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NUMBER THEORY

Extensions of Three Theorems of Nagell
by
A. SCHINZEL

Summary. Three theorems of Nagell of 1923 concerning integer values of certain sums
of fractions are extended.

Nagell [3] has proved the following theorems.

1. If m,n and x are integers, m > 0, n > 0, x > 0, then except for
m=1, x=0, the sum Y ;_, m 18 never an integer.

2. Let a,b,c be integers. Then the sum Y H%a is an integer only for
finitely many integers x.

3. Let a,b,c and d be integers, a > 0, ¢> +d> > 0 and —ab be not a
perfect square. Then the sum
Zx: ck+d
2
P ak*+b
is an integer for only finitely many integers x.
In statement 2 it was probably meant that a, b, ¢, x are positive integers.

Otherwise, the statement is not true, e.g. for ¢ =0 or b = —za/2 (r odd).
The aim of this paper is to extend the above theorems as follows.

THEOREM 1. If m, n and x are integers, m > 0, n > 0, z > 0, ¢ €
{—1,1} (0 <k <x), then except form =1, x =0 the sum

T

€k
S| = _
! kzzom+kn

1S never an integer.
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THEOREM 2. Let ¢ be a positive integer. Then the sum
T
Ck
$2=2 5t ha
= b+ ka
where a,b are positive integers, ci are integers satisfying 0 < |cx| < ¢
(k = 0,1,...,2), is an integer only for finitely many positive integers x
and possibly infinitely many pairs (a,b).
The following example shows that for ¢ = 2 the sum S5 can be an integer
for z = 1 and for infinitely many pairs (a,b): co =1, ¢c; = =2, a = b.
THEOREM 3. Let a,b,c,d be integers, a > 0, ¢ + d*> > 0, and —ab be
not a perfect square. Then the sum

Z CrT + dk
ak?+b
1s an integer for only finitely many posztwe integers x, where ¢y and di are

integers satisfying |cx| < ¢, |di| < d, c; +d2 >0 (1 <k <uwm).

The proofs follow Nagell’s arguments supplemented by the following lem-
mas, in which P(N) denotes the greatest prime factor of N, and 7(z) is the
number of primes < z.

LEMMA 1. Ifz >0, (m,n) =1, and

(1) (m+n)(m+2n)...(m+ (z —vi)n) >zl
where vy is the number of primes not exceeding x and not dividing n, then
(2) P((m+n)(m+2n)...(m+zn)) > z.

Proof. See Sylvester [4, p. 688]; we have changed Sylvester’s i to n and
n to = to be in agreement with Nagell’s notation. m

LEMMA 2. If (m,n)=1, m>x >0, then holds.

Proof. This is Sylvester’s theorem [4, p. 703] quoted also by Dickson [11
p. 437]. =

LEMMA 3. For x > 14 we have m(z) < 3z + 1.

Proof. The primes are 2, 3 or 6k=+1 (k > 0). The number of such numbers
up to x does not exceed mgl

1
x?, +2<gx+1 for z > 16.

For z = 14,15, 16 the lemma is verified directly. m

LEMMA 4. For x > 14 the function (””T'H(m — % + 1))t71 s a strictly

increasing function of t < %x + 1.

Proof. By differentiation. m
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LEMMA 5. If 3n > 2 +2, 2|n and (m,n) =1, then holds.
Proof. By Descartes’s rule of signs the polynomial
5 3
1\’ (131
3 16 2

has only one positive zero. Hence the inequality
144+1\° /13 1\?*
= 144 =
(57) = (5raes)
z4+1\° S (18,1 3
3 1677 2
for all x > 14. Hence

pr1\T_ (zt1(13 1 sw
3 3 \16° " 2 '

By Lemmas [3] and [] the right-hand side is greater than

z+1 () m@)-1
— 1
< 3 <“" 2 " >> /
thus we obtain

z+1 x—m(z)+1 7'['(1’) w(z)—1
—— 41 .
(5) )

By the assumption the left hand side is less than n®=7@)+L on the other

hand by the inequality of the arithmetic and geometric mean the right hand

WQM = Hf:(%)_Q(:U —4). Thus we obtain

n® @ (g — () + 1)1 > 2l
However, by the assumption 2 | n we have 11 < w(z) — 1, hence the left hand
side is less than or equal to
n-2n-...-(x—v)n < (m+n)(m+2n)...(m+ (x —v1)n)

and by Lemma [1| we obtain for all x > 14. For x < 14 it is enough to
prove for x prime, i.e., for x = 2,3,5,7,11,13. In each case by Lemma
it is enough to check even n in the interval

. » 1/ (n(@)-1)
< =
3 _n<((x—7r(:n)+1)!> ’

and by Lemmal[2]it is enough to check m < x. A finite computation completes
the proof. m

implies

side is no smaller than

Proof of Theorem . It is enough to assume that (m,n) = 1, m > 1,
x > 0. Consider first n odd. Then there is at least one even number in the
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sequence
(3) m,m+n,...,m+ xn.

Let 2# be the highest power of 2 which divides any number of the se-
quence (3), and let further m + kn be the first number of the sequence (3|)
which is divisible by 2¥*. Then

m + kn = 2H(2h 4+ 1).
The next number of the form m + tn that is divisible by 2* is
m+ (k+2)n =2*2h +n+1).

Since n is odd, this number is divisible by 2#*1, hence it does not belong to
the sequence . Therefore in the sum S; there exists only one term with

denominator divisible by 2#, namely _-%k-. We obtain
1 1

a
i(m + kn)S; = 5 + 2
where b is odd. It follows that S; is not an integer, thus Theorem [I]is proved
for n odd.

Now consider n even, thus m is odd > 3.

Let ¢ be a prime factor of m + kn, where 0 < k < x. If no other term of
the sequence is divisible by ¢, then we obtain

Yomsbmysi =%+ 2,
q ¢ q
where ¢ t c. Hence S7 is not an integer. In order that S; be an integer at least
two terms of the sequence should be divisible by ¢, thus ¢ < z. Taking
g = P((m+n)(m+2n)...(m+ zn)), by Lemma [2| we obtain 2 > m and,
by Lemmal[p] > 3n — 1.

By Chebyshev’s theorem there exists a prime ¢ such that

(4) %(m+3)<q§x+1.
Then there is a term of the sequence divisible by ¢, since we have
(5) q>%(m+3)23g+1>n,
and the numbers of the sequence represent all residues modulo gq.
Let m + kn be the least term of the sequence divisible by g. Then
(6) m+ kn = qT,

where k < gq.
According to a previous remark, also the number m+ (k+¢)n =: m+In
occurs in the sequence , thus

(7) m+In = q(T + n).
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The number m + (k + 2¢)n does not occur in (3), since by we have
k + 2q > 2q > x. Therefore, the numbers @ and are the only terms of
the sequence divisible by ¢q. We have

€k &l €k {2T—|—n if ] = ¢y,

m+k:n+m+ln T ¢T(T+n)

24n if&l:z’fk,
T(T+n)S =+ +3 7

n if g = —&p,

Q

b n if gl = —¢k,

where ¢ 1 b. If S7 is an integer, we have ¢|2T + n or g|n. The latter is
impossible by , and the former, since n is even, gives ¢ | T +n/2. However,
since z > m, ¢ > k and ¢ > 3(z + 3) we obtain

2 2
o R S o4, e T<n+l,
q z+3
andby,
AN S
2 =% e

The contradiction obtained proves Theorem I u

Proof of Theorem|[d. The proof follows in general the proof of Theorem [I]
However, the first part of that proof now fails, thus it is not possible to
assume a even. Hence instead of T' 4 a/2 we have to deal with 27"+ a and
instead of the inequality > 3a —1 we have to assume x > 6a+ 1. Moreover,
v1 < 7w(z) instead of v1 < m(x) — 1. Therefore, instead of Lemma [3| we use
the inequality 7(z) < %m for x > 24 and in order to apply the assertion of
Lemma [5| we have to use, instead of the inequality

r+1) (18 1Y
3 16" " 2
valid for x > 14, the inequality
2\ (18,
6 16"
valid for > 65. Thus the proof of Theorem [1| works for
x > max{65, 2c — 3}.

The desired finitely many x consist of
r < max{65,2c —3}. m

Proof of Theorem[3 Let o be the least positive solution of the congru-
ence

(8) az’?+b=0 (mod p),
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where p is an odd prime, not a divisor of ab, thus 0 < zy < %p. Then the
next positive solution of is p — xg, hence > %p. Now, Nagell’s theorem
[2, §1] implies that for all sufficiently large x,

€T
P, = P(H(ak2 + b)) > 2.

k=1
Therefore, if x is large enough only one of the numbers ak?+b (1 < k < z) is
divisible by P,. Let it be az3+b. Then Py | ¢zyzo+dz, implies Py | ad2, +bc2, .
By the assumptions ad?, + bc2, # 0, hence 2z < |adZ, + bcZ | < ad? + |b|c?.
If 2z > ad® + |b|c?, then we obtain

1 Cxo®0+dz, T

where Py 1 (¢zo®o + dzy)N. Thus S3 cannot be an integer. m
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