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Summary. We prove the existence of global attractors for the following semilinear de-
generate parabolic equation on RN :

∂u

∂t
− div(σ(x)∇u) + λu+ f(x, u) = g(x),

under a new condition concerning the variable nonnegative diffusivity σ(·) and for an arbi-
trary polynomial growth order of the nonlinearity f . To overcome some difficulties caused
by the lack of compactness of the embeddings, these results are proved by combining the
tail estimates method and the asymptotic a priori estimate method.

1. Introduction. In this paper we consider the following semilinear
degenerate parabolic equation with a variable, nonnegative coefficient in
RN , N ≥ 2:

(1.1)

∂u

∂t
− div(σ(x)∇u) + λu+ f(x, u) = g(x), x ∈ RN , t > 0,

u(0, x) = u0(x), x ∈ RN ,

where λ > 0, u0 ∈ L2(RN ) and g ∈ L2(RN ) are given, and f : RN × R→ R
and σ(·) are functions satisfying some conditions specified later.

Problem (1.1) can be derived as a simple model for neutron diffusion
(feedback control of nuclear reactor) (see [DL]). In this case u and σ stand
for the neutron flux and neutron diffusion respectively. The degeneracy of
problem (1.1) is considered in the sense that the measurable nonnegative
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diffusion coefficient σ(·) is allowed to have at most a finite number of (es-
sential) zeroes at some points.

Problem (1.1) in a general (bounded or unbounded) domain Ω ⊂ RN
was studied in [ABT, AT, KZ1, KZ2], in which the diffusivity σ(·) was
assumed to satisfy the following conditions which ensure important com-
pactness properties:

(Hα) σ ∈ L1
loc(Ω) and for some α ∈ (0, 2), lim infx→z |x−z|−ασ(x) > 0

for every z ∈ Ω, when the domain Ω is bounded;
(H∞α,β) σ satisfies condition (Hα) and lim inf |x|→∞ |x|−βσ(x) > 0 for

some β > 2, when the domain Ω is unbounded.

Both assumptions have a strong physical significance which is related to
the existence of regions occupied by perfect insulators or perfect conductors
[CM, DL, KZ1, KZ2]. The natural phase space for problem (1.1) in these
cases involves D1

0(Ω, σ), which is defined as the closure of C∞0 (Ω) in the
norm

‖u‖D1
0(Ω,σ)

:=
( �
Ω

σ(x)|∇u|2 dx
)1/2

.

Under either assumption (Hα) or (H∞α,β), the embedding D1
0(Ω, σ) ↪→ L2(Ω)

is compact and this property plays an essential role for the investigation in
[ABT, AT, KZ1, KZ2]. Observe, however, that when Ω is unbounded, the
function σ(·) must grow faster than quadratically at infinity for this property
to hold (see [CM]). We also refer the reader to [AK] for some related results
in the quasilinear case.

In this paper we would like to find a new condition concerning the dif-
fusivity σ(·) which ensures the asymptotic compactness of the semigroup
generated by problem (1.1) and as a result, the existence of global attrac-
tors, without restricting the limiting behavior of σ(·) at infinity. It turns out
that such a condition can be found with careful tail estimates as in [W] (see
the proof of Lemma 3.4 below).

In order to study problem (1.1), we make the following assumptions:

(F) f : RN × R→ R is a continuous function satisfying

f(x, u)u ≥ α1|u|p − C1(x),(1.2)

|f(x, u)| ≤ α2|u|p−1 + C2(x),(1.3)

∂f

∂u
(x, u) ≥ −α3,(1.4)

for some p ≥ 2, where α1, α2, α3 are positive constants, C1(·) ∈
L1(RN ) ∩ L2(RN ) and C2(·) ∈ Lp

′
(RN ) with 1/p + 1/p′ = 1 are

nonnegative functions. Denote F (x, s) =
	s
0 f(x, τ) dτ . Then we
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assume that F satisfies

(1.5) − C4(x) + α4|u|p ≤ F (x, u) ≤ α5|u|p + C3(x),

where α4, α5 are positive constants, and C3(·), C4(·) ∈ L1(RN )
are nonnegative functions.

(H∞) σ is a nonnegative measurable function such that σ ∈ L1
loc(RN ),

and for some α ∈ (0, 2),

lim inf
x→z

|x− z|−ασ(x) > 0 for every z ∈ RN ,

and σ satisfies one of the following two conditions:

(i) there exists K0 > 0 such that

sup
k≥K0

sup
k≤|x|≤

√
2 k

σ(x) <∞;

(ii) there exists K0 > 0 such that

sup
k≥K0

�

k≤|x|≤
√
2 k

|σ(x)|
p−1
p−2 dx <∞,

where p is given in assumption (F);

(G) g ∈ L2(RN ).

Let us comment on the condition (H∞). Observe that the absence of a
specific limiting behavior at infinity for σ(·) (cf. condition (H∞α,β)) is now
compensated by a higher local integrability. A simple example in which
(H∞) is fulfilled but (H∞α,β) is not, is provided by the function σ ≡ 1 (the

nondegenerate case) or σ(x) = e−|x|(|x|α + |x|γ) with α, γ ∈ (0, 2).
For Ω ⊂ RN , we defineH1

0(Ω, σ) to be the closure of C∞0 (Ω) with respect
to the norm

‖u‖2H1
0(Ω,σ)

:=
�

Ω

|u|2 dx+
�

Ω

σ(x)|∇u|2 dx.

Notice that in the compact case, that is, when (Hα) or (H∞α,β) holds,H1
0(Ω, σ)

≡ D1
0(Ω, σ) sinceD1

0(Ω, σ) ↪→ L2(Ω) (see [CM]). The natural energy space for
problem (1.1) involves the space H1

0(RN , σ) and its dual space H−1(RN , σ).
The main aim of this paper is to prove the existence of a global attractor

in the space H1
0(RN , σ) ∩ Lp(RN ) for the semigroup generated by problem

(1.1). First, we use the Galerkin method to prove the global existence of
a weak solution and then construct the semigroup associated to problem
(1.1). Next, we use a priori estimates to show the existence of a bounded
absorbing set in H1

0(RN , σ)∩Lp(RN ) for the semigroup. In the compact case
[ABT], i.e. when the domain Ω satisfies (Hα) or (H∞α,β), since the embedding

D1
0(Ω, σ) ↪→ L2(Ω) is compact, this immediately implies the asymptotic

compactness in L2(Ω). Here, because the embedding is no longer compact,
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the proof of the asymptotic compactness in L2(RN ) is much more involved.
To do this, we exploit the tail estimates method introduced in [W], and as a
result, we obtain the existence of a global attractor in L2(RN ). When proving
the existence of global attractors in Lp(RN ) and in H1

0(RN , σ) ∩ Lp(RN ),
to overcome the difficulty arising from the lack of embedding results, we
use the asymptotic a priori estimate method initiated in [MWZ, ZYS]. The
main new feature of the paper is that we are able to prove the existence of
global attractors for a class of semilinear degenerate parabolic equations in
the noncompact case. As fas as we know, this is the first result for parabolic
equations of type (1.1) in this case.

The paper is organized as follows. In Section 2, we prove the existence
and uniqueness of a weak solution to problem (1.1) by using the Galerkin
method. In Section 3, we show the existence of global attractors in various
function spaces for the semigroup generated by the problem (1.1) by exploit-
ing and combining the tail estimates method and the asymptotic a priori
estimate method.

2. Existence and uniqueness of weak solutions. We first give the
definition of a weak solution.

Definition 2.1. A function u : (0,∞)→ H1
0(RN , σ)∩Lp(RN ) is said to

be a weak solution of (1.1) if u ∈ L2(0, T ;H1
0(RN , σ)) ∩ Lp(0, T ;Lp(RN )) ∩

L∞(0, T ;L2(RN )) for all T > 0, and

(u(t), v)L2(RN ) +

t�

0

�

RN

σ∇u∇v dx dt+ λ

t�

0

(u, v)L2(RN ) dt+

t�

0

�

RN

f(x, u)v dx dt

= (u0, v)L2(RN ) +

t�

0

(g, v)L2(RN ) dt, ∀t > 0,

for all v ∈ H1
0(RN , σ)) ∩ Lp(RN ).

One can check that this definition in fact coincides with the usual defi-
nition of (global) weak solutions (see e.g. [CV]). Thus, it follows from [CV,
p. 285] that if u is a weak solution of (1.1), then u ∈ C([0, T ];L2(RN )), the
function t 7→ ‖u(t)‖2

L2(RN )
is absolutely continuous on every interval [0, T ],

and
d

dt
‖u(t)‖2L2(RN ) =

〈
du

dt
(t), u(t)

〉
for a.e. t ∈ [0, T ].

We now prove the following theorem.

Theorem 2.2. Let (H∞), (F) and (G) hold. Then, for any given u0 ∈
L2(RN ), problem (1.1) has a unique weak solution u. Moreover, the mapping
u0 7→ u(t) is continuous on L2(RN ).
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Proof. The proof is similar to the proof of Theorem 3.2 in [ABT], except
passing to the limit in the nonlinear term f(·, ·), so we only sketch it. For
each m ≥ 1, we denote

Ωm = {x ∈ RN : |x|RN < m},
where | · |RN denotes the Euclidean norm in RN . For each integer n ≥ 1, we
denote by

un(t) =

n∑
j=1

γnj(t)ωj

a solution of
d

dt
(un(t), ωj)− (div(σ∇u), ωj) + λ(un(t), ωj) + (f(x, un(t)), ωj)

= (g, ωj), t > 0,

(un(0), ωj) = (u0, ωj), j = 1, . . . , n,

where {ωj : j ≥ 1} ⊂ H1
0(RN , σ)∩Lp(RN ) is a Hilbert basis of L2(RN ) such

that span{ωj : j ≥ 1} is dense in H1
0(RN , σ) ∩ Lp(RN ).

It is a standard matter to deduce that

(2.1)

• {un} is bounded in L2(0, T ;H1
0(RN , σ)) ∩ Lp(0, T ;Lp(RN ))

∩ L∞(0, T ;L2(RN )),

• {f(x, un)} is bounded in Lp
′
(0, T ;Lp

′
(RN )).

for all T > 0. Then there exists a subsequence {uµ} such that

uµ ⇀
∗ u weakly-star in L∞(0, T ;L2(RN )),

uµ ⇀ u in Lp(0, T ;Lp(RN )),

uµ ⇀ u in L2(0, T ;H1
0(RN , σ)),(2.2)

f(x, uµ) ⇀ χ in Lp
′
(0, T ;Lp

′
(RN )),(2.3)

for all T > 0. Hence, (2.2) implies that

−div(σ(x)∇uµ) + λuµ ⇀ −div(σ(x)∇u) + λu in L2(0, T ;H−1(RN , σ)).

Now, to prove that χ(t) = f(·, u(t)), we argue similarly to [R]. Arguing as
in [R, p. 75] we first deduce

(2.4) lim
a→0

sup
µ

T−a�

0

‖uµ(t+ a)− uµ(t)‖2L2(RN ) dt = 0.

Let φ ∈ C1([0,∞)) be a function such that

0 ≤ φ(s) ≤ 1,

φ(s) = 1 ∀s ∈ [0, 1],

φ(s) = 0 ∀s ≥ 2.
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For each µ and m ≥ 1, we define

(2.5) vµ,m(x, t) = φ

( |x|2RN

m2

)
uµ(t), ∀x ∈ Ω2m, ∀µ,∀m ≥ 1.

We infer from (2.1) that, for all m ≥ 1, the sequence {vµ,m}µ≥1 is bounded in
L∞(0, T ;L2(Ω2m))∩Lp(0, T ;Lp(Ω2m))∩L2(0, T ;H1

0(Ω2m, σ)) for all T > 0.
In particular, it follows that

lim
a→0

sup
µ

( a�
0

‖vµ,m(x, t)‖2L2(Ω2m) dt+

T�

T−a
‖vµ,m(x, t)‖2L2(Ω2m) dt

)
= 0.

On the other hand, from (2.4) we deduce that for all m ≥ 1,

lim
a→0

sup
µ

( T−a�
0

‖vµ,m(x, t+ a)− vµ,m(x, t)‖2L2(Ω2m) dt
)

= 0.

Moreover, as Ω2m is a bounded set, H1
0(Ω2m, σ) is included in L2(Ω2m)

with compact injection. Then, by Theorem 13.3 and Remark 13.1 in [T1],
it follows that

{vµ,m}µ≥1 is relatively compact in L2(0, T ;L2(Ω2m)),

and thus, taking into account that vµ,m(x, t) = uµ(x, t) for all x ∈ Ωm, we
deduce that, in particular, for all m ≥ 1,

(2.6) {uµ|Ωm} is pre-compact in L2(0, T ;L2(Ωm)).

Hence, by a diagonal procedure, one can conclude from (2.6) and (2.2) that
there exists a subsequence {uµµ}µ≥1 ⊂ {uµ}µ≥1 such that

uµµ → u in Ωm × (0,∞) as n→∞, ∀m ≥ 1.

Then, as f(·, ·) is continuous,

f(x, uµµ)→ f(x, u) a.e. in Ωm × (0,∞),

and as {f(x, uµµ)} is bounded in Lp
′
(Ωm × (0, T )), by Lemma 1.3 in [L,

Chapter 1], we obtain

f(x, uµµ) ⇀ f(x, u) in Lp
′
(0, T ;Lp

′
(Ωm)).

By the uniqueness of the weak limit, we have

χ = f(x, u) a.e. in Ωm × (0, T ) ∀T > 0, ∀m ≥ 1,

and thus, taking into account that
⋃∞
m=1Ωm = RN , we obtain

(2.7) χ = f(x, u) a.e. in RN × (0,∞).

Then, (2.7) and (2.3) yield

f(x, uµ) ⇀ f(x, u) in Lp
′
(0, T ;Lp

′
(RN )) ∀T > 0.
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Hence, it is standard to show that u is a weak solution to problem (1.1). The
uniqueness and continuous dependence of the weak solutions on the initial
data follows by the same arguments as in [ABT].

3. Existence of global attractors. Thanks to Theorem 2.2, we can
define a continuous semigroup

S(t) : L2(RN )→ H1
0(RN , σ) ∩ Lp(RN ),

where S(t)u0 := u(t) is the unique weak solution of (1.1) with u0 as initial
datum.

We first prove the existence of an absorbing set for S(t) in H1
0(RN , σ) ∩

Lp(RN ). For brevity, in the following lemmas, we only give some formal
calculations; the rigorous proof uses Galerkin approximations and Lemma
11.2 in [R].

Lemma 3.1. Suppose (H∞), (F) and (G) hold. Then the semigroup S(t)
generated by (1.1) has a bounded absorbing set in H1

0(RN , σ)∩Lp(RN ), that
is, there exists a positive constant ρ such that for every bounded subset B in
L2(RN ), there is a number T = T (B) > 0 such that for all t ≥ T , u0 ∈ B,
we have

‖u(t)‖2H1
0(RN ,σ) + ‖u(t)‖p

Lp(RN )
≤ ρ.

Proof. Taking the inner product of (1.1) with u in L2(RN ) we get

(3.1)
1

2

d

dt
‖u‖2L2(RN ) +

�

RN

σ(x)|∇u|2 dx+ λ‖u‖2L2(RN ) +
�

RN

f(x, u)u dx

= (g, u).

By (1.2), we have

(3.2)
�

RN

f(x, u)u dx ≥ α1

�

RN

|u|p dx−
�

RN

C1(x) dx.

By Cauchy’s inequality, the right-hand side of (3.1) is estimated as follows:

(3.3) |(g, u)| ≤ ‖g‖L2(RN )‖u‖L2(RN ) ≤
λ

2
‖u‖2L2(RN ) +

1

2λ
‖g‖2L2(RN ).

It follows from (3.1)–(3.3) that

(3.4)
d

dt
‖u‖2L2(RN ) + 2

�

RN

σ|∇u|2 dx+ λ‖u‖2L2(RN ) + 2α1

�

RN

|u|p dx

≤ C +
1

λ
‖g‖2L2(RN ).

Hence, in particular, we have

d

dt
‖u(t)‖2L2(RN ) + λ‖u(t)‖2L2(RN ) ≤ C +

1

λ
‖g‖2L2(RN ).
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Using Gronwall’s inequality, we obtain

(3.5) ‖u(t)‖2L2(RN ) ≤ e
−λt‖u0‖2L2(RN ) +

(
C

λ
+

1

λ2
‖g‖2L2(RN )

)
(1− e−λt).

From (3.5) we deduce the existence of a bounded absorbing set in L2(RN ):
There is a constant R and a time t0(‖u0‖L2(RN )) such that for the solution
u(t) = S(t)u0,

‖u(t)‖L2(RN ) ≤ R for all t ≥ t0(‖u0‖L2(RN )).

Integrating (3.4) on (t, t + 1), t ≥ t0(‖u0‖L2(RN )), and using (1.5), we find
that

(3.6)

t+1�

t

( �

RN

σ(x)|∇u(s)|2 dx+ λ‖u(s)‖2L2(RN ) + 2
�

RN

F (x, u(s)) dx
)
ds

≤ C(‖u(t)‖2L2(RN ) + 1 + ‖g‖2L2(RN )) ≤ C(R2 + 1 + ‖g‖2L2(RN )).

Multiplying (1.1) by ut(s) and integrating over RN , we obtain

(3.7) ‖ut(s)‖2L2(RN )

+
1

2

d

ds

( �

RN

σ(x)|∇u(s)|2 dx+ λ‖u(s)‖2L2(RN ) + 2
�

RN

F (x, u(s)) dx
)

=
�

RN

gut(s) dx ≤
1

2
‖g‖2L2(RN ) +

1

2
‖ut(s)‖2L2(RN ).

Hence,

(3.8)
d

ds

( �

RN

σ(x)|∇u(s)|2 dx+ λ‖u(s)‖2L2(RN ) + 2
�

RN

F (x, u(s)) dx
)

≤ ‖g‖2L2(RN ).

Combining (3.6), (3.8), and using the uniform Gronwall inequality, we have

(3.9)
�

RN

σ(x)|∇u(t)|2 dx+ λ‖u(t)‖2L2(RN ) + 2
�

RN

F (x, u(t)) dx

≤ C(R2 + 1 + ‖g‖2L2(RN )).

Using (1.5) once again, we finish the proof.

We now derive uniform estimates of the derivatives of solutions in time.

Lemma 3.2. Suppose (H∞), (F) and (G) hold. Then for every bounded
subset B in L2(RN ), there exists a constant T = T (B) > 0 such that

‖ut(s)‖2L2(RN ) ≤ ρ1 for all u0 ∈ B and s ≥ T,

where ut(s) = d
dt(S(t)u0)

∣∣
t=s

and ρ1 is a positive constant independent of B.
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Proof. By differentiating (1.1) in time and denoting v = ut, we get

∂v

∂t
− div(σ(x)∇v) + λv +

∂f

∂u
(x, u)v = 0.

Taking the inner product of the above equality with v in L2(RN ), we obtain

(3.10)
1

2

d

dt
‖v‖2L2(RN ) +

�

RN

σ(x)|∇v|2 dx+ λ‖v‖2L2(RN )

+
�

RN

∂f

∂u
(x, u)|v|2 dx = 0.

By (1.4), it follows from (3.10) that

(3.11)
d

dt
‖v‖2L2(RN ) ≤ 2α3‖v‖2L2(RN ).

On the other hand, integrating (3.7) from t to t + 1 and using (3.9), we
obtain

(3.12)

t+1�

t

‖ut(s)‖2L2(RN ) ds ≤ C(ρ, ‖g‖2L2(RN ))

for t large enough. Combining (3.11) with (3.12), and using the uniform
Gronwall inequality, we have

‖ut(s)‖2L2(RN ) ≤ C(ρ, ‖g‖2L2(RN )).

The proof is complete.

Lemma 3.3. Suppose (H∞), (F) and (G) hold. Then the semigroup
{S(t)}t≥0 has a bounded absorbing set in L2p−2(RN ), i.e., there exists a
positive constant ρ2p−2 such that for any bounded subset B ⊂ L2(RN ), there
is a number T = T (B) > 0 such that

‖u(t)‖L2p−2(RN ) ≤ ρ2p−2 for any t ≥ T and u0 ∈ B.

Proof. Taking |u|p−2u as a test function, we obtain
�

RN

|u|p−2u · ut dx+
�

RN

σ(x)|∇u|2|u|p−2 dx+ λ
�

RN

|u|p dx

+
�

RN

f(x, u)|u|p−2u dx =
�

RN

g|u|p−2u dx.

Hence, using (1.2) and Cauchy’s inequality, we obtain
�

RN

σ(x)|∇u|2|u|p−2 dx+ λ
�

RN

|u|p dx+ α1

�

RN

|u|2p−2 dx

≤
�

RN

C1(x)|u|p−1 dx+
1

α1

�

RN

|g|2 dx+
α1

2

�

RN

|u|2p−2 dx+
1

α1

�

RN

|ut|2 dx.
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Using Cauchy’s inequality once again, we arrive at

α1

4

�

RN

|u|2p−2 dx ≤ 1

α1
‖g‖2L2(RN ) +

1

α1

�

RN

|ut|2 dx+
1

α1

�

RN

|C1(x)|2 dx.

Hence, by Lemma 3.2, there exists T = T (B) such that

‖u(t)‖L2p−2 ≤ ρ2p−2 for any t ≥ T and u0 ∈ B,

where ρ2p−2 depends only on ‖g‖L2(RN ).

3.1. Existence of a global attractor in L2(RN )

Lemma 3.4. Suppose (H∞), (F) and (G) hold. Then for any η > 0
and any bounded subset B ⊂ L2(RN ), there exist T = T (η,B) > 0 and
K = K(η,B) > 0 such that for all t ≥ T and k ≥ K,

�

|x|≥k

|u(x, t)|2 dx ≤ η,

where u is the weak solution of (1.1) subject to the initial condition u(0) =
u0 ∈ B.

Proof. We use a cut-off technique to establish the estimates on the tails
of solutions. Let θ be a smooth function satisfying 0 ≤ θ(s) ≤ 1 for s ∈ R+,
and

θ(s) = 0 for 0 ≤ s ≤ 1, θ(s) = 1 for s ≥ 2.

Then there exists a constant C such that |θ′(s)| ≤ C for all s ∈ R+. Taking
the inner product of (1.1) with θ(|x|2/k2)u in L2(RN ), we get

(3.13)
1

2

d

dt

�

RN

θ

(
|x|2

k2

)
|u|2 dx−

�

RN

θ

(
|x|2

k2

)
udiv(σ(x)∇u) dx

+λ
�

RN

θ

(
|x|2

k2

)
|u|2 dx+

�

RN

θ

(
|x|2

k2

)
f(x, u)u dx =

�

RN

θ

(
|x|2

k2

)
g(x)u(x, t) dx.

For the right-hand side of (3.13) we find that

(3.14)
�

RN

θ

(
|x|2

k2

)
g(x)u(x, t) dx =

�

|x|≥k

θ

(
|x|2

k2

)
g(x)u(x, t) dx

≤ λ

2

�

|x|≥k

θ2
(
|x|2

k2

)
|u|2 dx+

1

2λ

�

|x|≥k

|g(x)|2 dx

≤ λ

2

�

RN

θ2
(
|x|2

k2

)
|u|2 dx+

1

2λ

�

|x|≥k

|g(x)|2 dx.
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We now estimate the last term of the left-hand side of (3.13) as follows:

(3.15)
�

RN

θ

(
|x|2

k2

)
f(x, u) dx

≥ α1

�

RN

θ

(
|x|2

k2

)
|u|p dx−

�

RN

θ

(
|x|2

k2

)
C1(x) dx ≥ −

�

|x|≥k

C1(x) dx.

For the second term on the left-hand side of (3.13), by integrating by parts,
we have

(3.16) −
�

RN

θ

(
|x|2

k2

)
udiv(σ(x)∇u) dx =

�

RN

θ

(
|x|2

k2

)
σ(x)|∇u|2 dx

+
�

RN

θ′
(
|x|2

k2

)(
2x

k2
·σ(x)∇u

)
u dx ≥

�

k≤|x|≤
√
2 k

θ′
(
|x|2

k2

)(
2x

k2
·σ(x)∇u

)
u dx.

It follows from (3.13)–(3.16) that

(3.17)
d

dt

�

RN

θ

(
|x|2

k2

)
|u|2 dx+ λ

�

RN

θ

(
|x|2

k2

)
|u|2 dx ≤ 2

�

|x|≥k

|C1(x)| dx

+
1

λ

�

|x|≥k

|g(x)|2 dx+ 2
�

k≤|x|≤
√
2 k

∣∣∣∣θ′( |x|2k2
)∣∣∣∣2|x|k2 · σ(x)|∇u| |u| dx.

We have

(3.18)
�

k≤|x|≤
√
2 k

∣∣∣∣θ′( |x|2k2
)∣∣∣∣2|x|k2 · σ(x)|∇u| |u| dx

≤ C

k

�

k≤|x|≤
√
2 k

σ(x)|∇u| |u| dx

≤ C

k

( �

k≤|x|≤
√
2 k

σ(x)|u|2 dx
)1/2( �

k≤|x|≤
√
2 k

σ(x)|∇u|2 dx
)1/2

,

where C is independent of k.

We now estimate the term
	
k≤|x|≤

√
2 k σ(x)|u|2 dx.

Case 1: σ satisfies condition (i) in (H∞). We have for all k ≥ K0,
�

k≤|x|≤
√
2 k

σ(x)|u|2 dx ≤ C
�

k≤|x|≤
√
2 k

|u|2 dx.
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Hence, by Lemma 3.1, we deduce that for all k ≥ K0 and t ≥ T0,

(3.19)
�

k≤|x|≤
√
2 k

∣∣∣∣θ′( |x|2k2
)∣∣∣∣2|x|k2 · σ(x)|∇u| |u| dx

≤ C

k

( �

k≤|x|≤
√
2 k

|u|2 dx
)1/2( �

k≤|x|≤
√
2 k

σ(x)|∇u|2 dx
)1/2

≤ C

k

( �

k≤|x|≤
√
2 k

σ(x)|∇u|2 dx
)1/2

.

Case 2: σ satisfies condition (ii) in (H∞). By Hölder’s inequality, we
obtain

(3.20)
�

k≤|x|≤
√
2 k

σ(x)|u|2 dx

≤
( �

k≤|x|≤
√
2 k

σ(x)
p−1
p−2 dx

) p−2
p−1
( �

k≤|x|≤
√
2 k

|u|2p−2 dx
) 1

p−1
.

Hence, by Lemma 3.3, we deduce that for all k ≥ K0 and t ≥ T0,

(3.21)
�

k≤|x|≤
√
2 k

∣∣∣∣θ′( |x|2k2
)∣∣∣∣2|x|k2 · σ(x)|∇u| |u| dx

≤ C

k
‖σ‖1/2

L
p−1
p−2 (k≤|x|≤

√
2 k)

( �

k≤|x|≤
√
2 k

|u|2p−2 dx
) 1

2p−2

×
( �

k≤|x|≤
√
2 k

σ(x)|∇u|2 dx
)1/2

≤ C

k
ρ2p−2‖σ‖1/2

L
p−1
p−2 (k≤|x|≤

√
2 k)

( �

k≤|x|≤
√
2 k

σ(x)|∇u|2 dx
)1/2

≤ C

k

( �

k≤|x|≤
√
2 k

σ(x)|∇u|2 dx
)1/2

.

It follows from (3.17), (3.19), and (3.21) that

(3.22)
d

dt

�

RN

θ

(
|x|2

k2

)
|u|2 dx+ λ

�

RN

θ

(
|x|2

k2

)
|u|2 dx

≤ 2
�

|x|≥k

|C1(x)| dx+
1

λ

�

|x|≥k

|g(x)|2 dx+ 2
C

k

( �

k≤|x|≤
√
2 k

σ(x)|∇u|2 dx
)1/2

.
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Multiplying (3.22) by eλt and then integrating over (T0, t), we obtain

(3.23)
�

RN

θ

(
|x|2

k2

)
|u(t)|2 dx ≤ e−λt

�

RN

θ

(
|x|2

k2

)
|u0|2 dx

+ 2e−λt
t�

T0

�

|x|≥k

eλξ|C1(x)| dx dξ +
1

λ
e−λt

t�

T0

eλξ
�

|x|≥k

|g(x)|2 dx dξ

+ 2
C

k
e−λt

t�

T0

eλξ
( �

k≤|x|≤
√
2 k

σ(x)|∇u(ξ)|2 dx
)1/2

dξ

≤ e−λt‖u(T0)‖2L2(RN ) + 2e−λt
t�

T0

�

|x|≥k

eλξ|C1(x)| dx dξ

+
1

λ2

�

|x|≥k

|g(x)|2 dx+ 2
C

k
e−λt

t�

T0

eλξ
( �

RN

σ(x)|∇u(ξ)|2 dx
)1/2

dξ.

Note that for given η > 0, there is T1 = T1(η) > 0 such that for all t ≥ T1,

(3.24) e−λt‖u(T0)‖2L2(RN ) ≤
η

4
.

Since C1(·) ∈ L1(RN ), there exists K1 = K1(η) > K0 such that for all
k ≥ K1,

(3.25) 2e−λt
t�

T0

�

|x|≥k

eλξ|C1(x)| dx dξ ≤ η

4
.

On the other hand, since g ∈ L2(RN ), there is K2 = K2(η) > K1 such that
for all k ≥ K2,

(3.26)
1

λ2

�

|x|≥k

|g(x)|2 dx ≤ η

4
.

For the last term on the right-hand side of (3.23), it follows from Lemma
3.1 that there is T2 > 0 such that for all ξ ≥ T2,�

RN

σ(x)|∇u(ξ)|2 dx ≤ ρ.

Therefore, there is K3 = K3(η) > K2 such that for all k ≥ K3 and t ≥ T2,

(3.27)
C

k
e−λt

t�

0

eλξ
( �

RN

σ(x)|∇u(ξ)|2 dx
)1/2

dξ ≤ η

4
.

Let T = max{T0, T1, T2}. Then by (3.23)–(3.27) we find that for all k ≥ K3



60 C. T. Anh and L. T. Thuy

and t ≥ T ,
�

RN

θ

(
|x|2

k2

)
|u(t)|2 dx ≤ η,

and hence for all k ≥ K3 and t ≥ T ,
�

|x|≥
√
2 k

|u(t)|2 dx ≤
�

RN

θ

(
|x|2

k2

)
|u(t)|2 dx ≤ η,

which completes the proof.

Now, we show the asymptotic compactness of S(t) in L2(RN ).

Lemma 3.5. Suppose (H∞), (F) and (G) hold. Then S(t) is asymp-
totically compact in L2(RN ), that is, for any bounded sequence {xn}∞n=1 ⊂
L2(RN ) and any sequence tn ≥ 0 with tn →∞, {S(tn)xn}∞n=1 has a conver-
gent subsequence with respect to the topology of L2(RN ).

Proof. We use the uniform estimates on the tails of solutions to establish
the precompactness of {un(tn) := S(tn)xn}, that is, we prove that for every
η > 0, the sequence {un(tn)} has a finite covering of balls of radii less than
η. Given K > 0, denote

ΩK = {x : |x| ≤ K} and Ωc
K = {x : |x| > K}.

Then by Lemma 3.4, for the given η > 0, there exist K = K(η) > 0 and
T = T (η) > 0 such that for t ≥ T ,

‖un(t)‖L2(Ωc
K) ≤ η.

Since tn → ∞, there is N1 = N1(η) > 0 such that tn ≥ T for all n ≥ N1,
and hence we obtain, for all n ≥ N1,

(3.28) ‖un(tn)‖L2(Ωc
K) ≤ η.

Let ζ(·) ∈ C∞(RN ) be a function such that 0 ≤ ζ(s) ≤ 1 for any s ≥ 0,
and

ζ(s) = 1 for 0 ≤ s ≤ 1, ζ(s) = 0 for s ≥ 2.

Furthermore, define ζk(x) = ζ(|x|2/k2). Then {ζKun(tn)} belongs to
H1

0(Ω√2 k, σ). By Lemma 3.1, there exist C > 0 and N2 > 0 such that
for all n ≥ N2,

‖ζKun(tn)‖H1
0(Ω
√
2 k,σ)

≤ C.

By the compactness of the embedding H1
0(Ω√2 k, σ) ≡ D1

0(Ω√2 k, σ) ↪→
L2(Ω√2 k) (see [CM]), the sequence {ζKun(tn)} is precompact in L2(Ω√2 k).

This in particular implies that {un(tn)} is precompact in L2(ΩK). There-
fore, for the given η > 0, {un(tn)} has a finite covering in L2(ΩK) of balls
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of radii less than η, which along with (3.28) shows that {un(tn)} has a fi-
nite covering in L2(RN ) of balls of radii less than η, and thus {un(tn)} is
precompact in L2(RN ).

We are now ready to prove the existence of a global attractor for S(t) in
L2(RN ).

Theorem 3.6. Suppose (H∞), (F) and (G) hold. Then the semigroup
S(t) generated by problem (1.1) has a global attractor AL2 in L2(RN ).

Proof. Denote

B = {u : ‖u‖L2(RN ) ≤ R},

where R is the positive constant in the proof of Lemma 3.1. Then B is a
bounded absorbing set for S(t) in L2(RN ). In addition, S(t) is asymptotically
compact in L2(RN ) since Lemma 3.5. Thus, there exists a global attractor
AL2 for S(t) in L2(RN ).

3.2. Existence of a global attractor in Lp(RN ). First, from Lemma
3.1, one can see that S(t) maps compact subsets of H1

0(RN , σ) ∩ Lp(RN ) to
bounded subsets of H1

0(RN , σ) ∩ Lp(RN ). Hence, by Theorem 3.2 in [ZYS],
we see that S(t) is norm-to-weak continuous on H1

0(RN , σ) ∩ Lp(RN ).

To obtain the existence of a global attractor in Lp(RN ), we need the
following lemma, whose proof is very similar to the proof of Corollary 5.7 in
[ZYS], so we omit it.

Lemma 3.7. Let {S(t)}t≥0 be a norm-to-weak continuous semigroup on
Lp(RN ), and suppose it is continuous or weakly continuous on L2(RN ), and
has a global attractor in L2(RN ). Then {S(t)}t≥0 has a global attractor in
Lp(RN ) if and only if

(i) {S(t)}t≥0 has a bounded absorbing set in Lp(RN );
(ii) for any ε > 0 and any bounded subset B of Lp(RN ), there exist

positive constants M = M(ε, B) and T = T (ε, B) such that for any
u0 ∈ B and t ≥ T ,

(3.29)
�

RN (|S(t)u0|≥M)

|S(t)u0|p dx < ε,

where RN (|S(t)u0| ≥M) := {x ∈ RN : |(S(t)u0)(x)| ≥M}.

Theorem 3.8. Assume (H∞), (F) and (G) hold. Then the semigroup
S(t) generated by problem (1.1) has a global attractor ALp in Lp(RN ), that
is, ALp is compact, invariant in Lp(RN ) and attracts every bounded subset
of L2(RN ) in the topology of Lp(RN ).
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Proof. We only need to show that {S(t)} satisfies condition (ii) in Lem-
ma 3.7. Take M large enough such that α1|u|p−1 ≤ f(x, u) in

RN (u ≥M) := {x ∈ RN : u(x, t) ≥M},

and denote

(u−M)+ =

{
u−M, u ≥M
0, u ≤M .

First, for any fixed ε > 0, there exists δ > 0 such that for any e ⊂ RN with
m(e) ≤ δ, we have

(3.30)
�

e

|g|2 dx < ε.

In RN (u ≥M) we see that

(3.31) g(u−M)p−1 ≤ α1

2
(u−M)2p−2 +

1

2α1
|g|2

≤ α1

2
(u−M)p−1|u|p−1 +

1

2α1
|g|2,

and

(3.32) f(x, u)(u−M)p−1 ≥ α1|u|p−1(u−M)p−1

≥ α1

2
(u−M)p−1|u|p−1 +

α1M
p−2

2
(u−M)p.

Multiplying equation (1.1) by |(u −M)+|p−1 and using (3.31), (3.32), we
deduce that

2

p

d

dt
‖u−M‖p

Lp(RN (u≥M))
+ (p−1)

�

RN (u≥M)

σ(x)|∇(u−M)|2(u−M)p−2 dx

+ λ
�

RN (u≥M)

(u−M)2p−2 dx+ α1M
p−2

�

RN (u≥M)

(u−M)p dx

≤ 1

α1

�

RN (u≥M)

|g|2 dx.

Therefore,

d

dt
‖u−M‖p

Lp(RN (u≥M))
+CMp−2‖u−M‖p

Lp(RN (u≥M))
≤ C‖g‖2L2(RN (u≥M)).

By Gronwall’s inequality, we have for all M ≥M1 and t ≥ T1,

(3.33)
�

RN (u≥M)

(u−M)p dx ≤ ε.

Repeating the same step above, just taking (u+M)− instead of (u−M)+,



A Class of Semilinear Degenerate Parabolic Equations 63

where

(u+M)− =

{
u+M, u ≤ −M ,

0, u ≥ −M ,

we deduce that there exist M2 > 0 and T2 > 0 such that for any t > T2 and
any M ≥M2, we have

(3.34)
�

RN (u≤−M)

|(u+M)|p dx ≤ ε.

Letting M0 = max{M1,M2} and T = max{T1, T2}, we obtain
�

RN (|u|≥M)

(|u| −M)p dx ≤ ε for t ≥ T and M ≥M0.

Using (3.33) and (3.34), we have
�

RN (|u|≥2M)

|u|p dx =
�

RN (|u|≥2M)

((|u| −M) +M)p dx

≤ 2p
( �

RN (|u|≥2M)

(|u| −M)p dx+
�

RN (|u|≥2M)

Mp dx
)

≤ 2p
( �

RN (|u|≥2M)

(|u| −M)p dx+
�

RN (|u|≥2M)

(|u| −M)p dx
)

≤ 2p+1ε.

This completes the proof.

3.3. Existence of a global attractor in H1
0(RN , σ) ∩ Lp(RN )

Lemma 3.9. Suppose (H∞), (F) and (G) hold. Then the semigroup S(t)
is asymptotically compact in H1

0(RN , σ) ∩ Lp(RN ).

Proof. Let B be a bounded subset in L2(RN ). We will show that for
any {u0n} ⊂ B and tn → ∞, {un(tn)} := {S(tn)u0n} is precompact in
H1

0(RN , σ) ∩ Lp(RN ). Thanks to Theorem 3.8, we only need to show that
the sequence {un(tn)} is precompact in H1

0(RN , σ). By Lemma 3.5, we can
assume that {un(tn)} is a Cauchy sequence in L2(RN ). For any n,m ≥ 1, it
follows from (1.1) that

(3.35) − div(σ(x)∇(un(tn)− um(tm))) + λ(un(tn)− um(tm))

+ f(x, un(tn))− f(x, um(tm)) = − d

dt
un(tn) +

d

dt
um(tm).
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Multiplying (3.35) by un(tn)− um(tm) and using (1.4) we get

(3.36)
�

RN

σ(x)|∇un(tn)− um(tm)|2 dx+ λ‖un(tn)− um(tm)‖2L2(RN )

≤ ‖unt(tn)− umt(tm)‖L2(RN )‖un(tn)− um(tm)‖L2(RN )

+ α3‖un(tn)− um(tm)‖2L2(RN ).

By Lemma 3.2, for any bounded subset B in L2(RN ), there exists T = T (B)
such that for all tn ≥ T ,

‖unt(tn)‖L2(RN ) ≤ C,

which along with (3.36) shows that, for all n,m ≥ N ,
�

RN

σ(x)|∇un(tn)− um(tm)|2 dx+ λ‖un(tn)− um(tm)‖2L2(RN )

≤ 2C‖un(tn)− um(tm)‖L2(RN ) + α3‖un(tn)− um(tm)‖2L2(RN ).

Hence, {un(tn)} is a Cauchy sequence in H1
0(RN , σ).

Theorem 3.10. Suppose (H∞), (F) and (G) hold. Then the semigroup
S(t) generated by problem (1.1) has a global attractor AH1

0∩Lp in H1
0(RN , σ)∩

Lp(RN ), that is, AH1
0∩Lp is compact, invariant in H1

0(RN , σ) ∩ Lp(RN ) and

attracts every bounded subset of L2(RN ) in the topology of H1
0(RN , σ) ∩

Lp(RN ).

Proof. By Lemma 3.1, there exists a bounded absorbing set for S(t)
in H1

0(RN , σ) ∩ Lp(RN ). In addition, S(t) is asymptotically compact in
H1

0(RN , σ)∩Lp(RN ) since Lemma 3.9. Thus, there exists a global attractor
for S(t) in H1

0(RN , σ) ∩ Lp(RN ).

Remark 3.1. The global attractors AL2 , ALp and AH1
0∩Lp obtained in

Theorems 3.6, 3.8 and 3.10 are of course the same object, say A. In partic-
ular, A is a compact connected set in H1

0(RN , σ) ∩ Lp(RN ).
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Linéaires, Dunod, Paris, 1969.

[MWZ] Q. F. Ma, S. H. Wang and C. K. Zhong, Necessary and sufficient conditions for
the existence of global attractor for semigroups and applications, Indiana Univ.
Math. J. 51 (2002), 1541–1559.

[R] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ.
Press, Cambridge, 2001.

[R] R. Rosa, The global attractor for the 2D Navier–Stokes flow on some unbounded
domains, Nonlinear Anal. 32 (1998), 71–85.

[T1] R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis,
2nd ed., Philadelphia, 1995.

[T2] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,
2nd ed., Springer, Berlin, 1997.

[W] B. Wang, Attractors for reaction-diffusion equations in unbounded domains,
Phys. D 179 (1999), 41–52.

[ZYS] C. K. Zhong, M. H. Yang and C. Y. Sun, The existence of global attractors
for the norm-to-weak continuous semigroup and application to the nonlinear
reaction-diffusion equations, J. Differential Equations 15 (2006), 367–399.

Cung The Anh (corresponding author)
Department of Mathematics
Hanoi National University of Education
136 Xuan Thuy, Cau Giay
Hanoi, Vietnam
E-mail: anhctmath@hnue.edu.vn

Le Thi Thuy
Department of Mathematics

Electric Power University
235, Hoang Quoc Viet, Tu Liem

Hanoi, Vietnam
E-mail: thuylephuong@gmail.com

Received June 22, 2012;
received in final form November 26, 2012 (7889)

http://dx.doi.org/10.1007/s00030-009-0048-3
http://dx.doi.org/10.1007/s000300050004
http://dx.doi.org/10.1007/s00033-004-2045-z
http://dx.doi.org/10.1007/s00526-005-0347-4
http://dx.doi.org/10.1512/iumj.2002.51.2255
http://dx.doi.org/10.1016/S0362-546X(97)00453-7



	1 Introduction
	2 Existence and uniqueness of weak solutions
	3 Existence of global attractors
	3.1 Existence of a global attractor in L2(RN) 
	3.2 Existence of a global attractor in Lp(RN)
	3.3 Existence of a global attractor in H01(RN, ) Lp(RN)

	References

