ALGEBRAIC GEOMETRY

Łojasiewicz Exponent of Overdetermined Mappings

by

Stanisław SPODZIEJA and Anna SZLACHCIŃSKA

Presented by Józef SICIAK

Summary. A mapping $F : \mathbb{R}^n \to \mathbb{R}^m$ is called overdetermined if m > n. We prove that the calculations of both the local and global Łojasiewicz exponent of a real overdetermined polynomial mapping $F : \mathbb{R}^n \to \mathbb{R}^m$ can be reduced to the case m = n.

1. Introduction and results. Let \mathbb{K} be the field \mathbb{R} of real numbers or the field \mathbb{C} of complex numbers. By $F : (\mathbb{K}^n, a) \to (\mathbb{K}^m, 0)$, where $a \in \mathbb{K}^n$, we denote a mapping from a neighbourhood $U \subset \mathbb{K}^n$ of a to \mathbb{K}^m such that F(a) = 0. In this paper we study the local Łojasiewicz exponent and the Łojasiewicz exponent at infinity of *overdetermined* mappings, i.e. mappings $f : \mathbb{K}^n \to \mathbb{K}^m$ with m > n.

If $F : (\mathbb{K}^n, a) \to (\mathbb{K}^m, 0)$ is an analytic mapping (real analytic for $\mathbb{K} = \mathbb{R}$, holomorphic for $\mathbb{K} = \mathbb{C}$), then there are positive constants C, η, ε such that the following *Lojasiewicz inequality* holds:

(1)
$$|F(x)| \ge C \operatorname{dist}(x, F^{-1}(0))^{\eta} \quad \text{if } |x-a| < \varepsilon,$$

where $|\cdot|$ is the Euclidean norm in \mathbb{K}^n and $\operatorname{dist}(x, V)$ is the distance from $x \in \mathbb{K}^n$ to the set V (dist(x, V) = 1 if $V = \emptyset$). The smallest exponent η in (1) is called the *Lojasiewicz exponent* of F at a and is denoted by $\mathcal{L}_a^{\mathbb{K}}(F)$. It is known that $\mathcal{L}_a^{\mathbb{K}}(F)$ is a rational number and (1) holds for any $\eta \geq \mathcal{L}_a^{\mathbb{K}}(F)$ and some $C, \varepsilon > 0$. The exponent $\mathcal{L}_a^{\mathbb{K}}(F)$ is an important invariant and tool in singularity theory (for references see for instance [7]).

In the following we will say that a condition holds for the generic $x \in A$ if there exists an algebraic set V such that $A \setminus V$ is a dense subset of A and the condition holds for all $x \in A \setminus V$.

²⁰¹⁰ Mathematics Subject Classification: 14P20, 14P10, 32C07.

Key words and phrases: Łojasiewicz exponent, polynomial mapping, overdetermined mapping.

We shall denote by $\mathbf{L}^{\mathbb{K}}(m,k)$ the set of all linear mappings $\mathbb{K}^m \to \mathbb{K}^k$ (where we identify \mathbb{K}^0 with $\{0\}$).

In Section 2 we will prove the following

THEOREM 1. Let $F : (\mathbb{R}^n, a) \to (\mathbb{R}^m, 0)$ be an analytic mapping having an isolated zero at a, and let $n \leq k \leq m$. Then for any $L \in \mathbf{L}^{\mathbb{R}}(m, k)$ such that a is an isolated zero of $L \circ F$ we have

(2)
$$\mathcal{L}_a^{\mathbb{R}}(F) \leq \mathcal{L}_a^{\mathbb{R}}(L \circ F).$$

Moreover, for the generic $L \in \mathbf{L}^{\mathbb{R}}(m,k)$, the point a is an isolated zero of $L \circ F$ and

(3)
$$\mathcal{L}_a^{\mathbb{R}}(F) = \mathcal{L}_a^{\mathbb{R}}(L \circ F).$$

The above theorem is a generalization of [10, Theorem 2.1] from the complex case to the real case. Note that Theorem 1 is not a direct consequence of [10, Theorem 2.1], since the complexification of F may have a nonisolated zero at a.

Let $m \geq k$. We denote by $\Delta^{\mathbb{K}}(m,k)$ the set of all linear mappings $L = (L_1, \ldots, L_k) \in \mathbf{L}^{\mathbb{K}}(m,k)$ of the form

$$L_i(y_1, \dots, y_m) = y_i + \sum_{j=k+1}^m \alpha_{i,j} y_j, \quad i = 1, \dots, k,$$

where $\alpha_{i,j} \in \mathbb{K}$.

From Theorem 1, as in [10, Proposition 2.1], one can deduce

COROLLARY 1. Under the assumptions of Theorem 1, for the generic $L \in \Delta^{\mathbb{R}}(m,n)$, the point *a* is an isolated zero of $L \circ F$ and $\mathcal{L}_{a}^{\mathbb{R}}(F) = \mathcal{L}_{a}^{\mathbb{R}}(L \circ F)$.

If additionally F is a polynomial mapping then without the assumptions on the zeroes of F we will prove (in Section 3)

THEOREM 2. Let $F : (\mathbb{K}^n, a) \to (\mathbb{K}^m, 0)$ be a polynomial mapping, and let $n \leq k \leq m$. Then for any $L \in \mathbf{L}^{\mathbb{K}}(m, k)$ such that $F^{-1}(0) \cap U_L = (L \circ F)^{-1}(0) \cap U_L$ for some neighbourhood $U_L \subset \mathbb{K}^n$ of a, we have

(4)
$$\mathcal{L}_{a}^{\mathbb{K}}(F) \leq \mathcal{L}_{a}^{\mathbb{K}}(L \circ F).$$

Moreover, for the generic $L \in \mathbf{L}^{\mathbb{K}}(m,k)$, we have $F^{-1}(0) \cap U_L = (L \circ F)^{-1}(0) \cap U_L$ for some neighbourhood $U_L \subset \mathbb{K}^n$ of a and

(5)
$$\mathcal{L}_a^{\mathbb{K}}(F) = \mathcal{L}_a^{\mathbb{K}}(L \circ F).$$

Theorem 2 implies

COROLLARY 2. Under the assumptions of Theorem 2, for the generic $L \in \Delta^{\mathbb{R}}(m,n)$ we have $\mathcal{L}_{a}^{\mathbb{R}}(F) = \mathcal{L}_{a}^{\mathbb{R}}(L \circ F)$.

By Corollary 2 and [2] (see also [3], [1]) we obtain

COROLLARY 3. Let $F = (f_1, \ldots, f_m) : (\mathbb{C}^n, 0) \to (\mathbb{C}^m, 0), m > n$, be a polynomial mapping and let $d_j = \deg f_j$ for $j = 1, \ldots, m$. If $d_1 \ge \cdots \ge d_m > 0$, then $\mathcal{L}_0^{\mathbb{C}}(F) \le d_1 \cdots d_n$.

Indeed, by Corollary 2, for the generic $L = (L_1, \ldots, L_n) \in \Delta^{\mathbb{K}}(m, n)$ we have $\mathcal{L}_a^{\mathbb{K}}(F) = \mathcal{L}_a^{\mathbb{K}}(L \circ F)$. Moreover $d_j = \deg L_j \circ F$ for $j = 1, \ldots, n$. E. Cygan [2] proved that for an analytic sets $X, Y \subset \mathbb{C}^n$ the separation exponent of X and Y at a point $a \in X \cap Y$ is the intersection index of $X \times Y$ and the diagonal $\Delta_{\mathbb{C}}^n$ of $\mathbb{C}^n \times \mathbb{C}^n$ at (a, a). It is known that for $X = \operatorname{graph} L \circ F$ and $Y = \mathbb{C}^n \times \{0\} \subset \mathbb{C}^n \times \mathbb{C}^n$, the index does not exceed $d_1 \cdots d_n$ (see [11], [3]). Consequently, $\mathcal{L}_0^{\mathbb{C}}(F) \leq d_1 \cdots d_n$.

By the *Lojasiewicz exponent at infinity* of a mapping $F : \mathbb{K}^n \to \mathbb{K}^m$ we mean the supremum of the exponents ν in the following Lojasiewicz inequality:

(6)
$$|F(x)| \ge C|x|^{\nu}$$
 whenever $|x| \ge R$

for some positive constants C, R; we denote it by $\mathcal{L}_{\infty}^{\mathbb{K}}(F)$. The Łojasiewicz exponent at infinity of a mapping has been considered by many authors in the context of effective Nullstellensatz and properness of mappings (for references see for instance [6], [8]).

In Section 4 we will prove the following generalization of [9, Theorem 2.1] from the complex case to the real case.

THEOREM 3. Let $F = (f_1, \ldots, f_m) : \mathbb{R}^n \to \mathbb{R}^m$ be a polynomial mapping having a compact set of zeros, and let $n \leq k \leq m$. Then for any $L \in \mathbf{L}^{\mathbb{R}}(m, k)$ such that $(L \circ F)^{-1}(0)$ is compact we have

(7)
$$\mathcal{L}_{\infty}^{\mathbb{R}}(F) \geq \mathcal{L}_{\infty}^{\mathbb{R}}(L \circ F).$$

Moreover, for the generic $L \in \mathbf{L}^{\mathbb{K}}(m,k)$, the set $(L \circ F)^{-1}(0)$ is compact and (8) $\mathcal{L}_{\infty}^{\mathbb{R}}(F) = \mathcal{L}_{\infty}^{\mathbb{R}}(L \circ F).$

From the above theorem one can deduce (cf. [9] in the complex case)

COROLLARY 4. Under the assumptions of Theorem 3, for the generic $L = (L_1, \ldots, L_n) \in \Delta^{\mathbb{R}}(m, n)$, the set $(L \circ F)^{-1}(0)$ is compact and

$$\mathcal{L}_{\infty}^{\mathbb{R}}(F) = \mathcal{L}_{\infty}^{\mathbb{R}}(L \circ F).$$

Moreover, if $d_j = \deg f_j$ and $d_1 \ge \cdots \ge d_m$, then $\deg(L_j \circ F) = d_j$ for $j = 1, \ldots, n$.

2. Proof of Theorem 1. It suffices to prove Theorem 1 for a = 0.

For a polynomial mapping $G : \mathbb{R}^n \to \mathbb{R}^m$, we denote by $G_{\mathbb{C}} : \mathbb{C}^n \to \mathbb{C}^m$ the complexification of G.

Let $G : \mathbb{K}^n \to \mathbb{K}^m$, where $m \geq n$, be a polynomial mapping, and let $k \in \mathbb{Z}, n \leq k \leq m$. Let $Y = \overline{G(\mathbb{C}^n)}$ if $\mathbb{K} = \mathbb{C}$ or $Y = \overline{G_{\mathbb{C}}(\mathbb{C}^n)}$ if $\mathbb{K} = \mathbb{R}$. The

set Y is algebraic and $\dim_{\mathbb{C}} Y \leq n$. Assume that $0 \in Y$, and let $C_0(Y)$ be the tangent cone to Y at 0 in the sense of Whitney [12, p. 510]. It is known that $C_0(Y)$ is an algebraic set and $\dim_{\mathbb{C}} C_0(Y) = \dim_{\mathbb{C}} Y \leq n$. So, we have

LEMMA 1. For the generic $L \in \mathbf{L}^{\mathbb{K}}(m,k)$, $L^{-1}(0) \cap C_0(Y) \subset \{0\}.$

In the proofs of Theorems 1–3 we will need

LEMMA 2. If $L \in \mathbf{L}^{\mathbb{K}}(m,k)$ satisfies $L^{-1}(0) \cap C_0(Y) \subset \{0\}$, then there exist $\varepsilon, C_1, C_2 > 0$ such that for all $x \in \mathbb{K}^n$ with $|G(x)| < \varepsilon$ we have

(9)
$$C_1|G(x)| \le |L(G(x))| \le C_2|G(x)|$$

Proof. It is obvious that for $C_2 = ||L||$ we obtain $|L(G(x))| \le C_2|G(x)|$ for all $x \in \mathbb{K}^n$. This gives the right-hand inequality in (9).

Now, we show the left-hand inequality. Assume to the contrary that for any $\varepsilon, C_1 > 0$ there exists $x \in \mathbb{K}^n$ such that

 $C_1|G(x)| > |L(G(x))|$ and $|G(x)| < \varepsilon$.

In particular for $\nu \in \mathbb{N}$, $C_1 = 1/\nu$, $\varepsilon = 1/\nu$ there exists $x_{\nu} \in \mathbb{K}^n$ such that

$$\frac{1}{\nu}|G(x_{\nu})| > |L(G(x_{\nu}))|$$
 and $|G(x_{\nu})| < \frac{1}{\nu}$

Thus $|G(x_{\nu})| > 0$ and

(10)
$$\frac{1}{\nu} > \frac{1}{|G(x_{\nu})|} |L(G(x_{\nu}))| = \left| L\left(\frac{1}{|G(x_{\nu})|} G(x_{\nu})\right) \right|.$$

Let $\lambda_{\nu} = 1/|G(x_{\nu})|$ for $\nu \in \mathbb{N}$. Then $|\lambda_{\nu}G(x_{\nu})| = 1$. Choosing a subsequence if necessary, we may assume that $\lambda_{\nu}G(x_{\nu}) \to v$ as $\nu \to \infty$, where $v \in \mathbb{K}^n$, |v| = 1 and $G(x_{\nu}) \to 0$ as $\nu \to \infty$. Thus $v \in C_0(Y)$ and $v \neq 0$. Moreover, by (10), we have L(v) = 0. So $v \in L^{-1}(0) \cap C_0(Y) \subset \{0\}$. This contradicts the assumption and ends the proof. \blacksquare

We will also need the following lemma (cf. [5], [10] in the complex case).

LEMMA 3. Let $F, G : (\mathbb{R}^n, 0) \to (\mathbb{R}^m, 0)$ be analytic mappings such that $\operatorname{ord}_0(F - G) > \mathcal{L}_0^{\mathbb{R}}(F)$. If 0 is an isolated zero of F then it is an isolated zero of G and for some positive constants ε, C_1, C_2 ,

(11) $C_1|F(x)| \le |G(x)| \le C_2|F(x)|$ for $x \in \mathbb{R}^n$ with $|x| < \varepsilon$. In particular $\mathcal{L}_0^{\mathbb{R}}(F) = \mathcal{L}_0^{\mathbb{R}}(G)$.

Proof. Since 0 is an isolated zero of F, we have $1 \leq \mathcal{L}_0^{\mathbb{R}}(F) < \infty$ and for some positive constants ε_0, C ,

(12)
$$|F(x)| \ge C|x|^{\mathcal{L}_0^{\mathbb{R}}(F)} \text{ for } x \in \mathbb{R}^n \text{ with } |x| < \varepsilon_0.$$

Since $\operatorname{ord}_0(F-G) > \mathcal{L}_0^{\mathbb{R}}(F)$, there exist $\eta \in \mathbb{R}, \eta > \mathcal{L}_0^{\mathbb{R}}(F)$ and $\varepsilon_1 > 0$ such that $||F(x)| - |G(x)|| \leq |x|^{\eta}$ for all $x \in \mathbb{R}^n$ with $|x| < \varepsilon_1$. Assume that (11)

fails. Then for some sequence $x_{\nu} \in \mathbb{R}^n$ such that $x_{\nu} \to 0$ as $\nu \to \infty$, we have either $(1/\nu)|F(x_{\nu})| > |G(x_{\nu})|$ for all $\nu \in \mathbb{N}$, or $(1/\nu)|G(x_{\nu})| > |F(x_{\nu})|$ for all $\nu \in \mathbb{N}$. In both cases, by (12) for $\nu \geq 2$, we have

$$\frac{C}{2}|x_{\nu}|^{\mathcal{L}_{0}^{\mathbb{R}}(F)} \leq \frac{1}{2}|F(x_{\nu})| < |F(x_{\nu}) - G(x_{\nu})| \leq |x_{\nu}|^{\eta},$$

which is impossible. The equality $\mathcal{L}_0^{\mathbb{R}}(F) = \mathcal{L}_0^{\mathbb{R}}(G)$ follows from (11).

Proof of Theorem 1. By the argument in the proof of [10, Theorem 2.1] we obtain (2). We now prove (3).

Let $G = (g_1, \ldots, g_m) : (\mathbb{R}^n, 0) \to (\mathbb{R}^m, 0)$ be a polynomial mapping such that $\operatorname{ord}_0^{\mathbb{R}}(F - G) > \mathcal{L}_0^{\mathbb{R}}(F)$. Obviously, such a mapping exists. By Lemma 3, $\mathcal{L}_0^{\mathbb{R}}(F) = \mathcal{L}_0^{\mathbb{R}}(G)$ and 0 is an isolated zero of G. By Lemmas 1 and 2 for the generic $L \in \mathbf{L}^{\mathbb{R}}(m, k)$ the mapping $L \circ G$ has an isolated zero at $0 \in \mathbb{R}^n$, $\mathcal{L}_0^{\mathbb{R}}(G) = \mathcal{L}_0^{\mathbb{R}}(L \circ G)$, and

$$\operatorname{ord}_0(L \circ G - L \circ F) = \operatorname{ord}_0 L \circ (G - F) \ge \operatorname{ord}_0(G - F)$$
$$> \mathcal{L}_0^{\mathbb{R}}(F) = \mathcal{L}_0^{\mathbb{R}}(G) = \mathcal{L}_0^{\mathbb{R}}(L \circ G),$$

so, by Lemma 3, $\mathcal{L}_0^{\mathbb{R}}(L \circ F) = \mathcal{L}_0^{\mathbb{R}}(L \circ G) = \mathcal{L}_0^{\mathbb{R}}(F)$. This gives the assertion.

3. Proof of Theorem 2. From [9, Proposition 1.1] we immediately obtain

PROPOSITION 1. Let $G = (g_1, \ldots, g_m) : \mathbb{K}^n \to \mathbb{K}^m$ be a polynomial mapping with deg $g_j > 0$ for $j = 1, \ldots, m$, where $m \ge n \ge 1$, and let $k \in \mathbb{Z}$, $n \le k \le m$.

(i) For the generic $L \in \mathbf{L}^{\mathbb{K}}(m,k)$,

(13)
$$\#[(L \circ G)^{-1}(0) \setminus G^{-1}(0)] < \infty.$$

(ii) The condition (13) also holds for the generic $L \in \Delta^{\mathbb{K}}(m,k)$.

Proof. Let us first consider the case n = k. Let

$$W = \{ L \in \mathbf{L}^{\mathbb{C}}(m,n) : \#[(L \circ F_{\mathbb{C}})^{-1}(0) \setminus F_{\mathbb{C}}^{-1}(0)] < \infty \}.$$

By [9, Proposition 1.1], W contains a nonempty Zariski open subset of $\mathbf{L}^{\mathbb{C}}(m, n)$. Then W contains a dense Zariski open subset of $\mathbf{L}^{\mathbb{R}}(m, n)$. This gives the assertion in the case n = k.

Now assume k > n. Since for $L = (L_1, \ldots, L_k) \in \mathbf{L}^{\mathbb{K}}(m, k)$,

$$(L \circ G)^{-1}(0) \subset ((L_1, \dots, L_n) \circ G)^{-1}(0),$$

we deduce the assertion from the previous case. \blacksquare

Proof of Theorem 2. It suffices to prove Theorem 2 for a = 0. Without loss of generality we may assume that $F \neq 0$. By definition, there exist $C, \varepsilon > 0$ such that for all $x \in \mathbb{K}^n$ with $|x| < \varepsilon$ we have

(14) $|F(x)| \ge C \operatorname{dist}(x, F^{-1}(0))^{\mathcal{L}_0^{\mathbb{K}}(F)},$

and $\mathcal{L}_{0}^{\mathbb{K}}(F)$ is the smallest exponent for which the inequality holds. Let $L \in \mathbf{L}^{\mathbb{K}}(m,k)$ be such that $F^{-1}(0) \cap U_{L} = (L \circ F)^{-1}(0) \cap U_{L}$ for some neighbourhood $U_{L} \subset \mathbb{K}^{n}$ of 0. Diminishing ε and the neighbourhood U_{L} if necessary, we may assume that $\operatorname{dist}(x, F^{-1}(0)) = \operatorname{dist}(x, F^{-1}(0) \cap U_{L})$ for all $x \in \mathbb{K}^{n}$ with $|x| < \varepsilon$. Obviously $L \neq 0$, so ||L|| > 0 and $|F(x)| \geq \frac{1}{||L||} |L(F(x))|$. Then by (14) we obtain $\mathcal{L}_{a}^{\mathbb{K}}(F) \leq \mathcal{L}_{a}^{\mathbb{K}}(L \circ F)$ and (4) is proved.

By Proposition 1 and Lemmas 1 and 2, for the generic $L \in \mathbf{L}^{\mathbb{K}}(m,k)$ we have $F^{-1}(0) \cap U_L = (L \circ F)^{-1}(0) \cap U_L$ for some neighbourhood $U_L \subset \mathbb{K}^n$ of 0 and there exist $\varepsilon, C_1, C_2 > 0$ such that for all $x \in \mathbb{K}^n$ with $|x| < \varepsilon$,

(15)
$$C_1|F(x)| \le |L(F(x))| \le C_2|F(x)|.$$

Together with (14), this gives (5) and ends the proof of Theorem 2. \blacksquare

4. Proof of Theorem 3. We recall Lemma 2.2 from [9]:

LEMMA 4. Let $F : \mathbb{C}^n \to \mathbb{C}^m$ with $m \ge n$ be a polynomial mapping. Then there exists a Zariski open and dense subset $W \subset \mathbf{L}^{\mathbb{C}}(m,n)$ such that for any $L \in W$ and any $\varepsilon > 0$ there exist $\delta > 0$ and r > 0 such that for any $x \in \mathbb{C}^n$,

$$|x| > r \land |L \circ F(x)| < \delta \implies |F(x)| < \varepsilon.$$

In the proof of Theorem 3 we will need the following version of the above lemma in the real case.

LEMMA 5. Let $F : \mathbb{R}^n \to \mathbb{R}^m$ with $m \ge n$ be a polynomial mapping and let $k \in \mathbb{Z}$ with $n \le k \le m$. Then there exists a Zariski open and dense subset $W \subset \mathbf{L}^{\mathbb{R}}(m,k)$ such that for any $L \in W$ and any $\varepsilon > 0$ there exist $\delta > 0$ and r > 0 such that for any $x \in \mathbb{R}^n$,

$$|x| > r \land |L \circ F(x)| < \delta \implies |F(x)| < \varepsilon.$$

Proof. For k = n the assertion immediately follows from Lemma 4. Let W_1 be a Zariski open and dense subset of $\mathbf{L}^{\mathbb{R}}(m, n)$ for which the assertion holds with k = n. Let k > n and

$$W = \{ L = (L_1, \dots, L_k) \in \mathbf{L}^{\mathbb{R}}(m, k) : (L_1, \dots, L_n) \in W_1 \}.$$

Then for any $L = (L_1, \ldots, L_k) \in W$ and $x \in \mathbb{R}^n$ we have

$$|(L_1,\ldots,L_n)\circ F(x)| \le |L\circ F(x)|,$$

so the assertion immediately follows from the previous case. \blacksquare

Proof of Theorem 3. Since for nonzero $L \in \mathbf{L}^{\mathbb{R}}(m,k)$ we have $|L \circ F(x)| \leq ||L|| |F(x)|$ and ||L|| > 0, the definition of the Lojasiewicz exponent at infinity yields the first part of the assertion. We now prove the second part.

Since $F^{-1}(0)$ is a compact set by Proposition 1, there exists a dense Zariski open subset W_1 of $\mathbf{L}^{\mathbb{R}}(m,k)$ such that

$$W_1 \subset \{ L \in \mathbf{L}^{\mathbb{R}}(m,k) : \#(L \circ F)^{-1}(0) < \infty \},\$$

so for the generic $L \in \mathbf{L}^{\mathbb{R}}(m,k)$ we have $\#(L \circ F)^{-1}(0) < \infty$.

If $\mathcal{L}_{\infty}^{\mathbb{R}}(F) < 0$, the assertion (8) follows from Lemmas 1, 2 and 5.

Assume that $\mathcal{L}_{\infty}^{\mathbb{R}}(F) = 0$. Then there exist C, R > 0 such that $|F(x)| \geq C$ whenever $|x| \geq R$. Moreover, there exists a sequence $x_{\nu} \in \mathbb{R}^n$ such that $|x_{\nu}| \to \infty$ as $\nu \to \infty$ and $|F(x_{\nu})|$ is a bounded sequence. So by Lemma 5 for the generic $L \in \mathbf{L}^{\mathbb{R}}(m,k)$ and $\varepsilon = C$ there exist $r, \delta > 0$ such that $|L \circ F(x)| \geq \delta$ if |x| > r, hence $\mathcal{L}_{\infty}^{\mathbb{R}}(L \circ F) \geq 0$. Since $|L \circ F(x_{\nu})|$ is a bounded sequence, we have $\mathcal{L}_{\infty}^{\mathbb{R}}(L \circ F) \leq 0$. Summing up, $\mathcal{L}_{\infty}^{\mathbb{R}}(L \circ F) = \mathcal{L}_{\infty}^{\mathbb{R}}(F)$ in this case.

Now we prove the assertion in the case $\mathcal{L}_{\infty}^{\mathbb{R}}(F) > 0$. Let $Y = \overline{F_{\mathbb{C}}(\mathbb{C}^n)}$. Then dim $Y \leq n$. From Sadullaev's Theorem ([4, VII, 7.1]) there exists a Zariski open and dense subset $W_2 \subset \mathbf{L}^{\mathbb{C}}(m,k)$ such that for any $L \in W_2$ there exist r > 0 and $M \in \mathbf{L}^{\mathbb{C}}(m,m-k)$ for which $(L,M) \in \mathbf{L}^{\mathbb{C}}(m,m)$ is a linear automorphism and for any $y \in Y$,

$$|y| \ge r \implies |M(y)| \le |L(y)|.$$

Moreover, we may assume that $L \in W_2$ is a nonsingular linear mapping. So

(16)
$$|y| > r \Rightarrow |(L, M)(y)| = |L(y)|.$$

Obviously $W_1 \cap W_2$ contains a set W_3 which is Zariski open and dense in $\mathbf{L}^{\mathbb{R}}(m,k)$. Let $L \in W_3$ and $M \in \mathbf{L}^{\mathbb{R}}(m,m-k)$ be as above. Since $\mathcal{L}^{\mathbb{R}}_{\infty}(F) > 0$, there exists $R_1 > 0$ such that for any $x \in \mathbb{C}^n$ with $|x| > R_1$ we have |F(x)| > r. Then, from (16),

 $|x| > R_1 \implies |(L, M) \circ f(x)| = |L \circ f(x)|.$

Thus, $\mathcal{L}_{\infty}^{\mathbb{R}}(L \circ F) = \mathcal{L}_{\infty}^{\mathbb{R}}((L, M) \circ F)$. Since (L, M) is a linear automorphism, we have $\mathcal{L}_{\infty}^{\mathbb{R}}((L, M) \circ F) = \mathcal{L}_{\infty}^{\mathbb{R}}(F)$, so (8) is proved in this case.

Acknowledgements. We would like to thank Tadeusz Krasiński for his valuable advice during the preparation of this paper.

References

- E. Cygan, A note on separation of algebraic sets and the Lojasiewicz exponent for polynomial mappings, Bull. Sci. Math. 129 (2005), 139–147.
- E. Cygan, Intersection theory and separation exponent in complex analytic geometry, Ann. Polon. Math. 69 (1998), 287–299.
- [3] E. Cygan, T. Krasiński and P. Tworzewski, Separation of algebraic sets and the Lojasiewicz exponent of polynomial mappings, Invent. Math. 136 (1999), 75–87.
- [4] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991.

- [5] A. Płoski, Sur l'exposant d'une application analytique. II, Bull. Polish Acad. Sci. Math. 33 (1985), 123–127.
- [6] T. Rodak and S. Spodzieja, Effective formulas for the Lojasiewicz exponent at infinity, J. Pure Appl. Algebra 213 (2009), 1816–1822.
- T. Rodak and S. Spodzieja, Effective formulas for the local Lojasiewicz exponent, Math. Z. 268 (2011), 37–44.
- T. Rodak and S. Spodzieja, *Lojasiewicz exponent near the fibre of a mapping*, Proc. Amer. Math. Soc. 139 (2011), 1201–1213.
- S. Spodzieja, The Lojasiewicz exponent at infinity for overdetermined polynomial mappings, Ann. Polon. Math. 78 (2002), 1–10.
- [10] S. Spodzieja, Multiplicity and the Lojasiewicz exponent, Ann. Polon. Math. 73 (2000), 257–267
- P. Tworzewski, Intersection theory in complex analytic geometry, Ann. Polon. Math. 62 (1995), 177–191.
- [12] H. Whitney, Tangents to an analytic variety, Ann. of Math. 81 (1965), 496–549.

Stanisław Spodzieja, Anna Szlachcińska

Faculty of Mathematics and Computer Science University of Łódź Banacha 22 90-238 Łódź, Poland E-mail: spodziej@math.uni.lodz.pl anna_loch@wp.pl

> Received October 18, 2012; received in final form February 11, 2013

(7905)