Łojasiewicz Exponent of Overdetermined Mappings

by
Stanisław SPODZIEJA and Anna SZLACHCIŃSKA

Presented by Józef SICIAK

Summary. A mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called overdetermined if $m>n$. We prove that the calculations of both the local and global Łojasiewicz exponent of a real overdetermined polynomial mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ can be reduced to the case $m=n$.

1. Introduction and results. Let \mathbb{K} be the field \mathbb{R} of real numbers or the field \mathbb{C} of complex numbers. By $F:\left(\mathbb{K}^{n}, a\right) \rightarrow\left(\mathbb{K}^{m}, 0\right)$, where $a \in \mathbb{K}^{n}$, we denote a mapping from a neighbourhood $U \subset \mathbb{K}^{n}$ of a to \mathbb{K}^{m} such that $F(a)=0$. In this paper we study the local Łojasiewicz exponent and the Łojasiewicz exponent at infinity of overdetermined mappings, i.e. mappings $f: \mathbb{K}^{n} \rightarrow \mathbb{K}^{m}$ with $m>n$.

If $F:\left(\mathbb{K}^{n}, a\right) \rightarrow\left(\mathbb{K}^{m}, 0\right)$ is an analytic mapping (real analytic for $\mathbb{K}=\mathbb{R}$, holomorphic for $\mathbb{K}=\mathbb{C}$), then there are positive constants C, η, ε such that the following Łojasiewicz inequality holds:

$$
\begin{equation*}
|F(x)| \geq C \operatorname{dist}\left(x, F^{-1}(0)\right)^{\eta} \quad \text { if }|x-a|<\varepsilon \tag{1}
\end{equation*}
$$

where $|\cdot|$ is the Euclidean norm in \mathbb{K}^{n} and $\operatorname{dist}(x, V)$ is the distance from $x \in \mathbb{K}^{n}$ to the set $V(\operatorname{dist}(x, V)=1$ if $V=\emptyset)$. The smallest exponent η in (1) is called the Łojasiewicz exponent of F at a and is denoted by $\mathcal{L}_{a}^{\mathbb{K}}(F)$. It is known that $\mathcal{L}_{a}^{\mathbb{K}}(F)$ is a rational number and (1) holds for any $\eta \geq \mathcal{L}_{a}^{\mathbb{K}}(F)$ and some $C, \varepsilon>0$. The exponent $\mathcal{L}_{a}^{\mathbb{K}}(F)$ is an important invariant and tool in singularity theory (for references see for instance [7]).

In the following we will say that a condition holds for the generic $x \in A$ if there exists an algebraic set V such that $A \backslash V$ is a dense subset of A and the condition holds for all $x \in A \backslash V$.

[^0]We shall denote by $\mathbf{L}^{\mathbb{K}}(m, k)$ the set of all linear mappings $\mathbb{K}^{m} \rightarrow \mathbb{K}^{k}$ (where we identify \mathbb{K}^{0} with $\{0\}$).

In Section 2 we will prove the following
TheOrem 1. Let $F:\left(\mathbb{R}^{n}, a\right) \rightarrow\left(\mathbb{R}^{m}, 0\right)$ be an analytic mapping having an isolated zero at a, and let $n \leq k \leq m$. Then for any $L \in \mathbf{L}^{\mathbb{R}}(m, k)$ such that a is an isolated zero of $L \circ F$ we have

$$
\begin{equation*}
\mathcal{L}_{a}^{\mathbb{R}}(F) \leq \mathcal{L}_{a}^{\mathbb{R}}(L \circ F) \tag{2}
\end{equation*}
$$

Moreover, for the generic $L \in \mathbf{L}^{\mathbb{R}}(m, k)$, the point a is an isolated zero of $L \circ F$ and

$$
\begin{equation*}
\mathcal{L}_{a}^{\mathbb{R}}(F)=\mathcal{L}_{a}^{\mathbb{R}}(L \circ F) \tag{3}
\end{equation*}
$$

The above theorem is a generalization of [10, Theorem 2.1] from the complex case to the real case. Note that Theorem 1 is not a direct consequence of [10, Theorem 2.1], since the complexification of F may have a nonisolated zero at a.

Let $m \geq k$. We denote by $\Delta^{\mathbb{K}}(m, k)$ the set of all linear mappings $L=$ $\left(L_{1}, \ldots, L_{k}\right) \in \mathbf{L}^{\mathbb{K}}(m, k)$ of the form

$$
L_{i}\left(y_{1}, \ldots, y_{m}\right)=y_{i}+\sum_{j=k+1}^{m} \alpha_{i, j} y_{j}, \quad i=1, \ldots, k
$$

where $\alpha_{i, j} \in \mathbb{K}$.
From Theorem 1, as in [10, Proposition 2.1], one can deduce
Corollary 1. Under the assumptions of Theorem 1, for the generic $L \in \Delta^{\mathbb{R}}(m, n)$, the point a is an isolated zero of $L \circ F$ and $\mathcal{L}_{a}^{\mathbb{R}}(F)=\mathcal{L}_{a}^{\mathbb{R}}(L \circ F)$.

If additionally F is a polynomial mapping then without the assumptions on the zeroes of F we will prove (in Section 3)

THEOREM 2. Let $F:\left(\mathbb{K}^{n}, a\right) \rightarrow\left(\mathbb{K}^{m}, 0\right)$ be a polynomial mapping, and let $n \leq k \leq m$. Then for any $L \in \mathbf{L}^{\mathbb{K}}(m, k)$ such that $F^{-1}(0) \cap U_{L}=$ $(L \circ F)^{-1}(0) \cap U_{L}$ for some neighbourhood $U_{L} \subset \mathbb{K}^{n}$ of a, we have

$$
\begin{equation*}
\mathcal{L}_{a}^{\mathbb{K}}(F) \leq \mathcal{L}_{a}^{\mathbb{K}}(L \circ F) \tag{4}
\end{equation*}
$$

Moreover, for the generic $L \in \mathbf{L}^{\mathbb{K}}(m, k)$, we have $F^{-1}(0) \cap U_{L}=(L \circ$ $F)^{-1}(0) \cap U_{L}$ for some neighbourhood $U_{L} \subset \mathbb{K}^{n}$ of a and

$$
\begin{equation*}
\mathcal{L}_{a}^{\mathbb{K}}(F)=\mathcal{L}_{a}^{\mathbb{K}}(L \circ F) \tag{5}
\end{equation*}
$$

Theorem 2 implies
Corollary 2. Under the assumptions of Theorem 2, for the generic $L \in \Delta^{\mathbb{R}}(m, n)$ we have $\mathcal{L}_{a}^{\mathbb{R}}(F)=\mathcal{L}_{a}^{\mathbb{R}}(L \circ F)$.

By Corollary 2 and [2] (see also [3], 1]) we obtain

Corollary 3. Let $F=\left(f_{1}, \ldots, f_{m}\right):\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right), m>n$, be a polynomial mapping and let $d_{j}=\operatorname{deg} f_{j}$ for $j=1, \ldots$, m. If $d_{1} \geq \cdots \geq d_{m}>0$, then $\mathcal{L}_{0}^{\mathbb{C}}(F) \leq d_{1} \cdots d_{n}$.

Indeed, by Corollary 2, for the generic $L=\left(L_{1}, \ldots, L_{n}\right) \in \Delta^{\mathbb{K}}(m, n)$ we have $\mathcal{L}_{a}^{\mathbb{K}}(F)=\mathcal{L}_{a}^{\mathbb{K}}(L \circ F)$. Moreover $d_{j}=\operatorname{deg} L_{j} \circ F$ for $j=1, \ldots, n$. E. Cygan [2] proved that for an analytic sets $X, Y \subset \mathbb{C}^{n}$ the separation exponent of X and Y at a point $a \in X \cap Y$ is the intersection index of $X \times Y$ and the diagonal $\Delta_{\mathbb{C}}^{n}$ of $\mathbb{C}^{n} \times \mathbb{C}^{n}$ at (a, a). It is known that for $X=\operatorname{graph} L \circ F$ and $Y=\mathbb{C}^{n} \times\{0\} \subset \mathbb{C}^{n} \times \mathbb{C}^{n}$, the index does not exceed $d_{1} \cdots d_{n}$ (see [11, [3]). Consequently, $\mathcal{L}_{0}^{\mathbb{C}}(F) \leq d_{1} \cdots d_{n}$.

By the Łojasiewicz exponent at infinity of a mapping $F: \mathbb{K}^{n} \rightarrow \mathbb{K}^{m}$ we mean the supremum of the exponents ν in the following Łojasiewicz inequality:

$$
\begin{equation*}
|F(x)| \geq C|x|^{\nu} \quad \text { whenever } \quad|x| \geq R \tag{6}
\end{equation*}
$$

for some positive constants C, R; we denote it by $\mathcal{L}_{\infty}^{\mathbb{K}}(F)$. The Łojasiewicz exponent at infinity of a mapping has been considered by many authors in the context of effective Nullstellensatz and properness of mappings (for references see for instance [6], (8]).

In Section 4 we will prove the following generalization of [9, Theorem 2.1] from the complex case to the real case.

THEOREM 3. Let $F=\left(f_{1}, \ldots, f_{m}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a polynomial mapping having a compact set of zeros, and let $n \leq k \leq m$. Then for any $L \in \mathbf{L}^{\mathbb{R}}(m, k)$ such that $(L \circ F)^{-1}(0)$ is compact we have

$$
\begin{equation*}
\mathcal{L}_{\infty}^{\mathbb{R}}(F) \geq \mathcal{L}_{\infty}^{\mathbb{R}}(L \circ F) \tag{7}
\end{equation*}
$$

Moreover, for the generic $L \in \mathbf{L}^{\mathbb{K}}(m, k)$, the set $(L \circ F)^{-1}(0)$ is compact and

$$
\begin{equation*}
\mathcal{L}_{\infty}^{\mathbb{R}}(F)=\mathcal{L}_{\infty}^{\mathbb{R}}(L \circ F) \tag{8}
\end{equation*}
$$

From the above theorem one can deduce (cf. 9] in the complex case)
Corollary 4. Under the assumptions of Theorem 3, for the generic $L=\left(L_{1}, \ldots, L_{n}\right) \in \Delta^{\mathbb{R}}(m, n)$, the set $(L \circ F)^{-1}(0)$ is compact and

$$
\mathcal{L}_{\infty}^{\mathbb{R}}(F)=\mathcal{L}_{\infty}^{\mathbb{R}}(L \circ F)
$$

Moreover, if $d_{j}=\operatorname{deg} f_{j}$ and $d_{1} \geq \cdots \geq d_{m}$, then $\operatorname{deg}\left(L_{j} \circ F\right)=d_{j}$ for $j=1, \ldots, n$.
2. Proof of Theorem 1. It suffices to prove Theorem 1 for $a=0$.

For a polynomial mapping $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, we denote by $G_{\mathbb{C}}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ the complexification of G.

Let $G: \mathbb{K}^{n} \rightarrow \mathbb{K}^{m}$, where $m \geq n$, be a polynomial mapping, and let $k \in \mathbb{Z}, n \leq k \leq m$. Let $Y=\overline{G\left(\mathbb{C}^{n}\right)}$ if $\mathbb{K}=\mathbb{C}$ or $Y=\overline{G_{\mathbb{C}}\left(\mathbb{C}^{n}\right)}$ if $\mathbb{K}=\mathbb{R}$. The
set Y is algebraic and $\operatorname{dim}_{\mathbb{C}} Y \leq n$. Assume that $0 \in Y$, and let $C_{0}(Y)$ be the tangent cone to Y at 0 in the sense of Whitney [12, p. 510]. It is known that $C_{0}(Y)$ is an algebraic set and $\operatorname{dim}_{\mathbb{C}} C_{0}(Y)=\operatorname{dim}_{\mathbb{C}} Y \leq n$. So, we have

Lemma 1. For the generic $L \in \mathbf{L}^{\mathbb{K}}(m, k)$,

$$
L^{-1}(0) \cap C_{0}(Y) \subset\{0\} .
$$

In the proofs of Theorems 1 3 we will need
Lemma 2. If $L \in \mathbf{L}^{\mathbb{K}}(m, k)$ satisfies $L^{-1}(0) \cap C_{0}(Y) \subset\{0\}$, then there exist $\varepsilon, C_{1}, C_{2}>0$ such that for all $x \in \mathbb{K}^{n}$ with $|G(x)|<\varepsilon$ we have

$$
\begin{equation*}
C_{1}|G(x)| \leq|L(G(x))| \leq C_{2}|G(x)| . \tag{9}
\end{equation*}
$$

Proof. It is obvious that for $C_{2}=\|L\|$ we obtain $|L(G(x))| \leq C_{2}|G(x)|$ for all $x \in \mathbb{K}^{n}$. This gives the right-hand inequality in (9).

Now, we show the left-hand inequality. Assume to the contrary that for any $\varepsilon, C_{1}>0$ there exists $x \in \mathbb{K}^{n}$ such that

$$
C_{1}|G(x)|>|L(G(x))| \quad \text { and } \quad|G(x)|<\varepsilon .
$$

In particular for $\nu \in \mathbb{N}, C_{1}=1 / \nu, \varepsilon=1 / \nu$ there exists $x_{\nu} \in \mathbb{K}^{n}$ such that

$$
\frac{1}{\nu}\left|G\left(x_{\nu}\right)\right|>\left|L\left(G\left(x_{\nu}\right)\right)\right| \quad \text { and } \quad\left|G\left(x_{\nu}\right)\right|<\frac{1}{\nu} .
$$

Thus $\left|G\left(x_{\nu}\right)\right|>0$ and

$$
\begin{equation*}
\frac{1}{\nu}>\frac{1}{\left|G\left(x_{\nu}\right)\right|}\left|L\left(G\left(x_{\nu}\right)\right)\right|=\left|L\left(\frac{1}{\left|G\left(x_{\nu}\right)\right|} G\left(x_{\nu}\right)\right)\right| . \tag{10}
\end{equation*}
$$

Let $\lambda_{\nu}=1 /\left|G\left(x_{\nu}\right)\right|$ for $\nu \in \mathbb{N}$. Then $\left|\lambda_{\nu} G\left(x_{\nu}\right)\right|=1$. Choosing a subsequence if necessary, we may assume that $\lambda_{\nu} G\left(x_{\nu}\right) \rightarrow v$ as $\nu \rightarrow \infty$, where $v \in \mathbb{K}^{n}$, $|v|=1$ and $G\left(x_{\nu}\right) \rightarrow 0$ as $\nu \rightarrow \infty$. Thus $v \in C_{0}(Y)$ and $v \neq 0$. Moreover, by 10\}, we have $L(v)=0$. So $v \in L^{-1}(0) \cap C_{0}(Y) \subset\{0\}$. This contradicts the assumption and ends the proof.

We will also need the following lemma (cf. [5], 10] in the complex case).
Lemma 3. Let $F, G:\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{m}, 0\right)$ be analytic mappings such that $\operatorname{ord}_{0}(F-G)>\mathcal{L}_{0}^{\mathbb{R}}(F)$. If 0 is an isolated zero of F then it is an isolated zero of G and for some positive constants $\varepsilon, C_{1}, C_{2}$,

$$
\begin{equation*}
C_{1}|F(x)| \leq|G(x)| \leq C_{2}|F(x)| \quad \text { for } x \in \mathbb{R}^{n} \text { with }|x|<\varepsilon . \tag{11}
\end{equation*}
$$

In particular $\mathcal{L}_{0}^{\mathbb{R}}(F)=\mathcal{L}_{0}^{\mathbb{R}}(G)$.
Proof. Since 0 is an isolated zero of F, we have $1 \leq \mathcal{L}_{0}^{\mathbb{R}}(F)<\infty$ and for some positive constants ε_{0}, C,

$$
\begin{equation*}
|F(x)| \geq C|x|^{\mathcal{L}_{0}^{\mathbb{R}}(F)} \quad \text { for } x \in \mathbb{R}^{n} \text { with }|x|<\varepsilon_{0} . \tag{12}
\end{equation*}
$$

Since $\operatorname{ord}_{0}(F-G)>\mathcal{L}_{0}^{\mathbb{R}}(F)$, there exist $\eta \in \mathbb{R}, \eta>\mathcal{L}_{0}^{\mathbb{R}}(F)$ and $\varepsilon_{1}>0$ such that $||F(x)|-|G(x)|| \leq|x|^{\eta}$ for all $x \in \mathbb{R}^{n}$ with $|x|<\varepsilon_{1}$. Assume that (11)
fails. Then for some sequence $x_{\nu} \in \mathbb{R}^{n}$ such that $x_{\nu} \rightarrow 0$ as $\nu \rightarrow \infty$, we have either $(1 / \nu)\left|F\left(x_{\nu}\right)\right|>\left|G\left(x_{\nu}\right)\right|$ for all $\nu \in \mathbb{N}$, or $(1 / \nu)\left|G\left(x_{\nu}\right)\right|>\left|F\left(x_{\nu}\right)\right|$ for all $\nu \in \mathbb{N}$. In both cases, by $\sqrt{12}$ for $\nu \geq 2$, we have

$$
\frac{C}{2}\left|x_{\nu}\right|^{\mathcal{L}_{0}^{\mathbb{R}}(F)} \leq \frac{1}{2}\left|F\left(x_{\nu}\right)\right|<\left|F\left(x_{\nu}\right)-G\left(x_{\nu}\right)\right| \leq\left|x_{\nu}\right|^{\eta}
$$

which is impossible. The equality $\mathcal{L}_{0}^{\mathbb{R}}(F)=\mathcal{L}_{0}^{\mathbb{R}}(G)$ follows from 11).
Proof of Theorem 11. By the argument in the proof of [10, Theorem 2.1] we obtain (2). We now prove (3).

Let $G=\left(g_{1}, \ldots, g_{m}\right):\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{m}, 0\right)$ be a polynomial mapping such that $\operatorname{ord}_{0}^{\mathbb{R}}(F-G)>\mathcal{L}_{0}^{\mathbb{R}}(F)$. Obviously, such a mapping exists. By Lemma 3. $\mathcal{L}_{0}^{\mathbb{R}}(F)=\mathcal{L}_{0}^{\mathbb{R}}(G)$ and 0 is an isolated zero of G. By Lemmas 1 and 2 for the generic $L \in \mathbf{L}^{\mathbb{R}}(m, k)$ the mapping $L \circ G$ has an isolated zero at $0 \in \mathbb{R}^{n}$, $\mathcal{L}_{0}^{\mathbb{R}}(G)=\mathcal{L}_{0}^{\mathbb{R}}(L \circ G)$, and

$$
\begin{aligned}
\operatorname{ord}_{0}(L \circ G-L \circ F) & =\operatorname{ord}_{0} L \circ(G-F) \geq \operatorname{ord}_{0}(G-F) \\
& >\mathcal{L}_{0}^{\mathbb{R}}(F)=\mathcal{L}_{0}^{\mathbb{R}}(G)=\mathcal{L}_{0}^{\mathbb{R}}(L \circ G)
\end{aligned}
$$

so, by Lemma 3, $\mathcal{L}_{0}^{\mathbb{R}}(L \circ F)=\mathcal{L}_{0}^{\mathbb{R}}(L \circ G)=\mathcal{L}_{0}^{\mathbb{R}}(F)$. This gives the assertion.
3. Proof of Theorem 2. From [9, Proposition 1.1] we immediately obtain

Proposition 1. Let $G=\left(g_{1}, \ldots, g_{m}\right): \mathbb{K}^{n} \rightarrow \mathbb{K}^{m}$ be a polynomial mapping with $\operatorname{deg} g_{j}>0$ for $j=1, \ldots, m$, where $m \geq n \geq 1$, and let $k \in \mathbb{Z}$, $n \leq k \leq m$.
(i) For the generic $L \in \mathbf{L}^{\mathbb{K}}(m, k)$,

$$
\begin{equation*}
\#\left[(L \circ G)^{-1}(0) \backslash G^{-1}(0)\right]<\infty \tag{13}
\end{equation*}
$$

(ii) The condition (13) also holds for the generic $L \in \Delta^{\mathbb{K}}(m, k)$.

Proof. Let us first consider the case $n=k$. Let

$$
W=\left\{L \in \mathbf{L}^{\mathbb{C}}(m, n): \#\left[\left(L \circ F_{\mathbb{C}}\right)^{-1}(0) \backslash F_{\mathbb{C}}^{-1}(0)\right]<\infty\right\}
$$

By [9, Proposition 1.1], W contains a nonempty Zariski open subset of $\mathbf{L}^{\mathbb{C}}(m, n)$. Then W contains a dense Zariski open subset of $\mathbf{L}^{\mathbb{R}}(m, n)$. This gives the assertion in the case $n=k$.

Now assume $k>n$. Since for $L=\left(L_{1}, \ldots, L_{k}\right) \in \mathbf{L}^{\mathbb{K}}(m, k)$,

$$
(L \circ G)^{-1}(0) \subset\left(\left(L_{1}, \ldots, L_{n}\right) \circ G\right)^{-1}(0)
$$

we deduce the assertion from the previous case.
Proof of Theorem 2. It suffices to prove Theorem 2 for $a=0$. Without loss of generality we may assume that $F \neq 0$. By definition, there exist
$C, \varepsilon>0$ such that for all $x \in \mathbb{K}^{n}$ with $|x|<\varepsilon$ we have

$$
\begin{equation*}
|F(x)| \geq C \operatorname{dist}\left(x, F^{-1}(0)\right)^{\mathcal{L}_{0}^{\mathbb{K}}(F)} \tag{14}
\end{equation*}
$$

and $\mathcal{L}_{0}^{\mathbb{K}}(F)$ is the smallest exponent for which the inequality holds. Let $L \in$ $\mathbf{L}^{\mathbb{K}}(m, k)$ be such that $F^{-1}(0) \cap U_{L}=(L \circ F)^{-1}(0) \cap U_{L}$ for some neighbourhood $U_{L} \subset \mathbb{K}^{n}$ of 0 . Diminishing ε and the neighbourhood U_{L} if necessary, we may assume that $\operatorname{dist}\left(x, F^{-1}(0)\right)=\operatorname{dist}\left(x, F^{-1}(0) \cap U_{L}\right)$ for all $x \in \mathbb{K}^{n}$ with $|x|<\varepsilon$. Obviously $L \neq 0$, so $\|L\|>0$ and $|F(x)| \geq \frac{1}{\|L\|}|L(F(x))|$. Then by (14) we obtain $\mathcal{L}_{a}^{\mathbb{K}}(F) \leq \mathcal{L}_{a}^{\mathbb{K}}(L \circ F)$ and (4) is proved.

By Proposition 1 and Lemmas 1 and 2 , for the generic $L \in \mathbf{L}^{\mathbb{K}}(m, k)$ we have $F^{-1}(0) \cap U_{L}=(L \circ F)^{-1}(0) \cap U_{L}$ for some neighbourhood $U_{L} \subset \mathbb{K}^{n}$ of 0 and there exist $\varepsilon, C_{1}, C_{2}>0$ such that for all $x \in \mathbb{K}^{n}$ with $|x|<\varepsilon$,

$$
\begin{equation*}
C_{1}|F(x)| \leq|L(F(x))| \leq C_{2}|F(x)| . \tag{15}
\end{equation*}
$$

Together with (14), this gives (5) and ends the proof of Theorem 2.
4. Proof of Theorem 3. We recall Lemma 2.2 from [9]:

Lemma 4. Let $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ with $m \geq n$ be a polynomial mapping. Then there exists a Zariski open and dense subset $W \subset \mathbf{L}^{\mathbb{C}}(m, n)$ such that for any $L \in W$ and any $\varepsilon>0$ there exist $\delta>0$ and $r>0$ such that for any $x \in \mathbb{C}^{n}$,

$$
|x|>r \wedge|L \circ F(x)|<\delta \Rightarrow|F(x)|<\varepsilon
$$

In the proof of Theorem 3 we will need the following version of the above lemma in the real case.

Lemma 5. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $m \geq n$ be a polynomial mapping and let $k \in \mathbb{Z}$ with $n \leq k \leq m$. Then there exists a Zariski open and dense subset $W \subset \mathbf{L}^{\mathbb{R}}(m, k)$ such that for any $L \in W$ and any $\varepsilon>0$ there exist $\delta>0$ and $r>0$ such that for any $x \in \mathbb{R}^{n}$,

$$
|x|>r \wedge|L \circ F(x)|<\delta \Rightarrow|F(x)|<\varepsilon .
$$

Proof. For $k=n$ the assertion immediately follows from Lemma 4, Let W_{1} be a Zariski open and dense subset of $\mathbf{L}^{\mathbb{R}}(m, n)$ for which the assertion holds with $k=n$. Let $k>n$ and

$$
W=\left\{L=\left(L_{1}, \ldots, L_{k}\right) \in \mathbf{L}^{\mathbb{R}}(m, k):\left(L_{1}, \ldots, L_{n}\right) \in W_{1}\right\} .
$$

Then for any $L=\left(L_{1}, \ldots, L_{k}\right) \in W$ and $x \in \mathbb{R}^{n}$ we have

$$
\left|\left(L_{1}, \ldots, L_{n}\right) \circ F(x)\right| \leq|L \circ F(x)|,
$$

so the assertion immediately follows from the previous case.
Proof of Theorem 3. Since for nonzero $L \in \mathbf{L}^{\mathbb{R}}(m, k)$ we have $|L \circ F(x)| \leq$ $\|L\||F(x)|$ and $\|L\|>0$, the definition of the Łojasiewicz exponent at infinity yields the first part of the assertion. We now prove the second part.

Since $F^{-1}(0)$ is a compact set by Proposition 1, there exists a dense Zariski open subset W_{1} of $\mathbf{L}^{\mathbb{R}}(m, k)$ such that

$$
W_{1} \subset\left\{L \in \mathbf{L}^{\mathbb{R}}(m, k): \#(L \circ F)^{-1}(0)<\infty\right\},
$$

so for the generic $L \in \mathbf{L}^{\mathbb{R}}(m, k)$ we have $\#(L \circ F)^{-1}(0)<\infty$.
If $\mathcal{L}_{\infty}^{\mathbb{R}}(F)<0$, the assertion (8) follows from Lemmas 1,2 and 5 .
Assume that $\mathcal{L}_{\infty}^{\mathbb{R}}(F)=0$. Then there exist $C, R>0$ such that $|F(x)| \geq C$ whenever $|x| \geq R$. Moreover, there exists a sequence $x_{\nu} \in \mathbb{R}^{n}$ such that $\left|x_{\nu}\right| \rightarrow \infty$ as $\nu \rightarrow \infty$ and $\left|F\left(x_{\nu}\right)\right|$ is a bounded sequence. So by Lemma 5 for the generic $L \in \mathbf{L}^{\mathbb{R}}(m, k)$ and $\varepsilon=C$ there exist $r, \delta>0$ such that $|L \circ F(x)| \geq \delta$ if $|x|>r$, hence $\mathcal{L}_{\infty}^{\mathbb{R}}(L \circ F) \geq 0$. Since $\left|L \circ F\left(x_{\nu}\right)\right|$ is a bounded sequence, we have $\mathcal{L}_{\infty}^{\mathbb{R}}(L \circ F) \leq 0$. Summing up, $\mathcal{L}_{\infty}^{\mathbb{R}}(L \circ F)=\mathcal{L}_{\infty}^{\mathbb{R}}(F)$ in this case.

Now we prove the assertion in the case $\mathcal{L}_{\infty}^{\mathbb{R}}(F)>0$. Let $Y=\overline{F_{\mathbb{C}}\left(\mathbb{C}^{n}\right)}$. Then $\operatorname{dim} Y \leq n$. From Sadullaev's Theorem ([4, VII, 7.1]) there exists a Zariski open and dense subset $W_{2} \subset \mathbf{L}^{\mathbb{C}}(m, k)$ such that for any $L \in W_{2}$ there exist $r>0$ and $M \in \mathbf{L}^{\mathbb{C}}(m, m-k)$ for which $(L, M) \in \mathbf{L}^{\mathbb{C}}(m, m)$ is a linear automorphism and for any $y \in Y$,

$$
|y| \geq r \Rightarrow|M(y)| \leq|L(y)| .
$$

Moreover, we may assume that $L \in W_{2}$ is a nonsingular linear mapping. So

$$
\begin{equation*}
|y|>r \Rightarrow|(L, M)(y)|=|L(y)| . \tag{16}
\end{equation*}
$$

Obviously $W_{1} \cap W_{2}$ contains a set W_{3} which is Zariski open and dense in $\mathbf{L}^{\mathbb{R}}(m, k)$. Let $L \in W_{3}$ and $M \in \mathbf{L}^{\mathbb{R}}(m, m-k)$ be as above. Since $\mathcal{L}_{\infty}^{\mathbb{R}}(F)>0$, there exists $R_{1}>0$ such that for any $x \in \mathbb{C}^{n}$ with $|x|>R_{1}$ we have $|F(x)|>r$. Then, from (16),

$$
|x|>R_{1} \Rightarrow|(L, M) \circ f(x)|=|L \circ f(x)| .
$$

Thus, $\mathcal{L}_{\infty}^{\mathbb{R}}(L \circ F)=\mathcal{L}_{\infty}^{\mathbb{R}}((L, M) \circ F)$. Since (L, M) is a linear automorphism, we have $\mathcal{L}_{\infty}^{\mathbb{R}}((L, M) \circ F)=\mathcal{L}_{\infty}^{\mathbb{R}}(F)$, so $\left.\sqrt{8}\right)$ is proved in this case.

Acknowledgements. We would like to thank Tadeusz Krasiński for his valuable advice during the preparation of this paper.

References

[1] E. Cygan, A note on separation of algebraic sets and the Eojasiewicz exponent for polynomial mappings, Bull. Sci. Math. 129 (2005), 139-147.
[2] E. Cygan, Intersection theory and separation exponent in complex analytic geometry, Ann. Polon. Math. 69 (1998), 287-299.
[3] E. Cygan, T. Krasiński and P. Tworzewski, Separation of algebraic sets and the Łojasiewicz exponent of polynomial mappings, Invent. Math. 136 (1999), 75-87.
[4] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991.
[5] A. Płoski, Sur l'exposant d'une application analytique. II, Bull. Polish Acad. Sci. Math. 33 (1985), 123-127.
[6] T. Rodak and S. Spodzieja, Effective formulas for the Eojasiewicz exponent at infinity, J. Pure Appl. Algebra 213 (2009), 1816-1822.
[7] T. Rodak and S. Spodzieja, Effective formulas for the local Łojasiewicz exponent, Math. Z. 268 (2011), 37-44.
[8] T. Rodak and S. Spodzieja, Eojasiewicz exponent near the fibre of a mapping, Proc. Amer. Math. Soc. 139 (2011), 1201-1213.
[9] S. Spodzieja, The Eojasiewicz exponent at infinity for overdetermined polynomial mappings, Ann. Polon. Math. 78 (2002), 1-10.
[10] S. Spodzieja, Multiplicity and the Łojasiewicz exponent, Ann. Polon. Math. 73 (2000), 257-267
[11] P. Tworzewski, Intersection theory in complex analytic geometry, Ann. Polon. Math. 62 (1995), 177-191.
[12] H. Whitney, Tangents to an analytic variety, Ann. of Math. 81 (1965), 496-549.
Stanisław Spodzieja, Anna Szlachcińska
Faculty of Mathematics and Computer Science
University of Łódź
Banacha 22
90-238 Łódź, Poland
E-mail: spodziej@math.uni.lodz.pl
anna_loch@wp.pl

Received October 18, 2012;
received in final form February 11, 2013

[^0]: 2010 Mathematics Subject Classification: 14P20, 14P10, 32C07.
 Key words and phrases: Łojasiewicz exponent, polynomial mapping, overdetermined mapping.

