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Summary. A phantom mapping h from a space Z to a space Y is a mapping whose
restrictions to compact subsets are homotopic to constant mappings. If the mapping h
is not homotopic to a constant mapping, one speaks of an essential phantom mapping.
The definition of (essential) phantom pairs of mappings is analogous. In the study of
phantom mappings (phantom pairs of mappings), of primary interest is the case when Z
and Y are CW-complexes. In a previous paper it was shown that there are no essential
phantom mappings (pairs of phantom mappings) between CW-complexes if dimY ≤ 1.
In the present paper it is shown that there are no essential phantom mappings between
CW-complexes if dimZ ≤ 1. In contrast, there exist essential phantom pairs of mappings
between CW-complexes where dimZ = 1 and dimY = 2. Moreover, there exist essential
phantom mappings with dimZ = dimY = 1 where Y is a CW-complex, but Z is not.

1. Introduction. In this paper a mapping between topological spaces
h : Z → Y is called a phantom mapping provided the restriction h|C to any
compact subset C ⊆ Z is homotopic to a constant, i.e., to a mapping whose
only value is a point y0 ∈ Y . We say that a phantom mapping h : Z → Y is
essential provided it is not homotopic to a constant mapping. Analogously,
two mappings h, h′ : Z → Y form a phantom pair if for any compact sub-
set C ⊆ Z, h|C ' h′|C. The phantom pair (h, h′) is essential provided
h 6' h′. Usually, one considers phantom mappings and phantom pairs of
mappings when Z is a CW-complex. In that case compact subsets C ⊆ Z
can be replaced by finite subcomplexes of Z. In the literature phantom
mappings, as just described, are called phantom mappings of the second
kind [5]. Most work on phantom mappings refers to phantom mappings
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of the first kind, where the subsets C ⊆ Z are finite-dimensional skeleta
of Z.

In a recent paper [4] the author proved the following result.

Proposition 1. For CW-complexes Z, Y with dimY ≤ 1, there are no
essential phantom pairs of mappings h, h′ : Z → Y . In particular, there are
no essential phantom mappings h : Z → Y .

In this paper we are primarily interested in phantom mappings h : Z → Y
and pairs of phantom mappings h, h′ : Z → Y when Z and Y are CW-com-
plexes and dimZ ≤ 1. In [1] the authors have studied shape properties
of the Cartesian product X × P of the dyadic solenoid X and the wedge
P = S1 ∨ S1 ∨ · · · of a sequence of copies of the 1-dimensional sphere
S1 = {(x, y) ∈ R2 : x2 + y2 = 1}. They exhibited a connected 2-dimensional
CW-complex Y and an essential phantom pair of mappings h, h′ : P → Y
(see [1, Remark 2]). In the present paper we prove that, for phantom map-
pings, the analogous phenomenon is not possible, as the following theorem
shows.

Theorem 1. If h : Z→Y is a phantom mapping between CW-complexes
and dimZ ≤ 1, then h is homotopic to a constant mapping, i.e., h is not
essential.

Theorem 1 is a consequence of the following one.

Theorem 2. Let Y be a CW-complex, let y0 ∈ Y and let Z =
∨

i∈J Zi

be the wedge of a collection of compact CW-complexes Zi, i ∈ J , having a
common vertex z0 ∈ Zi ⊆ Z as its base point. If h : Z → Y is a phantom
mapping and h(z0) = y0, then h is homotopic to y0.

Theorem 2 is a consequence of the following result.

Theorem 3. Let Z be a CW-complex and let z0 be a vertex of Z. Let
h : Z → Y be a mapping to a space Y and let y0 = h(z0). If h is homotopic
to the constant mapping y0, then there is a homotopy H : Z × I → Y which
connects h to y0 and H(z0, s) = y0 for all s ∈ I, i.e., h ' y0 (rel z0).

In the last section of the paper we will exhibit an example which shows
that in Proposition 1 and Theorem 1 one cannot omit the assumption that
Z is a CW-complex.

2. Reducing the proof of Theorem 1 to Theorem 2. In the proofs
of Theorems 1 and 2 we use the well-known fact that every pair (A,B) con-
sisting of a CW- complex A and a subcomplex B has the homotopy extension
property for arbitrary spaces S, i.e., every mapping G : (A × 0) ∪ (B × I)
→ S, I = [0, 1], extends to a mapping G̃ : A× I → S (see e.g. [3, Theorem
7.2] or [2, Proposition 0.16]).
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Proof of Theorem 1 using Theorem 2. We will first show that it suffices
to prove Theorem 1 in the special case when Z is connected. Indeed, if Z is a
CW-complex, dimZ ≤ 1, and h : Z → Y is a phantom mapping, then every
component Q of Z is a connected CW-complex with dimQ ≤ 1 and the
restriction hQ = h|Q : Q→ Y is a phantom mapping. Applying Theorem 1
in the special case, one concludes that hQ is homotopic to a constant, i.e.,
there is a point yQ ∈ Y and a homotopy GQ : Q × I → Y which connects
hQ to yQ. Denote by RQ the component of Y which contains the point yQ.

We claim that there is a component R of Y such that R = RQ for
all Q. Indeed, choose a point zQ ∈ Q and note that GQ|(zQ × I) is a path
in Y which connects the point h(zQ) to yQ. Since yQ ∈ RQ, it follows that
also h(zQ) ∈ RQ. For components Q,Q′ of Y , the two-point set {zQ, zQ′}
is a compact subset of Z, and thus h|{zQ, zQ′} is homotopic to a constant
yQQ′ ∈ Y . In particular, there are paths η, η′ in Y which connect h(zQ)
to yQQ′ and h(zQ′) to yQQ′ , respectively. Clearly, the concatenation of η
with the inverse of η′ is a path in Y which connects h(zQ) to h(zQ′). Since
h(zQ) ∈ RQ and RQ is a component of Y , it follows that ηη−1(1) ⊆ RQ, and
thus

h(zQ′) = ηη−1(1) ∈ RQ.

One also has h(zQ′) ∈ RQ′ and we see that RQ ∩ RQ′ 6= ∅. However, if two
components of Y intersect, they coincide. Denote by R the component of Y
which coincides with every RQ, and thus RQ does not depend on Q and can
be denoted by R. Clearly, R contains all points yQ.

Now choose an arbitrary point y0 ∈ R. For each Q there is a path ξQ in Y
which connects the points yQ and y0. Consider the homotopyHQ : Q×I → Y
which is the concatenation of the homotopy GQ and the path ξQ. Clearly,
HQ connects hQ = h|Q to y0. Since the components Q of Z are open subsets
of Z, the homotopies HQ : Q×I → Y determine a homotopy H : Z×I → Y
such that H|(Q× I) = HQ. Clearly, H connects h to y0, as desired.

We will now prove Theorem 1 under the additional assumption that Z
is connected. It is well known that every connected 1-dimensional CW-com-
plex Z contains a maximal tree T , i.e., a tree containing all vertices (0-cells)
of Z (see e.g. [2, Proposition 1A.1]). Since the pair (Z, T ) has the homotopy
extension property and T is contractible, the quotient mapping q : Z → Z/T
is a homotopy equivalence, and thus admits a homotopy inverse r : Z/T → Z
(see e.g. [2, Proposition 0.17]). If Z = T , then Z contracts to a point z0 ∈ Z.
Consequently, every mapping h : Z → Y is homotopic to the constant y0 =
h(z0). If Z 6= T , then Z ′ = Z/T is a connected 1-dimensional CW-complex
having the point z′0 = T as its only 0-cell, i.e., Z ′ is of the form Z ′ =

∨
i∈J Zi,

where each Zi is a copy of the 1-sphere S1 and z′0 is the base point of Z ′. The
assumption that h is a phantom mapping implies that also h′ = hr : Z ′ → Y
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is a phantom mapping, because r(C) ⊆ Z is compact whenever C ⊆ Z ′ is
compact. Being a vertex of Z, z0 belongs to T , and thus q(z0) = z′0. Since
Z is connected, there is no loss of generality in assuming that r(z′0) = z0,
and thus h′(z′0) = y0. We can now apply Theorem 2 to h′, z′0 and y0 and
conclude that h′ ' y0. It follows that also h′q ' y0, and thus hrq ' y0. Since
rq ' 1, we conclude that indeed h ' y0.

3. Proof of Theorem 2 using Theorem 3. Since h is a phantom map-
ping and Zi is a compact subset of Z, there exists a homotopyGi : Zi×I → Y
which connects hi = h|Zi to a constant yi ∈ Y . Since z0 ∈ Zi, Gi|(z0×I) is a
path in Y which connects y0 = h(z0) to yi. The concatenation of Gi with the
inverse of that path yields a homotopy on Zi which connects hi to y0. There-
fore, there is no loss of generality in assuming that already Gi connects hi
to y0. Applying Theorem 3, one obtains a homotopy Hi : Zi× I → Y which
connects hi to y0 and has the additional property that Hi(z0, s) = y0 for
s ∈ I. Since (Zi× I)∩ (Zi′ × I) = z0× I and Hi|(z0× I) = y0 = Hi′ |(z0× I),
we conclude that there is a unique homotopy H : Z × I → Y such that
H|(Zi × I) = Hi for i ∈ J . Clearly, H connects h to the constant y0.

4. Proof of Theorem 3. In the proof we will use the following lemma.

Lemma 1. Let Z be a CW-complex and let z0 be a vertex of Z. Let
h, h′ : Z → Y be mappings to a space Y such that h(z0) = h′(z0) = y0. Let
G : Z × I → Y be a homotopy which connects h to h′, and let u : I → Y be
the loop based at y0 given by u(s) = G(z0, s), s ∈ I. If u ' y0 (rel ∂I), then
there is a homotopy H : Z×I → Y which connects h to h′ and H(z0, s) = y0
for s ∈ I, i.e., H is a homotopy (rel z0).

Proof. By assumption, there is a homotopy K : I × I → Y such that
K(s, 0) = u(s), K(s, 1) = y0 for s ∈ I and K(0, t) = K(1, t) = y0 for t ∈ I.
Endow A = Z×I with the CW-structure whose cells are products of cells of
Z and I, respectively. Then B = (Z×0)∪ (Z×1)∪ (z0× I) is a subcomplex
of A. Define a mapping L from (A× 0) ∪ (B × I) ⊆ Z × I × I to Y by

L(z, s, 0) = G(z, s), s ∈ I,(1)

L(z, 0, t) = h(z), s ∈ I,(2)

L(z, 1, t) = h′(z), s ∈ I,(3)

L(z0, s, t) = K(s, t), s ∈ I.(4)

It is readily verified that formulae (1)–(4) are compatible. Since (A,B) is
a pair consisting of a CW-complex A and a subcomplex B, the homotopy
extension theorem applies and yields an extension L̃ of L, defined on A×I =
Z × I × I. We now define the desired homotopy H : Z × I → Y by putting
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H(z, s) = L(z, s, 1). Formulae (2)–(4) show that indeed H(z, 0) = h(z),
H(z, 1) = h′(z) for z ∈ Z and H(z0, s) = y0 for s ∈ I.

Proof of Theorem 3. By assumption, there is a homotopy G : Z×I → Y
such that G(z, 0) = h(z) and G(z, 1) = y0 for z ∈ Z. Consider the loop
u : I → I given by u(s) = G(z0, s). Define a homotopy G′ : Z × I → Y by
putting

(5) G′(z, t) =

{
G(z, 2t), 0 ≤ t ≤ 1/2,

u(2(1− t)), 1/2 ≤ t ≤ 1.

Then G′ is well defined, because G(z, 1) = y0 = G(z0, 1) = u(1). Note that
G′(z, 0) = G(z, 0) = h(z) and G′(z, 1) = u(0) = y0 for z ∈ Z. Now consider
the loop u′ : I → Y given by u′(t) = G′(z0, t). Let us show that

(6) u′ ' y0 (rel ∂I).

Indeed, by (5),

(7) u′(t) =

{
u(2t), 0 ≤ t ≤ 1/2,

u(2(1− t)), 1/2 ≤ t ≤ 1.

Denote by v : I → I the inverse of the loop u, i.e. let v(s) = u(1− s). Then
v(2t − 1) = u(2(1 − t)) and we see that u′ is the concatenation uv of the
loops u and v. Therefore, u′ ' y0 (rel ∂I). A homotopy U : I× I → Y which
realizes the latter relation can be defined by putting

(8) U(s, t) =

{
u(2st), 0 ≤ t ≤ 1/2,

u(2s(1− t)), 1/2 ≤ t ≤ 1.

We can now apply Lemma 1, taking h, y0, G
′ and u′ for h, h′, G and u,

respectively. We obtain a homotopy H : Z×I → Y which has all the desired
properties.

5. An example. In this section we will exhibit a connected 1-dimen-
sional subset Z of the Euclidean plane R2 and an essential phantom mapping
h : Z → S1. Note that dimS1 = 1. The example shows that neither in
Proposition 1 nor in Theorem 1 can the assumption that Z is a CW-complex
be omitted.

Let us first describe the space Z ⊆ R2 and the mapping h : Z → S1. Let
r1 = 1 > r2 > . . . > −1 be a sequence of real numbers with lim ri = −1.
Put ai = (r2i−1, 0), bi = (r2i, 1) ∈ R2 and ∗ = (−1, 0) ∈ R2, for i ∈ N. Let
Z+ be the union of {∗} and of all segments [ai, bi] and [ai+1, bi]. Let S+

and S− be the upper and the lower halves of S1, respectively. We define Z
by putting Z = Z+ ∪ S−. Let h+ : Z+ → S+ be the mapping which sends
(x, y) ∈ Z+ to the only point (x, y′) ∈ S+ and let h− : S− → S− be the



146 S. Mardešić

identity mapping on S−. Note that both mappings are continuous and co-
incide on the intersection Z+∩S− = {(−1, 0), (1, 0)}. Since the sets Z+, S−

are closed subsets of Z and Z = Z+ ∪ S−, there is a well-defined mapping
h : Z → S1 such that h|Z+ = h+ and h|S− = h−. Note that h : Z → S1 is
a bijection, h(∗) = ∗ and h(a1) = a1. We will prove that h is an essential
phantom mapping.

First note that Z is not compact, because it is not closed in R2. Indeed,
(bi) is a sequence in Z with lim bi = (−1, 1) 6∈ Z. Therefore, every compact
subset C ⊆ Z is a proper subset of Z, i.e., there is a point zC ∈ Z which does
not belong to C. Since h : Z → S1 is a bijection, the restriction h|(Z \{zC})
is a bijection onto S1 \ h(zC). Since S1 \ h(zC) is homeomorphic to R, it is
contractible. Therefore, every mapping of a space into S1 \ h(zC) is homo-
topic to a constant. In particular, h|(Z \ {zC}) is homotopic to a constant.
Since C ⊆ Z \{zC}, it follows that also h|C is homotopic to a constant, and
thus h is a phantom mapping.

It remains to prove that h is an essential mapping, i.e., it is not homo-
topic to a constant. The proof is by contradiction. Assume that there is a
homotopy H : Z× I → S1 which connects h to a constant. Since S1 is path-
wise connected, there is no loss of generality in assuming that the constant
is ∗ = (−1, 0), and thus H(z, 0) = h(z) and H(z, 1) = ∗, for z ∈ Z. Let
ϕ : R → S1 be the universal covering of S1, i.e., ϕ(t) = (cos 2πt, sin 2πt)
for t ∈ R. Consider the constant mapping 1/2: Z → R and note that
ϕ(1/2) = (−1, 0) = ∗. Therefore, by the homotopy lifting theorem ([2,
Proposition 1.30]), there exists a homotopy H̃ : Z×I → R such that ϕH̃ = H
and H̃(z, 1) = 1/2. Let h̃ : Z → R be the mapping defined by h̃(z) = H̃(z, 0).
Note that ϕh̃(z) = ϕH̃(z, 0) = H(z, 0) = h(z) and ϕh̃(∗) = h(∗) = ∗.

Choose open neighborhoods V of ∗ = (−1, 0) in S1 and Ṽ of h̃(∗) in R
such that ϕ|Ṽ : Ṽ → V is a homeomorphism. We also require that Ṽ is an
open interval in R and a1 = (1, 0) 6∈ V . Then choose an open neighborhood U
of ∗ in Z such that h̃(U) ⊆ Ṽ . Also choose j ∈ N, j > 1, so large that aj ∈ U .
This is possible, because lim ai = ∗. Note that the set

A = S− ∪
j−1⋃
i=1

([ai, bi] ∪ [ai+1, bi])

is an arc with endpoints ∗ and aj . Consequently, there exists a homeomor-
phism u : [0, 1] → A ⊆ Z such that u(0) = ∗ and u(1) = aj . Note that
hu : [0, 1] → S1 is a path with initial point hu(0) = h(∗) = ∗ and termi-

nal point hu(1) = h(aj). Consider the path ṽ = h̃u : [0, 1] → R. Note that

ṽ(0) = h̃u(0) = h̃(∗) ∈ Ṽ and ṽ(1) = h̃u(1) = h̃(aj) ∈ Ṽ , because aj ∈ U
and h̃(U) ⊆ Ṽ . Moreover, ϕṽ = hu, because ϕh̃ = h. Since a1 ∈ A \ {∗, aj}
and u(0) = ∗, u(1) = aj , there is an s0 ∈ [0, 1], 0 < s0 < 1, such that
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a1 = u(s0). Since ϕṽ(s0) = hu(s0) = h(a1) = a1, we cannot have ṽ(s0) ∈ Ṽ ,
because that would imply a1 = ϕṽ(s0) ∈ ϕ(Ṽ ) = V , contrary to the as-
sumption that a1 6∈ V . Consequently, ṽ(s0) 6∈ Ṽ .

Now notice that ṽ : [0, 1] → R is an injection. Assuming the contrary,
we would have points s1, s2 ∈ [0, 1] such that s1 6= s2, but ṽ(s1) = ṽ(s2).
This would imply ϕṽ(s1) = ϕṽ(s2), or equivalently hu(s1) = hu(s2), which
is impossible, because both mappings u and h are injections, hence also hu
is an injection. It is an elementary fact that an injection of [0, 1] into R is
an order preserving or an order reversing function. In both cases ṽ(s0) lies
between the points ṽ(0) and ṽ(1). Since these points belong to Ṽ and Ṽ is
an interval in R, it follows that also ṽ(s0) ∈ Ṽ . However, this contradicts
the previously established relation ṽ(s0) 6∈ Ṽ .
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Bijenička cesta 30
10 002 Zagreb, P.O. Box 335, Croatia
E-mail: smardes@math.hr

Received December 26, 2012 (7912)

http://dx.doi.org/10.4064/fm186-1-3
http://dx.doi.org/10.4064/ba55-4-8



	1 Introduction
	2 Reducing the proof of Theorem 1 to Theorem 2
	3 Proof of Theorem 2 using Theorem 3
	4 Proof of Theorem 3
	5  An example
	References

