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Summary. A mapping F : Rn → Rm is called overdetermined if m > n. We prove that
the calculations of both the local and global Łojasiewicz exponent of a real overdetermined
polynomial mapping F : Rn → Rm can be reduced to the case m = n.

1. Introduction and results. Let K be the field R of real numbers or
the field C of complex numbers. By F : (Kn, a) → (Km, 0), where a ∈ Kn,
we denote a mapping from a neighbourhood U ⊂ Kn of a to Km such that
F (a) = 0. In this paper we study the local Łojasiewicz exponent and the
Łojasiewicz exponent at infinity of overdetermined mappings, i.e. mappings
f : Kn → Km with m > n.

If F : (Kn, a)→ (Km, 0) is an analytic mapping (real analytic for K = R,
holomorphic for K = C), then there are positive constants C, η, ε such that
the following Łojasiewicz inequality holds:

(1) |F (x)| ≥ C dist(x, F−1(0))η if |x− a| < ε,

where | · | is the Euclidean norm in Kn and dist(x, V ) is the distance from
x ∈ Kn to the set V (dist(x, V ) = 1 if V = ∅). The smallest exponent η in
(1) is called the Łojasiewicz exponent of F at a and is denoted by LKa (F ). It
is known that LKa (F ) is a rational number and (1) holds for any η ≥ LKa (F )
and some C, ε > 0. The exponent LKa (F ) is an important invariant and tool
in singularity theory (for references see for instance [7]).

In the following we will say that a condition holds for the generic x ∈ A
if there exists an algebraic set V such that A \ V is a dense subset of A and
the condition holds for all x ∈ A \ V .
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We shall denote by LK(m, k) the set of all linear mappings Km → Kk

(where we identify K0 with {0}).
In Section 2 we will prove the following

Theorem 1. Let F : (Rn, a) → (Rm, 0) be an analytic mapping having
an isolated zero at a, and let n ≤ k ≤ m. Then for any L ∈ LR(m, k) such
that a is an isolated zero of L ◦ F we have

(2) LRa (F ) ≤ LRa (L ◦ F ).
Moreover, for the generic L ∈ LR(m, k), the point a is an isolated zero of
L ◦ F and

(3) LRa (F ) = LRa (L ◦ F ).
The above theorem is a generalization of [10, Theorem 2.1] from the com-

plex case to the real case. Note that Theorem 1 is not a direct consequence
of [10, Theorem 2.1], since the complexification of F may have a nonisolated
zero at a.

Let m ≥ k. We denote by ∆K(m, k) the set of all linear mappings L =
(L1, . . . , Lk) ∈ LK(m, k) of the form

Li(y1, . . . , ym) = yi +
m∑

j=k+1

αi,jyj , i = 1, . . . , k,

where αi,j ∈ K.
From Theorem 1, as in [10, Proposition 2.1], one can deduce

Corollary 1. Under the assumptions of Theorem 1, for the generic
L ∈ ∆R(m,n), the point a is an isolated zero of L◦F and LRa (F ) = LRa (L◦F ).

If additionally F is a polynomial mapping then without the assumptions
on the zeroes of F we will prove (in Section 3)

Theorem 2. Let F : (Kn, a) → (Km, 0) be a polynomial mapping, and
let n ≤ k ≤ m. Then for any L ∈ LK(m, k) such that F−1(0) ∩ UL =
(L ◦ F )−1(0) ∩ UL for some neighbourhood UL ⊂ Kn of a, we have

(4) LKa (F ) ≤ LKa (L ◦ F ).
Moreover, for the generic L ∈ LK(m, k), we have F−1(0) ∩ UL = (L ◦
F )−1(0) ∩ UL for some neighbourhood UL ⊂ Kn of a and

(5) LKa (F ) = LKa (L ◦ F ).
Theorem 2 implies

Corollary 2. Under the assumptions of Theorem 2, for the generic
L ∈ ∆R(m,n) we have LRa (F ) = LRa (L ◦ F ).

By Corollary 2 and [2] (see also [3], [1]) we obtain
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Corollary 3. Let F = (f1, . . . , fm) : (Cn, 0) → (Cm, 0), m > n, be a
polynomial mapping and let dj=deg fj for j=1, . . . ,m. If d1≥· · ·≥dm > 0,
then LC0 (F )≤d1 · · · dn.

Indeed, by Corollary 2, for the generic L = (L1, . . . , Ln) ∈ ∆K(m,n)
we have LKa (F ) = LKa (L ◦ F ). Moreover dj = degLj ◦ F for j = 1, . . . , n.
E. Cygan [2] proved that for an analytic sets X,Y ⊂ Cn the separation
exponent of X and Y at a point a ∈ X ∩ Y is the intersection index of
X × Y and the diagonal ∆n

C of Cn × Cn at (a, a). It is known that for
X = graphL ◦ F and Y = Cn × {0} ⊂ Cn × Cn, the index does not exceed
d1 · · · dn (see [11], [3]). Consequently, LC0 (F ) ≤ d1 · · · dn.

By the Łojasiewicz exponent at infinity of a mapping F : Kn → Km

we mean the supremum of the exponents ν in the following Łojasiewicz
inequality:

(6) |F (x)| ≥ C|x|ν whenever |x| ≥ R
for some positive constants C, R; we denote it by LK∞(F ). The Łojasiewicz
exponent at infinity of a mapping has been considered by many authors
in the context of effective Nullstellensatz and properness of mappings (for
references see for instance [6], [8]).

In Section 4 we will prove the following generalization of [9, Theorem 2.1]
from the complex case to the real case.

Theorem 3. Let F = (f1, . . . , fm) : Rn → Rm be a polynomial mapping
having a compact set of zeros, and let n ≤ k ≤ m. Then for any L ∈ LR(m, k)
such that (L ◦ F )−1(0) is compact we have

(7) LR∞(F ) ≥ LR∞(L ◦ F ).
Moreover, for the generic L ∈ LK(m, k), the set (L◦F )−1(0) is compact and

(8) LR∞(F ) = LR∞(L ◦ F ).
From the above theorem one can deduce (cf. [9] in the complex case)

Corollary 4. Under the assumptions of Theorem 3, for the generic
L = (L1, . . . , Ln) ∈ ∆R(m,n), the set (L ◦ F )−1(0) is compact and

LR∞(F ) = LR∞(L ◦ F ).
Moreover, if dj = deg fj and d1 ≥ · · · ≥ dm, then deg(Lj ◦ F ) = dj for
j = 1, . . . , n.

2. Proof of Theorem 1. It suffices to prove Theorem 1 for a = 0.
For a polynomial mapping G : Rn → Rm, we denote by GC : Cn → Cm

the complexification of G.
Let G : Kn → Km, where m ≥ n, be a polynomial mapping, and let

k ∈ Z, n ≤ k ≤ m. Let Y = G(Cn) if K = C or Y = GC(Cn) if K = R. The
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set Y is algebraic and dimC Y ≤ n. Assume that 0 ∈ Y , and let C0(Y ) be
the tangent cone to Y at 0 in the sense of Whitney [12, p. 510]. It is known
that C0(Y ) is an algebraic set and dimCC0(Y ) = dimC Y ≤ n. So, we have

Lemma 1. For the generic L ∈ LK(m, k),

L−1(0) ∩ C0(Y ) ⊂ {0}.
In the proofs of Theorems 1–3 we will need

Lemma 2. If L ∈ LK(m, k) satisfies L−1(0) ∩ C0(Y ) ⊂ {0}, then there
exist ε, C1, C2 > 0 such that for all x ∈ Kn with |G(x)| < ε we have

(9) C1|G(x)| ≤ |L(G(x))| ≤ C2|G(x)|.
Proof. It is obvious that for C2 = ‖L‖ we obtain |L(G(x))| ≤ C2|G(x)|

for all x ∈ Kn. This gives the right-hand inequality in (9).
Now, we show the left-hand inequality. Assume to the contrary that for

any ε, C1 > 0 there exists x ∈ Kn such that

C1|G(x)| > |L(G(x))| and |G(x)| < ε.

In particular for ν ∈ N, C1 = 1/ν, ε = 1/ν there exists xν ∈ Kn such that
1

ν
|G(xν)| > |L(G(xν))| and |G(xν)| <

1

ν
.

Thus |G(xν)| > 0 and

(10)
1

ν
>

1

|G(xν)|
|L(G(xν))| =

∣∣∣∣L( 1

|G(xν)|
G(xν)

)∣∣∣∣.
Let λν = 1/|G(xν)| for ν ∈ N. Then |λνG(xν)| = 1. Choosing a subsequence
if necessary, we may assume that λνG(xν) → v as ν → ∞, where v ∈ Kn,
|v| = 1 and G(xν) → 0 as ν → ∞. Thus v ∈ C0(Y ) and v 6= 0. Moreover,
by (10), we have L(v) = 0. So v ∈ L−1(0) ∩ C0(Y ) ⊂ {0}. This contradicts
the assumption and ends the proof.

We will also need the following lemma (cf. [5], [10] in the complex case).

Lemma 3. Let F,G : (Rn, 0) → (Rm, 0) be analytic mappings such that
ord0(F − G) > LR0 (F ). If 0 is an isolated zero of F then it is an isolated
zero of G and for some positive constants ε, C1, C2,

(11) C1|F (x)| ≤ |G(x)| ≤ C2|F (x)| for x ∈ Rn with |x| < ε.

In particular LR0 (F ) = LR0 (G).
Proof. Since 0 is an isolated zero of F , we have 1 ≤ LR0 (F ) <∞ and for

some positive constants ε0, C,

(12) |F (x)| ≥ C|x|LR0 (F ) for x ∈ Rn with |x| < ε0.

Since ord0(F −G) > LR0 (F ), there exist η ∈ R, η > LR0 (F ) and ε1 > 0 such
that

∣∣|F (x)| − |G(x)|∣∣ ≤ |x|η for all x ∈ Rn with |x| < ε1. Assume that (11)
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fails. Then for some sequence xν ∈ Rn such that xν → 0 as ν →∞, we have
either (1/ν)|F (xν)| > |G(xν)| for all ν ∈ N, or (1/ν)|G(xν)| > |F (xν)| for
all ν ∈ N. In both cases, by (12) for ν ≥ 2, we have

C

2
|xν |L

R
0 (F ) ≤ 1

2
|F (xν)| < |F (xν)−G(xν)| ≤ |xν |η,

which is impossible. The equality LR0 (F ) = LR0 (G) follows from (11).

Proof of Theorem 1. By the argument in the proof of [10, Theorem 2.1]
we obtain (2). We now prove (3).

Let G = (g1, . . . , gm) : (Rn, 0)→ (Rm, 0) be a polynomial mapping such
that ordR0 (F − G) > LR0 (F ). Obviously, such a mapping exists. By Lemma
3, LR0 (F ) = LR0 (G) and 0 is an isolated zero of G. By Lemmas 1 and 2 for
the generic L ∈ LR(m, k) the mapping L ◦G has an isolated zero at 0 ∈ Rn,
LR0 (G) = LR0 (L ◦G), and

ord0(L ◦G− L ◦ F ) = ord0 L ◦ (G− F ) ≥ ord0(G− F )
> LR0 (F ) = LR0 (G) = LR0 (L ◦G),

so, by Lemma 3, LR0 (L◦F ) = LR0 (L◦G) = LR0 (F ). This gives the assertion.

3. Proof of Theorem 2. From [9, Proposition 1.1] we immediately
obtain

Proposition 1. Let G = (g1, . . . , gm) : Kn → Km be a polynomial
mapping with deg gj > 0 for j = 1, . . . ,m, where m ≥ n ≥ 1, and let k ∈ Z,
n ≤ k ≤ m.

(i) For the generic L ∈ LK(m, k),

(13) #[(L ◦G)−1(0) \G−1(0)] <∞.

(ii) The condition (13) also holds for the generic L ∈ ∆K(m, k).

Proof. Let us first consider the case n = k. Let

W = {L ∈ LC(m,n) : #[(L ◦ FC)
−1(0) \ F−1C (0)] <∞}.

By [9, Proposition 1.1], W contains a nonempty Zariski open subset of
LC(m,n). Then W contains a dense Zariski open subset of LR(m,n). This
gives the assertion in the case n = k.

Now assume k > n. Since for L = (L1, . . . , Lk) ∈ LK(m, k),

(L ◦G)−1(0) ⊂ ((L1, . . . , Ln) ◦G)−1(0),

we deduce the assertion from the previous case.

Proof of Theorem 2. It suffices to prove Theorem 2 for a = 0. Without
loss of generality we may assume that F 6= 0. By definition, there exist
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C, ε > 0 such that for all x ∈ Kn with |x| < ε we have

(14) |F (x)| ≥ C dist(x, F−1(0))L
K
0 (F ),

and LK0 (F ) is the smallest exponent for which the inequality holds. Let L ∈
LK(m, k) be such that F−1(0)∩UL = (L◦F )−1(0)∩UL for some neighbour-
hood UL ⊂ Kn of 0. Diminishing ε and the neighbourhood UL if necessary,
we may assume that dist(x, F−1(0)) = dist(x, F−1(0) ∩ UL) for all x ∈ Kn

with |x| < ε. Obviously L 6= 0, so ‖L‖ > 0 and |F (x)| ≥ 1
‖L‖ |L(F (x))|. Then

by (14) we obtain LKa (F ) ≤ LKa (L ◦ F ) and (4) is proved.
By Proposition 1 and Lemmas 1 and 2, for the generic L ∈ LK(m, k) we

have F−1(0) ∩ UL = (L ◦ F )−1(0) ∩ UL for some neighbourhood UL ⊂ Kn

of 0 and there exist ε, C1, C2 > 0 such that for all x ∈ Kn with |x| < ε,

(15) C1|F (x)| ≤ |L(F (x))| ≤ C2|F (x)|.
Together with (14), this gives (5) and ends the proof of Theorem 2.

4. Proof of Theorem 3. We recall Lemma 2.2 from [9]:

Lemma 4. Let F : Cn → Cm with m ≥ n be a polynomial mapping.
Then there exists a Zariski open and dense subset W ⊂ LC(m,n) such that
for any L ∈W and any ε > 0 there exist δ > 0 and r > 0 such that for any
x ∈ Cn,

|x| > r ∧ |L ◦ F (x)| < δ ⇒ |F (x)| < ε.

In the proof of Theorem 3 we will need the following version of the above
lemma in the real case.

Lemma 5. Let F : Rn → Rm with m ≥ n be a polynomial mapping and
let k ∈ Z with n ≤ k ≤ m. Then there exists a Zariski open and dense subset
W ⊂ LR(m, k) such that for any L ∈ W and any ε > 0 there exist δ > 0
and r > 0 such that for any x ∈ Rn,

|x| > r ∧ |L ◦ F (x)| < δ ⇒ |F (x)| < ε.

Proof. For k = n the assertion immediately follows from Lemma 4. Let
W1 be a Zariski open and dense subset of LR(m,n) for which the assertion
holds with k = n. Let k > n and

W = {L = (L1, . . . , Lk) ∈ LR(m, k) : (L1, . . . , Ln) ∈W1}.
Then for any L = (L1, . . . , Lk) ∈W and x ∈ Rn we have

|(L1, . . . , Ln) ◦ F (x)| ≤ |L ◦ F (x)|,
so the assertion immediately follows from the previous case.

Proof of Theorem 3. Since for nonzero L ∈ LR(m, k) we have |L◦F (x)| ≤
‖L‖ |F (x)| and ‖L‖ > 0, the definition of the Łojasiewicz exponent at infinity
yields the first part of the assertion. We now prove the second part.
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Since F−1(0) is a compact set by Proposition 1, there exists a dense
Zariski open subset W1 of LR(m, k) such that

W1 ⊂ {L ∈ LR(m, k) : #(L ◦ F )−1(0) <∞},
so for the generic L ∈ LR(m, k) we have #(L ◦ F )−1(0) <∞.

If LR∞(F ) < 0, the assertion (8) follows from Lemmas 1, 2 and 5.
Assume that LR∞(F ) = 0. Then there exist C,R > 0 such that |F (x)| ≥ C

whenever |x| ≥ R. Moreover, there exists a sequence xν ∈ Rn such that
|xν | → ∞ as ν → ∞ and |F (xν)| is a bounded sequence. So by Lemma 5
for the generic L ∈ LR(m, k) and ε = C there exist r, δ > 0 such that
|L◦F (x)| ≥ δ if |x| > r, hence LR∞(L◦F ) ≥ 0. Since |L◦F (xν)| is a bounded
sequence, we have LR∞(L ◦ F ) ≤ 0. Summing up, LR∞(L ◦ F ) = LR∞(F ) in
this case.

Now we prove the assertion in the case LR∞(F ) > 0. Let Y = FC(Cn).
Then dimY ≤ n. From Sadullaev’s Theorem ([4, VII, 7.1]) there exists a
Zariski open and dense subset W2 ⊂ LC(m, k) such that for any L ∈ W2

there exist r > 0 and M ∈ LC(m,m− k) for which (L,M) ∈ LC(m,m) is a
linear automorphism and for any y ∈ Y ,

|y| ≥ r ⇒ |M(y)| ≤ |L(y)|.
Moreover, we may assume that L ∈W2 is a nonsingular linear mapping. So

(16) |y| > r ⇒ |(L,M)(y)| = |L(y)|.
Obviously W1 ∩W2 contains a set W3 which is Zariski open and dense in
LR(m, k). Let L ∈W3 andM ∈ LR(m,m−k) be as above. Since LR∞(F ) > 0,
there exists R1 > 0 such that for any x ∈ Cn with |x| > R1 we have
|F (x)| > r. Then, from (16),

|x| > R1 ⇒ |(L,M) ◦ f(x)| = |L ◦ f(x)|.
Thus, LR∞(L◦F ) = LR∞((L,M)◦F ). Since (L,M) is a linear automorphism,
we have LR∞((L,M) ◦ F ) = LR∞(F ), so (8) is proved in this case.
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