \in \mathcal{F}_{h}$, a contradiction.

Hence, $h \in[p]$.
To see (\leftarrow) assume that $h \in[p]$. Clearly, $A_{p} \in \mathcal{W}_{h}$, and consequently $A_{p} \in \mathcal{F}_{h}$. Hence, $\mathcal{F}_{h} \in\left[A_{p}\right]$ as required, finishing the proof of the claim.

In view of the claim, it follows that for every $p, q \in \operatorname{Fn}(\mathcal{A}, 2)$,

$$
S \cap\left[A_{p}\right]=S \cap\left[A_{q}\right] \leftrightarrow H \cap[p]=H \cap[q] .
$$

Hence, the function $f:\{H \cap[p]: p \in \operatorname{Fn}(\mathcal{A}, 2)\} \rightarrow\left\{S \cap\left[A_{p}\right]: p \in \operatorname{Fn}(\mathcal{A}, 2)\right\}$ given by

$$
f(H \cap[p])=S \cap\left[A_{p}\right]
$$

is well defined and $1: 1$. Hence, by $[7],|\{H \cap[p]: p \in \operatorname{Fn}(\mathcal{A}, 2)\}| \leq|\mathbb{R}|$ as required.
$(\mathrm{b}) \rightarrow(\mathrm{c})$. Fix a partition $\mathcal{P}=\left\{P_{i}: i \in I\right\}$ of $\mathcal{P}(\omega)$ and let $S=\left\{\chi_{P_{i}}:\right.$ $i \in I\}$. Let $B=\left\{p \in \operatorname{Fn}(\mathcal{P}(\omega), 2): \operatorname{Dom}(p)=p^{-1}(1) \subset P_{i}\right.$ for some $i \in I\}$. Clearly, for every $p \in B, \operatorname{Dom}(p) \subset P_{i},[p] \cap S=\left\{\chi_{P_{i}}\right\}$ and, by our hypothesis, $|\mathcal{P}|=|S|=|\{[p] \cap S: p \in B\}| \leq|\{[p] \cap S: p \in \operatorname{Fn}(\mathcal{P}(\omega), 2)\}|$ $\leq|\mathbb{R}|$ as required.
(c) \rightarrow (a). Fix $S \subseteq \mathcal{F}(\omega)$. It is easy to see that the binary relation \approx on \mathcal{C}_{ω} given by $P \approx Q$ iff $P \cap S=Q \cap S$ is an equivalence relation. Since $\mathcal{C}_{\omega} / \approx$ is a partition of \mathcal{C}_{ω} and \mathcal{C}_{ω} in view of Theorem 8 (i) has size $|\mathbb{R}|$, it follows by our hypothesis that $\left|\mathcal{C}_{\omega} / \approx\right| \leq|\mathbb{R}|$. Since $|\{[A] \cap S: A \in \mathcal{P}(\omega)\}|=\left|\mathcal{C}_{\omega} / \approx\right|$, the conclusion of $\mathbf{B F}(\omega)$ for the set $\{[A] \cap S: A \in \mathcal{P}(\omega)\}$ is satisfied.

Remark 14. (i) We point out here that for every infinite set $X, \mathbf{B F}(X)$ and $\mathbf{P}(X)$ are equivalent.

To see $\mathbf{B F}(X) \rightarrow \mathbf{P}(X)$, fix a partition $P=\left\{A_{i}: i \in I\right\}$ of X and let $Y=\left\{\mathcal{F}_{i}: i \in I\right\}$, where for every $i \in I, \mathcal{F}_{i}$ is the filter generated by $\left\{A_{i}\right\}$. By $\mathbf{B F}(X)$ we have $|\{[A] \cap Y: A \in \mathcal{P}(X)\}| \leq|X|$. Since $\left[A_{i}\right] \cap Y=\left\{\mathcal{F}_{i}\right\}$ for every $i \in I$, it follows that the function $f: I \rightarrow\{[A] \cap Y: A \in \mathcal{P}(X)\}$, $f(i)=\left\{\mathcal{F}_{i}\right\}$, is $1: 1$. Thus, $|P| \leq|X|$.

To see that $\mathbf{P}(X) \rightarrow \mathbf{B F}(X)$, fix $Y \subseteq \mathcal{F}(X)$ and define an equivalence relation \sim on $\mathcal{P}(X)$ by requiring: $A \sim B$ iff $[A] \cap Y=[B] \cap Y$. Clearly, $|\{[A] \cap Y: A \in \mathcal{P}(X)\}|=|\mathcal{P}(X) / \sim| \leq|X|$.
(ii) We do not know whether for every infinite set $X, \mathbf{R}(X)$ and $\mathbf{P}(X)$ are equivalent. Under the extra assumption $\operatorname{LIF}(X)=" X$ has an independent family of size $|\mathcal{P}(X)| "$ the proof of Theorem 13 goes through with X in place of ω. However, it is consistent with $\mathbf{Z F}$ that there exist sets having no independent families. e.g., sets which do not split into two infinite sets. For the relative strength of $\forall X, \mathbf{L I F}(X)$ we refer the reader to [2].

7. Independence results

Theorem 15.

(i) $\mathbf{P}(\omega)$ implies "every family $\mathcal{A}=\left\{A_{i}: i \in \mathbb{R}\right\}$ of 2 -element sets of $\mathcal{P}(\mathbb{R})$ has a choice set". In particular, $\mathbf{P}(\omega)$ is not provable in $\mathbf{Z F}$.
(ii) $\mathbf{U F}(\omega)$ does not imply $\mathbf{P}(\omega)$. In particular, $\mathbf{U F}(\omega)$ does not imply "every partition of \mathbb{R} has a choice set" (Form 203 in [6]).
(iii) $\mathbf{P}(\omega)$ does not imply "every partition of \mathbb{R} has a choice set".

Proof. (i) Fix a family $\mathcal{A}=\left\{A_{i}: i \in \mathbb{R}\right\}$ of 2-element sets of $\mathcal{P}(\mathbb{R})$. Without loss of generality we may assume that $\bigcap A_{i}=\emptyset$ for all $i \in \mathbb{R}$ (if $A, B \in A_{i}$ and $A \subseteq B$ then we choose A, otherwise if $A \backslash B \neq \emptyset$ and $B \backslash A \neq \emptyset$ then we replace A by $A \backslash B$ and B with $B \backslash A)$. Fix a $1: 1$ and onto function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ and for every $i \in \mathbb{R}$, let $f_{i}: \mathbb{R} \rightarrow \mathbb{R} \times\{i\}$ be the function given by $f_{i}(x)=(x, i)$. Clearly, $\left\{\left\{f_{i}(X): X \in A_{i}\right\}: i \in \mathbb{R}\right\}$ is a family of subsets of $\mathcal{P}(\mathbb{R} \times \mathbb{R})$ such that $\bigcup\left\{\left\{f_{i}(X): X \in A_{i}\right\}: i \in \mathbb{R}\right\}$ is a family of disjoint subsets of $\mathbb{R} \times \mathbb{R}$. Hence, $\mathcal{H}=\left\{f\left(f_{i}(X)\right): i \in \mathbb{R}, X \in A_{i}\right\}$ is a family of disjoint subsets of \mathbb{R}. Thus, by our hypothesis, we can identify \mathcal{H} with a subset of \mathbb{R} and consequently we may consider \mathcal{A} as a family of 2 -element subsets of \mathbb{R}. Hence, we may choose from each member of \mathcal{A} its largest element.

The second assertion follows from the fact that the statement "every family $\mathcal{A}=\left\{A_{i}: i \in \mathbb{R}\right\}$ of 2-element sets of $\mathcal{P}(\mathbb{R})$ has a choice set" fails in the second Cohen Model, Model $\mathcal{M} 7$ in [6]. So, $\mathbf{P}(\omega)$ fails in $\mathcal{M} 7$.
(ii) It is shown in [5] that there is a model of $\mathbf{Z F}+\mathbf{U F}(\omega)$ in which there is a family of 2-element members of $\mathcal{P}(\mathbb{R})$ with no choice set. Thus $\mathbf{P}(\omega)$ is false in this model by (i).
(iii) Let \mathcal{N} denote the Basic Cohen Model. We recall that \mathcal{N} is a symmetric model obtained by adding first a countable number of generic reals along with the set A containing them to a ground model \mathcal{M} of $\mathbf{Z F C}+\mathbf{C H}$ and then retracting to a model $\mathcal{N} \subset \mathcal{M}[G]$ which contains the set A but no well-ordered enumeration of any infinite subset of A. We recall the following additional facts about $\mathcal{N}, \mathcal{M}[G]$ and the set A :
(a) \mathcal{M} and $\mathcal{M}[G]$ have the same cardinal numbers. In particular, in \mathcal{N} we have $\aleph_{1}<|\mathbb{R}|\left(\aleph_{1}=\left|\mathcal{P}(\omega)^{\mathcal{M}}\right|\right.$ and $\mathcal{P}(\omega)^{\mathcal{M}} \subset \mathcal{P}(\omega)^{\mathcal{N}}$ imply $\aleph_{1}<$ $\left.\left|\mathcal{P}(\omega)^{\mathcal{N}}\right|=|\mathbb{R}|\right)$.
(b) For any $X \in \mathcal{N}$, there is an ordinal α and a function $f \in \mathcal{N}$ such that $f: X \rightarrow[A]^{<\omega} \times \alpha$ is one-to-one (see Lemma 5.25 in [7]).
(c) The set A is dense in \mathbb{R}.

Clearly, in view of $(\mathrm{c}), \mathcal{P}=\left\{P_{n} \cap A: n \in \mathbb{N}\right\} \cup\{\mathbb{R} \backslash A\}$, where $P_{n}=$ $(n, n+1) \cap A$, is a (countable) partition of \mathbb{R} without a choice set.

We show next that every partition of \mathbb{R} in \mathcal{N} has size $\leq|\mathbb{R}|$. To see this, fix some $\mathcal{P} \in \mathcal{N}$ which is a partition of \mathbb{R}. By (b), let k be the least well-ordered cardinal number α for which there is a $1: 1$ function $f \in \mathcal{N}$, $f: P \rightarrow \alpha \times[A]^{<\omega}$. In $\mathcal{M}[G]$, where \mathcal{P} has a choice function, we have $|\mathcal{P}| \leq$ $|\mathbb{R}|=\aleph_{1}$ by (a). Thus there is no onto function from \mathcal{P} to \aleph_{2}, in $\mathcal{M}[G]$ or in \mathcal{N}. It follows that $k \leq \aleph_{1}$, and so in $\mathcal{N},|\mathcal{P}| \leq\left|\aleph_{1} \times[A]^{<\omega}\right|$. Since $\left(\aleph_{1}<|\mathbb{R}|\right)^{\mathcal{N}}$ by (a) and $\left|[A]^{<\omega}\right| \leq|\mathbb{R}|$, we have $|\mathcal{P}| \leq|\mathbb{R}|$.

References

[1] A. Blass, The model of set theory generated by countably many generic reals, J. Symbolic Logic 46 (1981), 732-752.
[2] E. Hall and K. Keremedis, Independent families and some notions of finiteness, submitted.
[3] E. Hall and K. Keremedis, Čech-Stone compactifications of discrete spaces in ZF and some weak forms of the Boolean prime ideal theorem, Topology Proc. 41 (2013), 111-122.
[4] H. Herrlich, K. Keremedis and E. Tachtsis, Remarks on the Stone spaces of the integers and the reals without AC, Bull. Polish Acad. Sci. Math. 59 (2011), 101-114.
[5] E. Hall, K. Keremedis and E. Tachtsis, The existence of free ultrafilters on ω does not imply the extension of filters on ω to ultrafilters, Math. Logic Quart., to appear.
[6] P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, Math. Surveys Monogr. 59, Amer. Math. Soc., Providence, RI, 1998.
[7] T. Jech, The Axiom of Choice, North-Holland, Amsterdam, 1973.
[8] K. Keremedis, Tychonoff products of two-element sets and some weakenings of the Boolean prime ideal theorem, Bull. Polish Acad. Sci. Math. 53 (2005), 349-359.
[9] K. Keremedis and E. Tachtsis, Countable compact Hausdorff spaces need not be metrizable in ZF, Proc. Amer. Math. Soc. 135 (2007), 1205-1211.
[10] G. P. Monro, On generic extensions without the axiom of choice, J. Symbolic Logic 48 (1983), 39-52.

Eric Hall
Department of Mathematics \& Statistics
College of Arts \& Sciences
University of Missouri - Kansas City
206 Haag Hall, 5100 Rockhill Rd
Kansas City, MO 64110, USA
E-mail: halle@umkc.edu

Kyriakos Keremedis
Department of Mathematics
University of the Aegean
Karlovassi, Samos 83200, Greece
E-mail: kker@aegean.gr

Received December 1, 2011

