MATHEMATICAL LOGIC AND FOUNDATIONS

On BPI Restricted to Boolean Algebras of Size Continuum

by

Eric HALL and Kyriakos KEREMEDIS

Presented by Stanisław KWAPIEŃ

Summary. We show:

- (i) The statement P(ω) = "every partition of ℝ has size ≤ |ℝ|" is equivalent to the proposition R(ω) = "for every subspace Y of the Tychonoff product 2^{P(ω)} the restriction B|Y = {Y ∩ B : B ∈ B} of the standard clopen base B of 2^{P(ω)} to Y has size ≤ |P(ω)|".
- (ii) In **ZF**, $\mathbf{P}(\omega)$ does not imply "every partition of $\mathcal{P}(\omega)$ has a choice set".
- (iii) Under $\mathbf{P}(\omega)$ the following two statements are equivalent:
 - (a) For every Boolean algebra of size $\leq |\mathbb{R}|~$ every filter can be extended to an ultrafilter.
 - (b) Every Boolean algebra of size $\leq |\mathbb{R}|$ has an ultrafilter.

1. Notation and terminology. Let $\mathbf{X} = (X, T)$ be a topological space. We shall denote topological spaces by boldface letters and underlying sets by lightface letters.

X is said to be *compact* iff every open cover \mathcal{U} of **X** has a finite subcover \mathcal{V} . Equivalently, **X** is compact iff every family \mathcal{G} of closed subsets of **X** with the *finite intersection property*, fip for abbreviation, has a non-empty intersection.

A subset A of X is called a *regular open set* if A = int(A). It is known that the set of all regular open sets of **X** forms a Boolean algebra under the following set of operations:

- 1 = X and $0 = \emptyset$,
- $U \wedge V = U \cap V$,

2010 Mathematics Subject Classification: 03E25, 03G05, 06E25.

Key words and phrases: weak axioms of choice, filters, ultrafilters, Boolean prime ideal theorem, regular open sets.

- $U \lor V = \operatorname{int}(\overline{U \cup V}),$
- $U' = X \setminus \overline{U}$.

Given a set X, we introduce the following notions and notations:

- 1. **BPI**(X): Every filter of X is included in an ultrafilter of X.
- 2. $\mathbf{UF}(X)$: There is a free ultrafilter on X.
- 3. $\mathbf{P}(X)$: Every partition of $\mathcal{P}(X)$ has size $\leq |\mathcal{P}(X)|$.
- 4. A family \mathcal{A} of subsets of X is called *independent* iff for any two nonempty finite, disjoint subsets $\mathcal{C}, \mathcal{B} \subseteq \mathcal{A}$ the set $\bigcap \mathcal{C} \cap \bigcap \{B^c : B \in \mathcal{B}\}$ is infinite.
- 5. A family $\mathcal{A} = \{A_i : i \in I\} \subseteq \mathcal{P}(X)$ is almost disjoint iff each A_i is infinite and for all $i, j \in I, i \neq j, |A_i \cap A_j| < \aleph_0$.
- 6. $\mathbf{2}^X$ denotes the Tychonoff product of the discrete space $\mathbf{2}$ (2 = {0,1}) and

$$\mathcal{B}(X) = \{ [p] : p \in \operatorname{Fn}(X, 2) \},\$$

where $\operatorname{Fn}(X, 2)$ is the set of all finite partial functions from X into 2, and

$$[p] = \{ f \in 2^{\mathbb{R}} : p \subset f \}$$

will denote the standard (clopen) base for the product topology on $\mathbf{2}^X$.

7. $\mathcal{F}(X)$ will denote the set of all filters of X together with the topology $T_{\mathcal{F}}$ generated by the family

 $\mathcal{C}_X = \{ [\mathcal{A}] : A \in \mathcal{P}(X) \}, \text{ where } [A] = \{ \mathcal{F} \in \mathcal{F}(X) : A \in \mathcal{F} \}.$

Since the function $H : \mathcal{P}(X) \to \mathcal{C}_X$, H(A) = [A], is clearly 1 : 1 and onto it follows that $|\mathcal{C}_X| = |\mathcal{P}(X)|$.

8. S(X) will denote the *Stone space* of the Boolean algebra of all subsets of X, i.e., the set of all ultrafilters on X together with the topology it inherits as a subspace of $\mathcal{F}(X)$.

Even though [A] for $A \in \mathcal{P}(X)$ may not be a closed set in $\mathcal{F}(X)$ (if $a \in A, b \in A^c$ and $C = \{a, b\}$ then $\mathcal{H}_C \notin [A]$ where \mathcal{H}_C is the filter of all supersets of C; since for every basic neighborhood [H] of \mathcal{H}_C , the filter $\mathcal{H}_{\{a\}}$ of all supersets of $\{a\}$ is in $[A] \cap [H]$, it follows that [A] is not closed), it turns out that the restriction $[A] \cap S(X)$ is a closed subset of S(X) and, in addition,

$$\mathcal{B}_X = \{ [A] \cap S(X) : A \in \mathcal{P}(X) \}$$

is a (clopen) base for S(X).

9. $S^*(X)$ will denote the subspace of all free ultrafilters of S(X) and

 $\mathcal{B}_X^* = \{ \langle A \rangle = [A] \cap S^*(X) : A \in \mathcal{P}(X) \}, \text{ where } \langle A \rangle = [A] \cap S^*(X),$

is the restriction of the base \mathcal{B}_X to $S^*(X)$. We point out here that $\neg \mathbf{UF}(X)$ implies $S^*(X) = \emptyset$ and consequently $\mathcal{B}_X^* = \emptyset$. Hence, $\mathcal{B}_X^* \neq \emptyset$ $\leftrightarrow \mathbf{UF}(X)$.

- 10. ~ will denote the equivalence relation on $\mathcal{P}(X)$ given by: $A \sim B$ iff $|A \bigtriangleup B| < \aleph_0$, where \bigtriangleup denotes the operation of symmetric difference, and $\mathcal{P}(X)$ /fin stands for the quotient set of ~. For every $A \in \mathcal{P}(X)$, (A) will denote the ~ equivalence class of A, i.e., $(A) = \{B \in \mathcal{P}(X) : |A \bigtriangleup B| < \aleph_0\}.$
- 11. **BF**(X): For every $Y \subseteq \mathcal{F}(X), |\{[A] \cap Y : A \in \mathcal{P}(X)\}| \le |\mathcal{P}(X)|.$
- 12. **BPI** (Boolean Prime Ideal Theorem, Form 14 in [6]): Every Boolean algebra has a prime ideal.

2. Introduction and preliminary results. There is a plethora of characterizations of **BPI** in several branches of mathematics. For most of these characterizations we refer the reader to the book by P. Howard and J. E. Rubin [6]. Well-known equivalents related to Boolean algebras are listed in the next theorem:

THEOREM 1. The following are equivalent:

- (i) **BPI**.
- (ii) Every ideal J of a Boolean algebra B is a subset of a prime ideal I of B.
- (iii) Every Boolean algebra has an ultrafilter.
- (iv) Every filter \mathcal{H} of a Boolean algebra \mathcal{B} is a subset of an ultrafilter \mathcal{F} of \mathcal{B} .
- (v) For every set X, $\mathbf{BPI}(X)$.

We recall here that for the proof of (i) \rightarrow (ii) one applies **BPI** to the quotient \mathcal{B}/J to get a prime ideal P of \mathcal{B}/J . Then the inverse image I of P under the canonical homomorphism is a prime ideal including J.

For $X = \omega$ the following characterizations of **BPI**(ω) have been established in [3] and [8] respectively.

THEOREM 2 ([3]). " $S(\omega)$ is compact" iff **BPI**(ω).

THEOREM 3 ([8]). The following are equivalent:

- (i) **BPI**(ω).
- (ii) The product $\mathbf{2}^{\mathbb{R}}$ is compact.
- (iii) In a Boolean algebra B of size ≤ |ℝ| every filter extends to an ultrafilter.

Proof. (iii) \rightarrow (i) is straightforward. For a proof of (ii) \leftrightarrow (i) different than the one given in [8] see [3].

To complete the proof of the theorem, fix a Boolean algebra $(\mathcal{B}, \mathbf{0}, \mathbf{1}, +, \cdot)$ of size $\leq |\mathbb{R}|$ (the operations + and \cdot of \mathcal{B} denote symmetric difference and join, respectively). Let \mathcal{H} be a filter of \mathcal{B} . By our hypothesis the Tychonoff product $2^{\mathcal{B}}$ is compact. We claim that for every $b \in \mathcal{B}$ the set

$$G_b = \{ f \in 2^{\mathcal{B}} : \mathbf{0} \notin f^{-1}(1) \land (\forall a, c \in f^{-1}(1), f(a.c) = 1) \land (f(b) = 1 \lor f(\mathbf{1} + b) = 1) \land \mathcal{H} \subseteq f^{-1}(1) \}$$

is closed. Indeed, fix $h \in G_h^c$. We consider the following cases:

- $h(\mathbf{0}) = 1$. Clearly, $V = [\{(\mathbf{0}, 1)\}]$ is a neighborhood of h missing G_b .
- $\exists a, c \in h^{-1}(1), h(a \cdot c) = 0$. Clearly, $V = [\{(a, 1), (b, 1), (a \cdot c, 0)\}]$ is a neighborhood of h disjoint from G_b .
- h(b) = 0 and h(1+b) = 0. It is easy to see that $V = [\{(b,0), (1+b,0)\}]$ is a neighborhood of h avoiding G_b .
- There exists $a \in \mathcal{H}$ with h(a) = 0. In this case, $V = [\{(a, 0)\}]$ is a neighborhood of h with $V \cap G_b = \emptyset$.

It is straightforward to verify that the family $\mathcal{G} = \{G_b : b \in \mathcal{B}\}$ has the fip. Thus, by the compactness of $\mathbf{2}^{\mathcal{B}}, \bigcap \mathcal{G} \neq \emptyset$. Clearly, for every $g \in \bigcap \mathcal{G}, g^{-1}(1)$ is an ultrafilter of \mathcal{B} including \mathcal{H} .

In view of Theorems 1 and 3, the most natural question which pops up at this point, is the following question which was also asked in [8]:

QUESTION 1. Can the statement: **WBPI**(ω) = Every Boolean algebra \mathcal{B} of size $\leq |\mathbb{R}|$ has an ultrafilter be added to the list of Theorem 3?

REMARK 4. (i) In [5] it has been shown that there exists a **ZF** model $\mathcal{N}[\Gamma]$ which is an extension of the basic Cohen model \mathcal{M} satisfying $\mathbf{UF}(\omega)$ but not **BPI**(ω). Thus, in $\mathcal{N}[\Gamma]$ the Boolean algebra $\mathcal{B} = (\mathcal{P}(\omega), \Delta, \cap)$, has free ultrafilters but there is a filter of \mathcal{B} which is not a subset of any ultrafilter of \mathcal{B} .

(ii) Regarding Question 1, we point out here that we cannot use the argument with the quotient Boolean algebra following Theorem 1. Indeed, \mathcal{B}/J is a partition of \mathcal{B} and since $|\mathcal{B}| \leq |\mathbb{R}|$, we may consider \mathcal{B}/J as a partition of \mathbb{R} . Hence, if $\mathbf{P}(\omega)$ holds true, then $|\mathcal{B}/J| \leq |\mathbb{R}|$ and $\mathbf{BPI}(\omega)$ is equivalent to $\mathbf{WBPI}(\omega)$. However, $\mathbf{P}(\omega)$ is unprovable in \mathbf{ZF} as the forthcoming Theorem 13 shows.

The research in this paper is motivated by Question 1. Using a different technique than the one outlined after Theorem 1, we will prove in Theorem 11 that under $\mathbf{BF}(\omega)$ the statements $\mathbf{BPI}(\omega)$ and $\mathbf{WBPI}(\omega)$ are equivalent. Surprisingly enough, we will see in Theorem 13 that $\mathbf{BF}(\omega)$ is just a disguised form of $\mathbf{P}(\omega)$.

3. Compactness of certain subspaces of $\mathcal{F}(\omega)$ in ZF. It is very well known that in ZFC the subspaces $S(\omega)$ and $S^*(\omega)$ of $\mathcal{F}(\omega)$ are compact. $S(\omega)$ is homeomorphic to the Čech–Stone compactification $\beta(\omega)$ of the discrete space ω , and $S^*(\omega) = S(\omega) \setminus \{\omega\}$ is a closed subspace of $S(\omega)$. However, in \mathbf{ZF} , $S(\omega)$ need not be compact. So, one may ask whether it could be the case that in some model \mathcal{M} of \mathbf{ZF} , $S^*(\omega)$ is compact but $S(\omega)$ fails to be compact.

Surprisingly enough, the question has a trivial answer. Indeed, suppose ω has no free ultrafilters (that is, $\mathbf{UF}(\omega)$ fails), In this case, $S^*(\omega)$ is empty, hence compact. Furthermore, $\mathbf{BPI}(\omega)$ must fail in this case, so $S(\omega)$ is not compact, by Theorem 2. (One model of $\mathbf{ZF} + \neg \mathbf{UF}(\omega)$ is Feferman's model $\mathcal{M}2$ in [6].)

However, the next theorem says that the possibility of $S^*(\omega) = \emptyset$ is in fact the only impediment to the equivalence of compactness of $S^*(\omega)$ and $S(\omega)$.

Theorem 5.

- (i) "S^{*}(ω) is compact" iff $\neg \mathbf{UF}(\omega) \lor$ "S(ω) is compact".
- (ii) $\mathbf{UF}(\omega) \wedge "S^*(\omega)$ is compact "iff " $S(\omega)$ is compact".
- (iii) $\mathbf{UF}(\omega)$ does not imply "S^{*}(ω) is compact".
- (iv) " $S^*(\omega)$ is compact" $\not\rightarrow \mathbf{UF}(\omega)$.

Proof. (i) We show (\rightarrow) as the converse is straightforward (recall that $S^*(\omega)$ is a closed subspace of $S(\omega)$). If $\mathbf{UF}(\omega)$ fails there is nothing to show. Assume $\mathbf{UF}(\omega) \wedge "S^*(\omega)$ is compact". We shall prove that " $S(\omega)$ is compact". To this end, it suffices by Theorem 2 to show that $\mathbf{BPI}(\omega)$ holds true. Let \mathcal{H} be a free filter of ω . Clearly, $\mathbf{UF}(\omega)$ implies that

$$\{\langle H \rangle : H \in \mathcal{H}\}$$

is a family of non-empty sets of the clopen base \mathcal{B}_{ω} with the fip. Hence, by the compactness of $S^*(\omega)$,

$$W = \bigcap \{ \langle H \rangle : H \in \mathcal{H} \} \neq \emptyset.$$

It is easy to see that every $\mathcal{F} \in W$ is an ultrafilter of ω extending \mathcal{H} .

(ii) (\rightarrow) is immediate from (i). For (\leftarrow) , use Theorem 2, which implies that " $S(\omega)$ is compact" implies $\mathbf{UF}(\omega)$.

(iii) It is known that in the model $\mathcal{N}[\Gamma]$ (see Remark 4), $\mathbf{UF}(\omega)$ holds but **BPI**(ω) fails. Hence, by (i) and Theorem 2, " $S^*(\omega)$ is compact" fails in $\mathcal{N}[\Gamma]$.

(iv) Note that in any model \mathcal{M} of \mathbf{ZF} and $\neg \mathbf{UF}(\omega)$, " $S^*(\omega)$ is compact" holds true.

4. The size of $|\mathcal{B}_{\omega}^*|$ and $|\mathcal{P}(\omega)/\text{fin}|$ in ZF. If $\mathbf{UF}(\omega)$ fails then $\mathcal{B}_{\omega}^* = \emptyset$ and there is nothing to say about $|\mathcal{B}_{\omega}^*|$. Regarding $\mathcal{P}(\omega)/\text{fin}$ however, we observe that in ZF,

(1)
$$|\mathcal{P}(\omega)/\operatorname{fin}| \ge |\mathbb{R}|.$$

Indeed, if $\mathcal{A} = \{A_i : i \in \mathbb{R}\}$ is an almost disjoint family of ω (one can easily define such families in **ZF**), then, for all distinct $i, j \in \mathbb{R}$, we have $(A_i) \neq (A_j)$ and the function $T : \mathbb{R} \to \mathcal{P}(\omega)/\text{fin given by } T(i) = (A_i)$ is easily seen to be 1 : 1.

We point out here that the inequality given in (1) can consistently be strict in **ZF**. Indeed, A. Blass has shown in [1, Proposition 3.2, p. 745 and Proposition 3.7, p. 748] that in his model $\mathcal{M}[\mathbb{R}_0]$, **UF**(ω) fails but $\mathcal{P}(\omega)/\text{fin}$ has a free ultrafilter. Since **UF**(ω) is equivalent to saying that \mathbb{R} has a free ultrafilter (see [5] for a proof), we see that possibly $|\mathcal{P}(\omega)/\text{fin}| \neq |\mathbb{R}|$. Thus, in view of (1), $\mathcal{M}[\mathbb{R}_0]$ satisfies $|\mathcal{P}(\omega)/\text{fin}| > |\mathbb{R}|$. With no free ultrafilters on ω in this model, $|\mathcal{B}_{\omega}^*| = 0$. In particular,

$$\mathcal{M}[\mathbb{R}_0] \vDash |\mathcal{B}^*_{\omega}| < |\mathbb{R}| < |\mathcal{P}(\omega)/\mathrm{fin}|.$$

In $\mathbf{ZF} + \mathbf{UF}(\omega)$ things are different. We observe that for every $A \in \mathcal{P}(\omega), \langle A \rangle \neq \emptyset$, and for every $A, B \in \mathcal{P}(\omega)$,

(2)
$$\langle A \rangle = \langle B \rangle$$
 iff $\langle A \rangle = \langle B \rangle$ (iff $|A \bigtriangleup B| < \aleph_0$).

To see (\rightarrow) assume that $\langle A \rangle = \langle B \rangle$ but $|A \triangle B| = \aleph_0$. Then either $|A \backslash B| = \aleph_0$ or $|B \backslash A| = \aleph_0$. Assume that $|A \backslash B| = \aleph_0$ and let, by $\mathbf{UF}(\omega)$, \mathcal{U} be a free ultrafilter of $A \backslash B$. Clearly, the filter \mathcal{F} of ω generated by \mathcal{U} is easily seen to be a free ultrafilter on ω such that $\mathcal{F} \in \langle A \rangle \setminus \langle B \rangle$, a contradiction. Thus, $|A \triangle B| < \aleph_0$.

To see (\leftarrow) assume that $|A \bigtriangleup B| < \aleph_0$ and $\langle A \rangle \neq \langle B \rangle$. Clearly, either $\langle A \rangle \setminus \langle B \rangle \neq \emptyset$ or $\langle B \rangle \setminus \langle A \rangle \neq \emptyset$. Assume $\langle A \rangle \setminus \langle B \rangle \neq \emptyset$ and fix $\mathcal{F} \in \langle A \rangle \setminus \langle B \rangle$. Clearly, $A, B^c \in \mathcal{F}$. Hence, $A \cap B^c \in \mathcal{F}$ and since \mathcal{F} is free, it follows easily that $|A \cap B^c| = \aleph_0$. Thus, $|A \bigtriangleup B| = \aleph_0$, a contradiction.

Hence, by (2), the function $f : \mathcal{P}(\omega)/\text{fin} \to \mathcal{B}^*_{\omega}$ given by the formula $f(G) = \bigcup \{ \langle A \rangle : A \in G \}$ is well defined, 1 : 1 and onto. Thus, $\mathbf{UF}(\omega)$ implies $|\mathcal{B}^*_{\omega}| = |\mathcal{P}(\omega)/\text{fin}|$. The converse also holds, since if $|\mathcal{B}^*_{\omega}| \neq 0$ then $\mathbf{UF}(\omega)$. Thus

(3)
$$\mathbf{UF}(\omega) \quad \text{iff} \quad |\mathcal{B}^*_{\omega}| = |\mathcal{P}(\omega)/\text{fin}|.$$

Hence, in view of (3) and (1), we have a proof of part (i) of the next theorem.

Theorem 6.

- (i) $|\mathcal{P}(\omega)/\text{fin}| \leq |\mathbb{R}| \wedge \mathbf{UF}(\omega)$ iff $|\mathcal{B}^*_{\omega}| = |\mathbb{R}|$.
- (ii) " $\mathcal{P}(\omega)/\text{fin}$ is well-orderable" iff " $\mathcal{P}(\omega)$ is well-orderable". Hence, " $\mathcal{P}(\omega)/\text{fin}$ is well-orderable" implies $|\mathcal{B}_{\omega}^*| = |\mathcal{P}(\omega)/\text{fin}| = |\mathbb{R}|$.

Proof. (ii) (\rightarrow) If $\mathcal{P}(\omega)/\text{fin}$ is well-orderable, then by (1), \mathbb{R} is well-orderable. Hence, $\mathcal{P}(\omega)/\text{fin}$ has a choice set, and $\mathbf{UF}(\omega)$ holds true.

 (\leftarrow) This is straightforward.

REMARK 7. Since $\mathcal{P}(\omega)/\text{fin}$ is a partition of $\mathcal{P}(\omega)$, it follows that if " $\mathcal{P}(\omega)/\text{fin}$ has a choice set" then $|\mathcal{P}(\omega)/\text{fin}| \leq |\mathbb{R}|$. Thus, " $\mathcal{P}(\omega)/\text{fin}$ has a choice set" $\wedge \mathbf{UF}(\omega) \to |\mathcal{P}(\omega)/\text{fin}| = |\mathcal{B}^*_{\omega}| = |\mathbb{R}|$.

Next we show that the size of each of the bases C_{ω} and \mathcal{B}_{ω} is equal to $|\mathbb{R}|$. THEOREM 8. $|C_{\omega}| = |\mathcal{B}_{\omega}| = |\mathbb{R}|$.

Proof. The functions $T : \mathcal{P}(\omega) \to \mathcal{C}_{\omega}$, T(A) = [A], and $H : \mathcal{P}(\omega) \to \mathcal{B}_{\omega}$, $H(A) = [A] \cap S(\omega)$, are clearly 1 : 1 and onto. Indeed, if $A \neq B$ then either $A \setminus B \neq \emptyset$ or $B \setminus A \neq \emptyset$. Assume $A \setminus B \neq \emptyset$. Then the filter \mathcal{F} of all supersets of $A \setminus B$ is in $[A] \setminus [B]$, and the fixed ultrafilter \mathcal{F}_x generated by any element $x \in A \setminus B$ is in $[A] \cap S(\omega)$ but not in $[B] \cap S(\omega)$. Hence, $T(A) \neq T(B)$ and $H(A) \neq H(B)$.

QUESTION 2.

- (a) Does $\mathbf{UF}(\omega)$ imply $|\mathcal{B}^*_{\omega}| \leq |\mathbb{R}|$?
- (b) What is the status of the implications between " $|\mathcal{B}_{\omega}^*| = |\mathbb{R}|$ " and " $\mathcal{P}(\omega)$ /fin has a choice set"?

REMARK 9. Regarding Question 2(a), we note that $|[\mathbb{R}]^{\omega}| = |\mathbb{R}|$ (Form 368 in [6]) implies the inequality $|\mathcal{B}^*_{\omega}| \leq |\mathbb{R}|$. However, the status of the implication between $\mathbf{UF}(\omega)$ and " $|[\mathbb{R}]^{\omega}| = |\mathbb{R}|$ " is unknown to us. It is also indicated as unknown in [6].

In [4] it has been shown, in **ZF**, that the function

$$T: S(\omega) \to \mathbf{2}^{\mathcal{P}(\omega)}, \quad T(\mathcal{F}) = \chi_{\mathcal{F}},$$

is 1 : 1, onto, continuous and such that for every $A \in \mathcal{P}(\omega)$,

$$T([A]) = [\{(A,1)\}] \cap T(S(\omega)).$$

If $\mathbf{UF}(\omega)$ holds true, then for every $A \in \mathcal{P}(\omega)$, $\langle A \rangle \neq \emptyset$ and consequently the restriction $T^*: S^*(\omega) \to \mathbf{2}^{\mathcal{P}(\omega)}$ of T to $S^*(\omega)$ is an embedding such that

$$T^*(\langle A \rangle) = [\{(A,1)\}] \cap T^*(S^*(\omega)).$$

Hence,

 $\begin{aligned} |\mathcal{B}_{\omega}^{*}| &\leq |\mathbb{R}| \quad \text{iff} \quad |\{[p] \cap T^{*}(S^{*}(\omega)) : p \in \operatorname{Fn}(\mathcal{P}(\omega), 2)\}| \leq |\mathbb{R}|. \\ \text{Thus, } \mathbf{UF}(\omega) \text{ and } \mathbf{R}(\omega) \; (= \text{For every } H \subset 2^{\mathcal{P}(\omega)}, |\{[p] \cap H : p \in \operatorname{Fn}(\mathcal{P}(\omega), 2)\}| \\ &\leq |\mathbb{R}|) \text{ together imply } |\mathcal{B}_{\omega}^{*}| = |\mathbb{R}|. \end{aligned}$

We shall come back again to $\mathbf{R}(\omega)$ in Section 6, where we will show that $\mathbf{R}(\omega)$, $\mathbf{BF}(\omega)$ and $\mathbf{P}(\omega)$ are all equivalent.

5. **BPI**(ω) and **WBPI**(ω) are equivalent in **ZF** + **BF**(ω). Before we state and prove the main result of this section, we need to establish some auxiliary results.

Proposition 10.

- (i) $\mathcal{C}_{\omega} (= \{ [A] : A \in \mathcal{P}(\omega) \})$ is a base for $T_{\mathcal{F}}$ of size $\mathcal{P}(\omega)$.
- (ii) Let $A \in \mathcal{P}(\omega)$. Then $\mathcal{F} \in \overline{[A]}$ iff $\mathcal{F} \cup \{A\}$ has the fip.
- (iii) For all $A \in \mathcal{P}(\omega)$, [A] is a regular open set.

Proof. (i) Clearly C_{ω} is closed under finite intersections $(\mathcal{F} \in [A] \cap [B])$ iff $A, B \in \mathcal{F}$ iff $A \cap B \in \mathcal{F}$ iff $\mathcal{F} \in [A \cap B]$ and covers $\mathcal{F}(\omega)$. The second assertion follows from Theorem 8.

(ii) Fix $A \in \mathcal{P}(\omega)$. We have: $\mathcal{F} \in [A]$ iff $\forall F \in \mathcal{F}, [F] \cap [A] \neq \emptyset$ iff $\forall F \in \mathcal{F}, [F \cap A] \neq \emptyset$ iff $\forall F \in \mathcal{F}, F \cap A \neq \emptyset$ (\rightarrow of the last equivalence is straightforward, and for the other implication note that the filter \mathcal{G} generated by $\mathcal{F} \cup \{A\}$ satisfies $\mathcal{G} \in [A \cap F]$; hence $[A \cap F] \neq \emptyset$ iff $\mathcal{F} \cup \{A\}$ has the fip.

(iii) Fix $A \in \mathcal{P}(\omega)$. Obviously, $[A] \subseteq \operatorname{int}([A])$. To show $\operatorname{int}([A]) \subseteq [A]$, let [B] be any basic open set such that $[B] \subseteq \overline{[A]}$. It suffices to show $[B] \subseteq [A]$. Suppose $[B] \not\subseteq [A]$. Then $B \not\subseteq A$, so let \mathcal{F} be the filter generated by $\{B \setminus A\}$. Then $\mathcal{F} \in [B]$, but by (ii), $\mathcal{F} \notin \overline{[A]}$, a contradiction.

THEOREM 11. Assume $\mathbf{BF}(\omega)$. The following are equivalent:

- (i) In every Boolean algebra of size $\leq |\mathbb{R}|$ every filter can be extended to an ultrafilter.
- (ii) Every Boolean algebra of size $\leq |\mathbb{R}|$ has an ultrafilter.
- (iii) **BPI** (ω) .

Proof. In view of Theorem 3 and the obvious implication (i) \rightarrow (ii), it suffices to show that (ii) implies (iii). Fix a free filter \mathcal{H} of ω and consider the subspace $\mathcal{H}(\omega) = \{\mathcal{F} \in \mathcal{F}(\omega) : \mathcal{H} \subseteq \mathcal{F}\}$ of $\mathcal{F}(\omega)$.

CLAIM. For every $A \in \mathcal{P}(\omega)$, $[A] \cap \mathcal{H}(\omega)$ is a regular open subset of $\mathcal{H}(\omega)$.

Proof of the Claim. Fix $A \in \mathcal{P}(\omega)$. Clearly, $\operatorname{int}_{\mathcal{H}(\omega)}(\overline{[A]} \cap \mathcal{H}(\omega)) = \operatorname{int}_{\mathcal{H}(\omega)}(\overline{[A]} \cap \mathcal{H}(\omega))$. We show that this set is equal to $[A] \cap \mathcal{H}(\omega)$. Since $[A] \cap \mathcal{H}(\omega) \subseteq \overline{[A]} \cap \mathcal{H}(\omega)$, it follows that

(4)
$$[A] \cap \mathcal{H}(\omega) \subseteq \operatorname{int}_{\mathcal{H}(\omega)}(\overline{[A]} \cap \mathcal{H}(\omega)).$$

For the reverse inclusion, we relativize the proof of Proposition 10(iii). Assume $[B] \cap \mathcal{H}(\omega) \subseteq \overline{[A]} \cap \mathcal{H}(\omega)$. Let $\mathcal{F} \in [B] \cap \mathcal{H}(\omega)$, and suppose toward a contradiction that $\mathcal{F} \notin [A]$. Since $A \notin \mathcal{F}$, the collection $\mathcal{F} \cup \{B \setminus A\}$ has the fip, so it generates a filter \mathcal{G} . But then $\mathcal{G} \in [B] \cap \mathcal{H}(\omega)$ and $\mathcal{G} \notin \overline{[A]}$, a contradiction. Thus $\mathcal{F} \in [A] \cap \mathcal{H}(\omega)$, and

(5)
$$\operatorname{int}_{\mathcal{H}(\omega)}(\overline{[A]} \cap \mathcal{H}(\omega)) \subseteq [A] \cap \mathcal{H}(\omega).$$

From (4) and (5) we have $\operatorname{int}_{\mathcal{H}(\omega)}(\overline{[A] \cap \mathcal{H}(\omega)}) = [A] \cap \mathcal{H}(\omega)$ as required.

By the claim, $\mathcal{A} = \{ [A] \cap \mathcal{H}(\omega) : A \in \mathcal{P}(\omega) \}$ is a family of regular open sets of $\mathcal{H}(\omega)$ and by $\mathbf{BF}(\omega), |\mathcal{A}| \leq |\mathbb{R}|.$

Let \mathcal{B} be the Boolean algebra of all regular open sets of $\mathcal{H}(\omega)$ generated by the family \mathcal{A} . Clearly, $|\mathcal{B}| \leq |\mathbb{R}|$. Let, by our hypothesis, \mathcal{U} be an ultrafilter of \mathcal{B} and put

$$\mathcal{F} = \{ A \in \mathcal{P}(\omega) : [A] \cap \mathcal{H}(\omega) \in \mathcal{U} \}.$$

To complete the proof of the theorem it suffices to show:

CLAIM. \mathcal{F} is an ultrafilter of ω and $\mathcal{H} \subseteq \mathcal{F}$.

Proof of the Claim. Since, for every $H \in \mathcal{H}$, $[H] \cap \mathcal{H}(\omega) = \mathcal{H}(\omega)$ and \mathcal{U} is a filter, it follows that $H \in \mathcal{F}$, and consequently $\mathcal{H} \subseteq \mathcal{F}$. Since $\omega \in \mathcal{H}$, it follows that $\omega \in \mathcal{F}$. Furthermore, it is trivially true that $\emptyset \notin \mathcal{F}$.

We next show that \mathcal{F} is a filter. Fix $A, B \in \mathcal{F}$. Then, $[A] \cap \mathcal{H}(\omega), [B] \cap \mathcal{H}(\omega) \in \mathcal{U}$, and consequently $[A] \cap \mathcal{H}(\omega) \cap [B] \cap \mathcal{H}(\omega) = [A \cap B] \cap \mathcal{H}(\omega) \in \mathcal{U}$. Thus, $A \cap B \in \mathcal{F}$.

Fix $A \in \mathcal{F}$ and $B \in \mathcal{P}(\omega)$ with $A \subseteq B$. We show that $B \in \mathcal{F}$. Clearly, $[A] \cap \mathcal{H}(\omega) \in \mathcal{U}$ and $[A] \cap \mathcal{H}(\omega) \subseteq [B] \cap \mathcal{H}(\omega)$. Thus, $[B] \cap \mathcal{H}(\omega) \in \mathcal{U}$ and $B \in \mathcal{F}$ as required.

Next we show that \mathcal{F} is maximal. Fix $A \in \mathcal{P}(\omega)$. For every filter $\mathcal{G} \in \mathcal{H}(\omega)$, one of $\mathcal{G} \cup \{A\}$ or $\mathcal{G} \cup \{A^c\}$ has the fip, so $\mathcal{G} \in \overline{[A]} \cup \overline{[A^c]}$. It follows that $\overline{([A] \cap \mathcal{H}(\omega)) \cup ([A^c] \cap \mathcal{H}(\omega))} = \mathcal{H}(\omega)$, and hence $[A] \vee [A^c] = \mathbf{1}$ in the regular open algebra \mathcal{B} . Thus either $[A] \in \mathcal{U}$ or $[A^c] \in \mathcal{U}$, and either $A \in \mathcal{F}$ or $A^c \in \mathcal{F}$.

REMARK 12. Let $\mathcal{H}(\omega)$ and \mathcal{A} be as in the proof of Theorem 11. Clearly, for every $A, B \in \mathcal{P}(\omega)$ satisfying

(6)
$$\exists H \in \mathcal{H} \text{ such that } H \cap (A \setminus B) = H \cap (B \setminus A) = \emptyset$$

we have $[A] \cap \mathcal{H}(\omega) = [B] \cap \mathcal{H}(\omega)$. Furthermore, the binary relation \sim on $\mathcal{P}(\omega)$ given by

 $A \sim B$ iff $\exists H \in \mathcal{H}$ satisfying (6)

is easily seen to be an equivalence relation on $\mathcal{P}(\omega)$. Hence, if $\mathbf{P}(\omega)$ holds true, then $|\mathcal{A}| = |\mathcal{P}(\omega)/\sim| \leq |\mathbb{R}|$, and the conclusion of Theorem 11 goes through if we replace the hypothesis $\mathbf{BF}(\omega)$ with $\mathbf{P}(\omega)$.

6. Some equivalents of $\mathbf{BF}(\omega)$. Remarks 9 and 12 indicate that the statements $\mathbf{BF}(\omega)$, $\mathbf{R}(\omega)$ and $\mathbf{P}(\omega)$ might be equivalent. We show next that this is the case.

THEOREM 13. The following are equivalent:

- (a) **BF**(ω).
- (b) $\mathbf{R}(\omega)$: For every $H \subset 2^{\mathcal{P}(\omega)}, |\{[p] \cap H : p \in \operatorname{Fn}(\mathcal{P}(\omega), 2)\}| \leq |\mathcal{P}(\omega)|.$
- (c) $\mathbf{P}(\omega)$: Every disjoint family of subsets of $\mathcal{P}(\omega)$ has size $\leq |\mathcal{P}(\omega)|$.

In particular, "every partition of \mathbb{R} has a selector" implies $\mathbf{BF}(\omega)$.

Proof. (a) \rightarrow (b). Fix an independent family \mathcal{A} of subsets of ω of size $|\mathbb{R}|$ (such a family is known to exist in **ZF**) and let $H \subseteq 2^{\mathcal{A}}$. We will show that $|\{H \cap [p] : p \in \operatorname{Fn}(\mathcal{A}, 2)\}| \leq |\mathbb{R}|$.

Let $S = \{\mathcal{F}_h : h \in H\}$ where, for every $h \in H$, \mathcal{F}_h is the filter on ω generated by the filterbase

 $\mathcal{W}_{h} = \{B_{0} \cap \cdots \cap B_{n-1} : 0 < n < \omega \text{ and } \forall i \in n \ (h(B_{i}) = 1 \text{ or } h(B_{i}^{c}) = 0)\}.$ It is straightforward to verify that for all $h, f \in H, f \neq h \leftrightarrow \mathcal{F}_{f} \neq \mathcal{F}_{h}.$ Hence, |H| = |S|.

For every $p \in \operatorname{Fn}(\mathcal{A}, 2)$ let

$$A_p = \bigcap \{ B \in \mathcal{A} : p(B) = 1 \text{ or } p(B^c) = 0 \}$$

By our hypothesis,

(7)
$$|\{S \cap [A_p] : p \in \operatorname{Fn}(\mathcal{A}, 2)\}| \le |\{S \cap [A] : A \in \mathcal{P}(\omega)\}| \le |\mathbb{R}|.$$

CLAIM. For every $h \in H$ and $p \in \operatorname{Fn}(\mathcal{A}, 2), \mathcal{F}_h \in [A_p] \leftrightarrow h \in [p].$

Proof of the Claim. To see (\rightarrow) we assume that $\mathcal{F}_h \in [A_p]$ but $h \notin [p]$. This means that there exists $A \in \text{Dom}(p)$ such that $h(A) \neq p(A)$. We consider the following cases:

• h(A) = 1 and p(A) = 0. Since $\mathcal{F}_h \in [A_p]$ and h(A) = 1 we have $A_p \in \mathcal{F}_h$ and $A \in \mathcal{F}_h$. Since p(A) = 0 we infer that $A^c \supseteq A_p$, hence $A^c \in \mathcal{F}_h$, a contradiction.

• h(A) = 0 and p(A) = 1. Since h(A) = 0 we have $A^c \in \mathcal{F}_h$. Since p(A) = 1 we see that $A \supseteq A_p$, hence $A \in \mathcal{F}_h$, a contradiction.

Hence, $h \in [p]$.

To see (\leftarrow) assume that $h \in [p]$. Clearly, $A_p \in \mathcal{W}_h$, and consequently $A_p \in \mathcal{F}_h$. Hence, $\mathcal{F}_h \in [A_p]$ as required, finishing the proof of the claim.

In view of the claim, it follows that for every $p, q \in \operatorname{Fn}(\mathcal{A}, 2)$,

 $S \cap [A_p] = S \cap [A_q] \iff H \cap [p] = H \cap [q].$

Hence, the function $f : \{H \cap [p] : p \in \operatorname{Fn}(\mathcal{A}, 2)\} \to \{S \cap [A_p] : p \in \operatorname{Fn}(\mathcal{A}, 2)\}$ given by

$$f(H \cap [p]) = S \cap [A_p]$$

is well defined and 1 : 1. Hence, by (7), $|\{H \cap [p] : p \in \operatorname{Fn}(\mathcal{A}, 2)\}| \leq |\mathbb{R}|$ as required.

(b) \rightarrow (c). Fix a partition $\mathcal{P} = \{P_i : i \in I\}$ of $\mathcal{P}(\omega)$ and let $S = \{\chi_{P_i} : i \in I\}$. Let $B = \{p \in \operatorname{Fn}(\mathcal{P}(\omega), 2) : \operatorname{Dom}(p) = p^{-1}(1) \subset P_i \text{ for some } i \in I\}$. Clearly, for every $p \in B$, $\operatorname{Dom}(p) \subset P_i$, $[p] \cap S = \{\chi_{P_i}\}$ and, by our hypothesis, $|\mathcal{P}| = |S| = |\{[p] \cap S : p \in B\}| \leq |\{[p] \cap S : p \in \operatorname{Fn}(\mathcal{P}(\omega), 2)\}| \leq |\mathbb{R}|$ as required.

(c) \rightarrow (a). Fix $S \subseteq \mathcal{F}(\omega)$. It is easy to see that the binary relation \approx on \mathcal{C}_{ω} given by $P \approx Q$ iff $P \cap S = Q \cap S$ is an equivalence relation. Since $\mathcal{C}_{\omega}/\approx$ is a partition of \mathcal{C}_{ω} and \mathcal{C}_{ω} in view of Theorem 8(i) has size $|\mathbb{R}|$, it follows by our hypothesis that $|\mathcal{C}_{\omega}/\approx| \leq |\mathbb{R}|$. Since $|\{[A] \cap S : A \in \mathcal{P}(\omega)\}| = |\mathcal{C}_{\omega}/\approx|$, the conclusion of $\mathbf{BF}(\omega)$ for the set $\{[A] \cap S : A \in \mathcal{P}(\omega)\}$ is satisfied.

REMARK 14. (i) We point out here that for every infinite set X, $\mathbf{BF}(X)$ and $\mathbf{P}(X)$ are equivalent.

To see $\mathbf{BF}(X) \to \mathbf{P}(X)$, fix a partition $P = \{A_i : i \in I\}$ of X and let $Y = \{\mathcal{F}_i : i \in I\}$, where for every $i \in I$, \mathcal{F}_i is the filter generated by $\{A_i\}$. By $\mathbf{BF}(X)$ we have $|\{[A] \cap Y : A \in \mathcal{P}(X)\}| \leq |X|$. Since $[A_i] \cap Y = \{\mathcal{F}_i\}$ for every $i \in I$, it follows that the function $f : I \to \{[A] \cap Y : A \in \mathcal{P}(X)\}$, $f(i) = \{\mathcal{F}_i\}$, is 1 : 1. Thus, $|P| \leq |X|$.

To see that $\mathbf{P}(X) \to \mathbf{BF}(X)$, fix $Y \subseteq \mathcal{F}(X)$ and define an equivalence relation \sim on $\mathcal{P}(X)$ by requiring: $A \sim B$ iff $[A] \cap Y = [B] \cap Y$. Clearly, $|\{[A] \cap Y : A \in \mathcal{P}(X)\}| = |\mathcal{P}(X)/\sim| \leq |X|.$

(ii) We do not know whether for every infinite set X, $\mathbf{R}(X)$ and $\mathbf{P}(X)$ are equivalent. Under the extra assumption $\mathbf{LIF}(X) = "X$ has an independent family of size $|\mathcal{P}(X)|$ " the proof of Theorem 13 goes through with X in place of ω . However, it is consistent with \mathbf{ZF} that there exist sets having no independent families. e.g., sets which do not split into two infinite sets. For the relative strength of $\forall X$, $\mathbf{LIF}(X)$ we refer the reader to [2].

7. Independence results

Theorem 15.

- (i) $\mathbf{P}(\omega)$ implies "every family $\mathcal{A} = \{A_i : i \in \mathbb{R}\}$ of 2-element sets of $\mathcal{P}(\mathbb{R})$ has a choice set". In particular, $\mathbf{P}(\omega)$ is not provable in \mathbf{ZF} .
- (ii) $\mathbf{UF}(\omega)$ does not imply $\mathbf{P}(\omega)$. In particular, $\mathbf{UF}(\omega)$ does not imply "every partition of \mathbb{R} has a choice set" (Form 203 in [6]).
- (iii) $\mathbf{P}(\omega)$ does not imply "every partition of \mathbb{R} has a choice set".

Proof. (i) Fix a family $\mathcal{A} = \{A_i : i \in \mathbb{R}\}\$ of 2-element sets of $\mathcal{P}(\mathbb{R})$. Without loss of generality we may assume that $\bigcap A_i = \emptyset$ for all $i \in \mathbb{R}$ (if $A, B \in A_i$ and $A \subseteq B$ then we choose A, otherwise if $A \setminus B \neq \emptyset$ and $B \setminus A \neq \emptyset$ then we replace A by $A \setminus B$ and B with $B \setminus A$). Fix a 1 : 1 and onto function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and for every $i \in \mathbb{R}$, let $f_i : \mathbb{R} \to \mathbb{R} \times \{i\}$ be the function given by $f_i(x) = (x, i)$. Clearly, $\{\{f_i(X) : X \in A_i\} : i \in \mathbb{R}\}\$ is a family of subsets of $\mathcal{P}(\mathbb{R} \times \mathbb{R})$ such that $\bigcup\{\{f_i(X) : X \in A_i\} : i \in \mathbb{R}\}\$ is a family of disjoint subsets of $\mathbb{R} \times \mathbb{R}$. Hence, $\mathcal{H} = \{f(f_i(X)) : i \in \mathbb{R}, X \in A_i\}\$ is a family of disjoint subsets of \mathbb{R} . Thus, by our hypothesis, we can identify \mathcal{H} with a subset of \mathbb{R} and consequently we may consider \mathcal{A} as a family of 2-element subsets of \mathbb{R} . Hence, we may choose from each member of \mathcal{A} its largest element. The second assertion follows from the fact that the statement "every family $\mathcal{A} = \{A_i : i \in \mathbb{R}\}$ of 2-element sets of $\mathcal{P}(\mathbb{R})$ has a choice set" fails in the second Cohen Model, Model $\mathcal{M}7$ in [6]. So, $\mathbf{P}(\omega)$ fails in $\mathcal{M}7$.

(ii) It is shown in [5] that there is a model of $\mathbf{ZF} + \mathbf{UF}(\omega)$ in which there is a family of 2-element members of $\mathcal{P}(\mathbb{R})$ with no choice set. Thus $\mathbf{P}(\omega)$ is false in this model by (i).

(iii) Let \mathcal{N} denote the Basic Cohen Model. We recall that \mathcal{N} is a symmetric model obtained by adding first a countable number of generic reals along with the set A containing them to a ground model \mathcal{M} of **ZFC** + **CH** and then retracting to a model $\mathcal{N} \subset \mathcal{M}[G]$ which contains the set A but no well-ordered enumeration of any infinite subset of A. We recall the following additional facts about $\mathcal{N}, \mathcal{M}[G]$ and the set A:

- (a) \mathcal{M} and $\mathcal{M}[G]$ have the same cardinal numbers. In particular, in \mathcal{N} we have $\aleph_1 < |\mathbb{R}|$ ($\aleph_1 = |\mathcal{P}(\omega)^{\mathcal{M}}|$ and $\mathcal{P}(\omega)^{\mathcal{M}} \subset \mathcal{P}(\omega)^{\mathcal{N}}$ imply $\aleph_1 < |\mathcal{P}(\omega)^{\mathcal{N}}| = |\mathbb{R}|$).
- (b) For any $X \in \mathcal{N}$, there is an ordinal α and a function $f \in \mathcal{N}$ such that $f: X \to [A]^{<\omega} \times \alpha$ is one-to-one (see Lemma 5.25 in [7]).
- (c) The set A is dense in \mathbb{R} .

Clearly, in view of (c), $\mathcal{P} = \{P_n \cap A : n \in \mathbb{N}\} \cup \{\mathbb{R} \setminus A\}$, where $P_n = (n, n+1) \cap A$, is a (countable) partition of \mathbb{R} without a choice set.

We show next that every partition of \mathbb{R} in \mathcal{N} has size $\leq |\mathbb{R}|$. To see this, fix some $\mathcal{P} \in \mathcal{N}$ which is a partition of \mathbb{R} . By (b), let k be the least well-ordered cardinal number α for which there is a 1 : 1 function $f \in \mathcal{N}$, $f: P \to \alpha \times [A]^{<\omega}$. In $\mathcal{M}[G]$, where \mathcal{P} has a choice function, we have $|\mathcal{P}| \leq$ $|\mathbb{R}| = \aleph_1$ by (a). Thus there is no onto function from \mathcal{P} to \aleph_2 , in $\mathcal{M}[G]$ or in \mathcal{N} . It follows that $k \leq \aleph_1$, and so in \mathcal{N} , $|\mathcal{P}| \leq |\aleph_1 \times [A]^{<\omega}|$. Since $(\aleph_1 < |\mathbb{R}|)^{\mathcal{N}}$ by (a) and $|[A]^{<\omega}| \leq |\mathbb{R}|$, we have $|\mathcal{P}| \leq |\mathbb{R}|$.

References

- A. Blass, The model of set theory generated by countably many generic reals, J. Symbolic Logic 46 (1981), 732–752.
- [2] E. Hall and K. Keremedis, *Independent families and some notions of finiteness*, submitted.
- [3] E. Hall and K. Keremedis, Cech-Stone compactifications of discrete spaces in ZF and some weak forms of the Boolean prime ideal theorem, Topology Proc. 41 (2013), 111–122.
- [4] H. Herrlich, K. Keremedis and E. Tachtsis, Remarks on the Stone spaces of the integers and the reals without AC, Bull. Polish Acad. Sci. Math. 59 (2011), 101–114.
- [5] E. Hall, K. Keremedis and E. Tachtsis, The existence of free ultrafilters on ω does not imply the extension of filters on ω to ultrafilters, Math. Logic Quart., to appear.
- [6] P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, Math. Surveys Monogr. 59, Amer. Math. Soc., Providence, RI, 1998.

- [7] T. Jech, The Axiom of Choice, North-Holland, Amsterdam, 1973.
- [8] K. Keremedis, Tychonoff products of two-element sets and some weakenings of the Boolean prime ideal theorem, Bull. Polish Acad. Sci. Math. 53 (2005), 349–359.
- K. Keremedis and E. Tachtsis, Countable compact Hausdorff spaces need not be metrizable in ZF, Proc. Amer. Math. Soc. 135 (2007), 1205–1211.
- [10] G. P. Monro, On generic extensions without the axiom of choice, J. Symbolic Logic 48 (1983), 39–52.

Eric Hall

Department of Mathematics & Statistics College of Arts & Sciences University of Missouri – Kansas City Kar 206 Haag Hall, 5100 Rockhill Rd Kansas City, MO 64110, USA E-mail: halle@umkc.edu

Kyriakos Keremedis Department of Mathematics University of the Aegean Karlovassi, Samos 83200, Greece E-mail: kker@aegean.gr

Received December 1, 2011

(7862)