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A Positive Definite Binary Quadratic Form

as a Sum of Five Squares of Linear Forms

(Completion of Mordell’s Proof)
by

A. SCHINZEL

Summary. The paper completes an incomplete proof given by L. J. Mordell in 1930 of
the following theorem: every positive definite classical binary quadratic form is the sum
of five squares of linear forms with integral coefficients.

Let f(X,Y ) = aX2 + 2hXY + bY 2, where a ≥ 0, h, b are given integers
and ∆ = ab− h2 ≥ 0. L. J. Mordell [3] considered the equation

(1) f(X,Y ) =
n∑
r=1

(arX + brY )2,

where ar, br (r = 1, . . . , n) are integers. He proved that for n = 4 the
equation (1) is solvable if and only if ∆ 6= 4ρ(8σ + 7), where ρ ≥ 0, σ ≥ 0
are integers, i.e. ∆ can be expressed as a sum of three integer squares. For
n = 5 Mordell asserted that (1) is always solvable, but the proof given on pp.
280–282 seems to contain a gap on p. 282. The author says “Suppose next
that ∆ = 4ρ(8σ + 7) (ρ > 0). By a theorem of Lipschitz [Matthews, Theory
of Numbers, pp. 159–62], every properly primitive form of determinant Dp2

where p is a prime, (and hence of determinant Dp2α) can be derived from
a properly primitive form of determinant D by a substitution with integer
coefficients and determinant p (or pα in the second case). Hence, it suffices
to prove our theorem for the improperly primitive forms of determinant ∆,
i.e. those with (a, 2h, b) = 2. But then h is even since ∆ = ab− h2, and we
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can write

(2) aX2 + 2hXY + bY 2 = 2

[
1

2
aX2 + 2

(
1

2
h

)
XY +

1

2
bY 2

]
.

The determinant of the form in brackets is 1
4∆. Hence, step by step, we are

brought to the case ρ = 0. Hence the theorem is proved and N = 5 in §1”.
Now, if ρ = 1 the form in brackets in (2) has determinant 8σ + 7

and by the already proved case of the theorem can be represented as∑5
r=1(arX + brY )2. However, why should 2

∑5
r=1(arX + brY )2 be repre-

sented as
∑5

r=1(a
′
rX + b′rY )2, a′r, b

′
r integers? This question is not answered

in [3].
The following argument fills this gap.

Lemma 1 (Ramanujan). The form x2 + y2 + z2 + st2 (1 ≤ s ≤ 7) repre-
sents over Z all non-negative integers.

Proof. See [1, Theorem 96, p. 105].

Lemma 2. For every positive definite classical binary quadratic form f
with determinant ∆ = 4(8σ + 7) there exist integers t, u such that

(3) ∆− f(t, u)

is a sum of three squares.

Proof. Let f = aX2 + 2hXY + bY 2. Following Mordell (p. 281) by ef-
fecting a linear substitution of determinant unity and writing −y for y if
need be, we may suppose that the form f is reduced and that h ≥ 0, so that

(4) b ≥ a ≥ 2h, a ≤ 2
√
∆/3.

If a ≤ 7, then by Lemma 1 the equation ∆ = x2 + y2 + z2 + at2 has integer
solutions (x, y, z, t), thus the conclusion holds with u = 0. If a ≥ 8, then
by (4), ∆ ≥ 48 and b ≤ 4∆

3a ≤
∆
6 . Since ∆ ≡ 28 mod 32, we have either

∆ ≥ 92, or a = b = 8 and h = 2. In the first case

f(1, 0) < f(2, 0) < ∆, f(0, 1) < f(0, 2) < ∆,

f(−1,−1) < f(2,−2) = 4a− 8h+ 4b ≤ 4a+
4∆

a

= 32 +
∆

2
− (a− 8)

(
∆

2a
− 4

)
≤ 32 +

∆

2
< ∆.

The corresponding inequalities are also true in the second case. Taking
(t, u) = (1, 0), (0, 1), (1,−1) and assuming that (3) does not hold we ob-
tain

(5) a ≡ 0, 4, 5 mod 8; b ≡ 0, 4, 5 mod 8; a+ b− 2h ≡ 0, 4, 5 mod 8.

Taking in turn (t, u) = (2, 0), (0, 2), (2,−2) we obtain

(6) a ≡ 0, 3, 7 mod 8; b ≡ 0, 3, 7 mod 8; a+ b− 2h ≡ 0, 3, 7 mod 8.



Positive Definite Binary Quadratic Form 25

Comparing (5) with (6) we obtain a ≡ 0 mod 8, b ≡ 0 mod 8, h ≡ 0 mod 4,
hence ∆ = ab− h2 ≡ 0 mod 16, contrary to ∆ ≡ 28 mod 32.

Completion of Mordell’s proof. Let 4j be the highest power of 4 dividing
(a, h, b). Consider first j = 0. If ∆ 6= 4ρ(8σ + 7) with ρ ≥ 1 the assertion
has been proved by Mordell. If ∆ = 4(8σ+ 7), then by Lemma 2 there exist
integers t, u such that ∆−f(t, u) is a sum of three squares. Since ∆−f(t, u)
is the determinant of the form f(X,Y )−(uX−tY )2, from Mordell’s theorem
(for n = 4) quoted in the introduction we obtain

f(X,Y ) = (uX − tY )2 +
4∑
r=1

(arX + brY )2, ar, br ∈ Z (r = 1, . . . , 4).

If ∆ = 4ρ(8σ+7), ρ ≥ 2, let d = (a, h, b). We have d 6≡ 0 mod 4, since j = 0.
The form

fd(X,Y ) =
a

d
X2 +

2h

d
XY +

b

d
Y 2

is primitive. It cannot be improperly primitive, since in that case ord2 a >
ord2 d, ord2 b > ord2 d and since ab − h2 = ∆ ≡ 0 mod 16, ord2 h > ord2 d.
Thus fd(X,Y ) is properly primitive and by the Lipschitz theorem there exist
a form f0 with determinant ∆d−24ord2 d−ρ and integers α, β, γ, δ such that

(7) fd(X,Y ) = f0(αX + βY, γX + δY ).

The determinant of the form df0 is 4ord2 d(8σ + 7), hence by the already
proved part of the theorem, df0 is a sum of five squares of integral linear
forms, and by (7) the same applies to f .

Consider now the general case. Since 4 - (a/4j , h/4j , b/4j), by the already
proved case of the theorem we have

a

4j
X2 +

2h

4j
XY +

b

4j
Y 2 =

5∑
r=1

(arX + brY )2, ar, br integers (r = 1, . . . , 5).

Therefore,

aX2 + 2hXY + bY 2 =
5∑
r=1

(2jarX + 2jbrY )2.

A simpler question, namely whether under the same conditions on a, b
and h,

(8) aX2+2hXY +bY 2 =

n∑
r=1

(arX+brY )2, ar, br rationals (1 ≤ r ≤ n),

was settled affirmatively for n = 5 already by Landau [2]. Here we add the
following
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Theorem. If n ≥ 5, a, b, h are rationals, a ≥ 0, ∆ = ab − h2 ≥ 0
and rationals a1, . . . , an satisfy a21 + · · ·+ a2n = a, then there exist rationals
b1, . . . , bn such that (8) holds.

Proof. By performing a linear substitution (see [2]) we reduce the general
case to the case h = 0. If a = 0 we have a1 = · · · = an = 0 and we
choose rational b1, . . . , bn such that b21 + · · · + b2n = b. If b = 0 we take
b1 = · · · = bn = 0. If a > 0 and b > 0 we distinguish two cases:

(i) an 6= 0,
(ii) an = 0.

In case (i) the quadratic form f(u1, . . . , un) = bu2n − u21 − · · · − u2n−1 −
(a1a

−1
n u1+ · · ·+an−1a

−1
n un−1)

2 is indefinite, since f(0, . . . , 0, 1) = b > 0 and
f(1, 0, . . . , 0) = −a21a−2n − 1 < 0. By Meyer’s theorem there exist integers
v1, . . . , vn not all zero such that f(v1, . . . , vn) = 0. The equality vn = 0
implies vi = 0 (1 ≤ i ≤ n), thus vn 6= 0 and taking

bi =
vi
vn

(1 ≤ i < n), bn = −a1a−1n b1 − · · · − an−1a−1n bn−1

we obtain (8) with h = 0.
In case (ii) there exists k < n such that ak 6= 0 and we perform the

transposition (k, n).
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