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Summary. We obtain a representation as martingale transform operators for the rear-
rangement and shift operators introduced by T. Figiel. The martingale transforms and
the underlying sigma algebras are obtained explicitly by combinatorial means. The known
norm estimates for those operators are a direct consequence of our representation.

1. Introduction. The proof of the T (1) theorem by T. Figiel proceeds
by expanding the integral operator into an absolutely converging series of
basic building blocks Tm and Um, rearranging and shifting the Haar system.
This involves the following norm estimates for those building blocks, which
T. Figiel obtained by combinatorial means:

‖Tm : Lp
X → Lp

X‖ ≤ C(log2(2 + |m|))α,(1.1)

‖Um : Lp
X → Lp

X‖ ≤ C(log2(2 + |m|))β ,(1.2)

where the constant C > 0 depends only on p, the UMD-constant of X and
0 < α, β < 1. For the original proof see [Fig88] and [FW01]. See also [NS97]
and [Mül05]. For extensions to spaces of homogeneous type see [MP12].

The purpose of the present paper is to obtain a representation of Tm

and Um as the sum of roughly log2(2+ |m|) martingale transform operators.
This is done by combinatorial analysis of the equations defining Tm and Um.

Our combinatorial analysis exhibits the link of T. Figiel’s rearrangement
and shift operators to the so called one-third-trick originating in the work of
[Wol82], [GJ82], [Dav80] and [CWW85].
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Related recent developments. Recently T. P. Hytönen [Hyt12] pre-
sented his own proof of T. Figiel’s vector-valued T (1) theorem (see [Fig90]).
The basic aim of T. P. Hytönen in [Hyt12] is the same as ours, to find reduc-
tions of the general case to certain preferable situations where the so called
Figiel compatibility condition is satisfied. To this end the problem in [Hyt12]
is randomized and the properties of the so called random dyadic partitions
of Nazarov, Treil and Volberg [NTV97, NTV03] are exploited.

By contrast, the proof in the present paper proceeds by finding explicitly
those filtrations that turn a given bad combinatorial situation into a good
one, such that Figiel’s compatibility condition is satisfied. Our reduction is
self-contained and develops specific combinatorics of colored dyadic intervals.

2. Preliminaries

The Haar system in R. For any given finite interval I ⊂ R we define

hI = 1I0 − 1I1 ,

where 1A denotes the characteristic function of a set A, I0 = [inf I, (inf I +
sup I)/2[ and I1 = [(inf I + sup I)/2, sup I[. Let Dj = {[2−jk, 2−j(k + 1)[ :
k ∈ Z}, j ∈ Z, and define the collection of dyadic intervals by D =

⋃

j∈Z Dj .
The L∞-normalized Haar system is given by {hI : I ∈ D}.

Banach spaces with the UMD-property. By Lp(Ω,µ;X) we denote
the space of functions with values in X, Bochner-integrable with respect
to µ. If Ω = R and µ is the Lebesgue measure | · | on R, then set Lp

X(R) =
Lp(R, | · |;X), if unambiguous further abbreviated as Lp

X .

We say X is a UMD space if for every X-valued martingale difference
sequence {dj}j ⊂ Lp(Ω,µ;X), 1 < p < ∞, and choice of signs εj ∈ {−1, 1}
one has

(2.1)
∥

∥

∥

∑

j

εjdj

∥

∥

∥

Lp(Ω,µ;X)
≤ Up(X)

∥

∥

∥

∑

j

dj

∥

∥

∥

Lp(Ω,µ;X)
,

where Up(X) does not depend on εj or dj . The constant Up(X) is called the
UMD-constant. We refer the reader to [Bur81].

Kahane’s contraction principle. For every Banach space X, 1 ≤ p
< ∞, finite set {xj}j ⊂ X and bounded sequence {cj}j of scalars we have

(2.2)
(

1�

0

∥

∥

∥

∑

j

rj(t)cjxj

∥

∥

∥

p

X
dt
)1/p

≤ sup
j

|cj |
(

1�

0

∥

∥

∥

∑

j

rj(t)xj

∥

∥

∥

p

X
dt
)1/p

,

where {rj}j denotes an independent sequence of Rademacher functions. For
details see [Kah85].
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Kahane’s inequality. Given 1 ≤ p < ∞, there exists a constant Kp

such that for any Banach space X and any finite sequence {xj} ⊂ X we
have

(2.3)
(

1�

0

∥

∥

∥

∑

j

rj(t)xj

∥

∥

∥

p

X
dt
)1/p

≤ Kp

1�

0

∥

∥

∥

∑

j

rj(t)xj

∥

∥

∥

X
dt,

where {rj}j denotes an independent sequence of Rademacher functions. For
details see [Kah85].

The martingale inequality of Stein — Bourgain’s version. Let
(Ω,F, µ) be a probability space, and let F1 ⊂ · · · ⊂ Fm ⊂ F denote an in-
creasing sequence of σ-algebras. For every choice of f1, . . . , fm ∈ Lp(Ω,µ;X),
1 < p < ∞, letting r1, . . . , rm denote independent Rademacher functions,
we have

(2.4)

1�

0

∥

∥

∥

m
∑

i=1

ri(t)E(fi |Fi)
∥

∥

∥

Lp(Ω,µ;X)
dt ≤ C

1�

0

∥

∥

∥

m
∑

i=1

ri(t)fi

∥

∥

∥

Lp(Ω,µ;X)
dt,

where C depends only on p and Up(X).
The scalar-valued version of (2.4) by E. M. Stein can be found in [Ste70].

The vector-valued extension is due to J. Bourgain [Bou86]. A proof may be
found in [FW01].

3. The one-third-trick. The one-third-trick originates in the work
of [Wol82], [GJ82] and [CWW85].

3.1. Bilateral alternating one-third-shift. For every j ∈ Z let

(3.1) sj = (−1)j 2−j/3,

and define

(3.2) s(I) = sj

for all intervals I having measure |I| = 2−j . Then define the one-third-shift

map

(3.3) σ(I) = I + s(I),

and the one-third-shift operator

(3.4) S(hI) = hσ(I).

For every given interval I ∈ D there exists a unique one-third-shifted
interval J ∈ σ(D) with |J | = |I|/2, contained in I. Observe that for every
j ∈ Z and I ∈ Dj we have

#{J ∈ σ(Dj+1) : J ∩ I 6= ∅} = 3,

#{J ∈ σ(Dj+1) : J ⊂ I} = 1.
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So we can define ω(I) by

(3.5) ω(I) = J, where J ∈ σ(D), |J | = |I|/2 and J ⊂ I.

Note the basic properties summarized in:

Lemma 3.1. The following statements are true:

(i) σ(D) is a nested collection of dyadic intervals, and D ∩ σ(D) = ∅.
(ii) ω : D → σ(D) is well defined and injective.

(iii) If I ∈ D , then ω(I) ⊂ I.
(iv) For every I ∈ D we have dist(ω(I), Ic) = |I|/6.
(v) If I, J ∈ D and |I| = |J |, then dist(ω(I), ω(J)) < |ω(I)| if and only

if I = J .

(vi) For all I ∈ D we have the identity

σ(I) = ω(I) ∪
(

ω(I) + sign(s(I)) · |ω(I)|
)

.

Proof. The assertions are easily verified.

We need some more notation. For all j ∈ Z and

u =
∑

I∈D

uIhI

let (u)j restrict the function u to level j, precisely

(3.6) (u)j =
∑

I∈Dj

uIhI .

If we define

(3.7) I(u)j =
∑

I∈Dj

uI1I ,

then Kahane’s contraction principle (2.2) and Kahane’s inequality (2.3) yield

(3.8)

1�

0

∥

∥

∥

∑

j∈Z

rj(t)(u)j

∥

∥

∥

Lp
X

dt ≈
1�

0

∥

∥

∥

∑

j∈Z

rj(t) I(u)j

∥

∥

∥

Lp
X

dt.

The following theorem establishes that the one-third-shift operator S :
Lp
X → Lp

X is an isomorphism.

Theorem 3.2. Let 1 < p < ∞ and X a Banach space with the UMD-

property. Then there exists a constant C > 0 such that

1

C
‖u‖Lp

X
≤ ‖Su‖Lp

X
≤ C‖u‖Lp

X

for all u ∈ Lp
X . The constant C depends only on Up(X).
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Proof. Let u =
∑

I∈D
uIhI |I|

−1 ∈ Lp
X be fixed throughout this proof

and set

v =
∑

I∈D

uIhω(I)|ω(I)|
−1,

(v)j =
∑

|ω(I)|=2−j

uIhω(I)|ω(I)|
−1.

Note that {ω(I) : I ∈ D} is nested (see Lemma 3.1(i) & (ii)). Observe that

I(u)j = E(I(v)j |Dj)

by Lemma 3.1(iii), so the UMD-property, Kahane’s contraction principle
(2.2) and Kahane’s inequality (2.3) yield

‖u‖Lp
X
.

1�

0

∥

∥

∥

∑

j∈Z

rj(t)(u)j

∥

∥

∥

Lp
X

dt

=

1�

0

∥

∥

∥

∑

j∈Z

rj(t) I(u)j

∥

∥

∥

Lp
X

dt

=

1�

0

∥

∥

∥

∑

j∈Z

rj(t)E(I(v)j |Dj)
∥

∥

∥

Lp
X

dt.

Now we apply Stein’s martingale inequality (2.4) followed by (3.8) to pass
from I(v)j to (v)j , so

1�

0

∥

∥

∥

∑

j∈Z

rj(t)E(I(v)j |Dj)
∥

∥

∥

Lp
X

dt .

1�

0

∥

∥

∥

∑

j∈Z

rj(t) I(v)j

∥

∥

∥

Lp
X

dt

≈
1�

0

∥

∥

∥

∑

j∈Z

rj(t)(v)j

∥

∥

∥

Lp
X

dt.

Recalling definition (3.4) and applying Kahane’s contraction principle, in
view of ω(I) ⊂ σ(I) (see identity Lemma 3.1(vi)), we estimate

1�

0

∥

∥

∥

∑

j∈Z

rj(t)(v)j

∥

∥

∥

Lp
X

dt ≤ 2

1�

0

∥

∥

∥

∑

j∈Z

rj(t)(Su)j

∥

∥

∥

Lp
X

dt,

and the UMD-property implies

1�

0

∥

∥

∥

∑

j∈Z

rj(t)(v)j

∥

∥

∥

Lp
X

dt . ‖Su‖Lp
X
.

Thus, collecting the inequalities yields

‖u‖Lp
X
. ‖Su‖Lp

X
.
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One can repeat the preceding argument with the roles of u and Su in-
terchanged to obtain the converse inequality

‖Su‖Lp
X
. ‖u‖Lp

X
.

3.2. Unilateral one-third-shift. We now introduce modified versions
σ0 and σ1 of the one-third-shift map σ. To this end we define σ0, σ1 : D →
σ(D) by

σ0(I) = J, where J ∈ σ(D), |J | = |I| and supJ ∈ I,(3.9)

σ1(I) = J, where J ∈ σ(D), |J | = |I| and inf J ∈ I.(3.10)

This induces the one-third-shift operators S0 and S1 given by the linear
extension of

S0(hI) = hσ0(I), I ∈ D ,(3.11)

S1(hI) = hσ1(I), I ∈ D .(3.12)

Observe that if I ∈ Dj and j is odd we have

σ0(I) = σ(I) and σ1(I) = σ(I) + |I|,

and if j is even

σ0(I) = σ(I)− |I| and σ1(I) = σ(I).

Furthermore, since

σi(Dj) = σ(Dj) for all i = 0, 1 and j ∈ Z,

we deduce from Lemma 3.1(i) that σi(D) is nested.
Finally, we can see that

|I ∩ σ0(I)| ≥
1
3 |I|, |I ∩ σ1(I)| ≥

1
3 |I|,

for all I ∈ D . The proof of Theorem 3.2 with minor modifications yields
Theorem 3.3 below.

Theorem 3.3. Let 1 < p < ∞ and X a Banach space with the UMD-

property. Then there exists a constant C > 0 such that

1

C
‖u‖Lp

X
≤ ‖S0u‖Lp

X
≤ C‖u‖Lp

X
,

1

C
‖u‖Lp

X
≤ ‖S1u‖Lp

X
≤ C‖u‖Lp

X
,

for all u ∈ Lp
X . The constant C depends only on Up(X).

Proof. Define ω0 and ω1 by

ω0(I) = J, where J ∈ σ(D), |J | = |I|/4 and supJ = supσ0(I),

ω1(I) = J, where J ∈ σ(D), |J | = |I|/4 and inf J = inf σ1(I),

for all I ∈ D . Now all we need to do is repeat the proof of Theorem 3.3 with
ω replaced by ωδ in order to estimate Sδ, for each δ ∈ {0, 1}.
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4. The shift operator Tm. Here we define 16 + 4 log2(|m|), m 6= 0,
subcollections of the Haar system, so that on each such subcollection, Tm acts
as a martingale transform operator on either the dyadic grid or the one-third-
shifted dyadic grid. In Section 3 we established that changing the dyadic grid
to the one-third-shifted dyadic grid is an isomorphism. Thus we may assume
that Tm is representable as a martingale transform operator on each of the
16 + 4 log2(|m|) subcollections, which yields the well known estimate

‖Tm : Lp
X → Lp

X‖ ≤ C(log2(2 + |m|))α,

for some 0 < α < 1, established by T. Figiel [Fig88].

Define the shift map τm, m ∈ Z, by

(4.1) τm(I) = I +m|I|

for all I ∈ D ∪ σ(D). This induces the shift operator Tm, given by

(4.2) TmhI = hτm(I)

for all I ∈ D ∪σ(D). It is crucial that the one-third-shift operator S defined
in (3.4) and the shift operator Tm commute, that is,

(4.3) (S ◦ Tm)(u) = (Tm ◦ S)(u)

for all u ∈ Lp
X . Analogously, we have

(S0 ◦ Tm)(u) = (Tm ◦ S0)(u),(4.4)

(S1 ◦ Tm)(u) = (Tm ◦ S1)(u),(4.5)

for all u ∈ Lp
X (see (3.9)–(3.12)).

We aim at splitting the dyadic intervals D into collections B
(δ)
i such that

we may bound Tm ◦Sδ on functions supported on σδ(B
(δ)
i ), δ ∈ {0, 1}. Note

that if δ = 0, then Sδ = Id and σδ = Id.

Given a shift width m ∈ Z, m 6= 0, we will partition the dyadic intervals

D into 16 + 4 log2(|m|) disjoint collections denoted by B
(δ)
i . The collections

are constructed in such way that for each i and δ ∈ {0, 1} fixed, whenever

I ∈ B
(δ)
i , the intervals σδ(I) and (τm ◦ σδ)(I) share the same dyadic prede-

cessor with respect to the collection σδ(B
(δ)
i ). The details are elaborated in

Lemma 4.1 below.

Lemma 4.1. For every integer m ∈ Z, m 6= 0 let τm denote the map

given by

τm(I) = I +m|I|

for all I ∈ D ∪ σ(D). Then there exist a constant K(m) ≤ 7 + 2 log2(|m|)

and disjoint collections of dyadic intervals B
(δ)
i , 0 ≤ i ≤ K(m), δ ∈ {0, 1},
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with

D =
⋃

δ∈{0,1}

K(m)
⋃

i=0

B
(δ)
i ,

such that

(4.6) {I, τm(I), I ∪ τm(I) : I ∈ σδ(B
(δ)
i )}

is a nested collection of sets, for all 0 ≤ i ≤ K(m) and δ ∈ {0, 1}.

Proof. By symmetry we may assume that m ≥ 1, and we set K(m) =
K(−m) if m ≤ −1. So fix a shift width m ≥ 2 and a λ ≥ 4 such that

(4.7) 2λ−3 ≤ m < 2λ−2,

and define L(m) = λ − 1. If m = 1, then let λ = 4 and set L(1) = 3. Now
we split D into disjoint collections Ai, 0 ≤ i ≤ L(m), by omitting L(m)
consecutive levels of D . More precisely, for every 0 ≤ i ≤ L(m) we define

(4.8) Ai =
⋃

j∈Z

{I ∈ D : |I| = 2−(λj+i)}.

Next we want to divide each Ai into two collections A
(0)
i and A

(1)
i so

that every I ∈ A
(0)
i has the same predecessor in A

(0)
i as τm(I), and A

(0)
i

is maximal. As a consequence, the collection A
(1)
i consists of all intervals I

such that I and τm(I) do not share the same predecessor. But, if we apply

the one-third-shift map σ to A
(1)
i , then every I ∈ σ(A

(1)
i ) has the same

predecessor in σ(A
(1)
i ) as τm(I).

We will now construct these two collections. To this end let G denote one
of the collections Ai, σ(Ai), 0 ≤ i ≤ L(m), and define

(4.9)
C0(G , I) = {J ∈ G : |J | = 2−λ|I|, J ⊂ I and τm(J) ⊂ I},

C1(G , I) = {J ∈ G : |J | = 2−λ|I|, J ⊂ I and τm(J) ∩ I = ∅}.

Revisiting the definition of the one-third-shift maps σ, σ1 and considering
the restriction (4.7) one can see that

(4.10) σ(C1(Ai, I)) ⊂ C0(σ(Ai), σ1(I))

for all I ∈ Ai, 0 ≤ i ≤ L(m). Note that for I ∈ Dj we have σ1(I) = σ(I)
if j is even and σ1(I) = σ(I + |I|) if j is odd. Thus (4.10) implies that all
intervals J ∈ σ(C1(Ai, I)) are such that J and τm(J) share σ1(I) as common

predecessor with respect to the collection σ(A
(1)
i ). In Figure 1 one can see

the action of the one-third-shift map σ on the collection Ai.
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1
3
2−j 5

12
2−j

2−j−λ

3
4
2−j 1

4
2−j

1
3
2−j

1
3
2−j−λ

2−j−λ

5
12
2−j + 1

3
2−j−λ 1

4
2−j 1

3
(2−j − 2−j−λ)

σ

I

σ(I)

J

σ(J)

Fig. 1. The one-third-shift map σ acting on I ∈ D , |I | = 2−j and J ∈ D , |J | = 2−j−λ,
where J ⊂ I and τm(J) ∩ I = ∅. In this picture λ is even.

Now define for every 0 ≤ i ≤ L(m) the following collections of dyadic
intervals:

(4.11)
A

(0)
i =

⋃

{C0(Ai, I) : I ∈ Ai},

A
(1)
i = Ai \ A

(0)
i .

Finally, for all 0 ≤ i ≤ L(m) and δ ∈ {0, 1} we split A
(δ)
i into two disjoint

collections

(4.12) B
(δ)
i and B

(δ)
i+L(m)+1

such that

(4.13) B
(δ)
i ∩ τm(B

(δ)
i ) = ∅

for all 0 ≤ i ≤ K(m) and δ ∈ {0, 1}, where we set K(m) = 2L(m) + 1.
Considering (4.7) and L(m) = λ−1 we find that K(m) ≤ 7+2 log2(m). For
this purpose consider the collection

E = {τk(I) : I ∈ D , inf I = 0, 0 ≤ k ≤ m− 1},

and observe that

D =
⋃

j∈Z
j even

τjm(E ) ∪
⋃

j∈Z
j odd

τjm(E ) = Deven ∪ Dodd.
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Now define the collections

(4.14) B
(δ)
i = A

(δ)
i ∩ Deven, B

(δ)
i+L(m)+1 = A

(δ)
i ∩ Dodd,

for all 0 ≤ i ≤ L(m) and δ ∈ {0, 1}.
Taking into account (4.10), (4.9) and noting that τm(I) ∈ Dodd if and

only if I ∈ Deven, we have verified (4.6), finishing this proof.

Remark 4.2. Note that we actually proved the slightly stronger result

(4.15) I ∪ τm(I) ⊂ πλ(I)

for all I ∈ σδ(B
(δ)
i ), 0 ≤ i ≤ K(m), δ ∈ {0, 1}. For a given interval I ∈

σδ(D), π(I) is the unique interval J ∈ σδ(D) such that J ⊃ I and |J | = 2 |I|.

As the combinatorial Lemma 4.1 exhibits the link between the shift map
τm, the one-third-shift map σ and Figiel’s compatibility condition (4.6), The-
orem 4.3 below will translate the combinatorial results into analytical results,
exhibiting the link between the shift operator Tm, the one-third-shift oper-
ator S and martingale transform operators.

In the following context it is understood that 1 < p < ∞, X is a Banach
space with the UMD-property and m ∈ Z, m 6= 0. Now we define projections

P
(δ)
i : Lp

X → Lp
X , associated with the collections B

(δ)
i of Lemma 4.1 by

(4.16) P
(δ)
i u =

∑

I∈B
(δ)
i

〈u, hI〉hI |I|
−1

for all 0 ≤ i ≤ K(m), δ ∈ {0, 1} and u ∈ Lp
X . The UMD-property of X

implies uniform bounds on the projections P
(δ)
i . Note the identity

(4.17) u =
∑

δ∈{0,1}

K(m)
∑

i=0

P
(δ)
i u

for all u ∈ Lp
X , since the collections B

(δ)
i , 0 ≤ i ≤ K(m), δ ∈ {0, 1}, form a

partition of D (see Lemma 4.1).
Exploiting the fact that the one-third-shift operator S is an isomorphism

on Lp
X (see Theorem 3.2), we will now estimate the shift operator Tm on the

range of each P
(δ)
i .

Theorem 4.3. Let 1 < p < ∞ and X be a Banach space with the UMD-

property. Then for every m ∈ Z, 0 ≤ i ≤ K(m) and δ ∈ {0, 1} the inequality

(4.18) ‖Tm ◦ P
(δ)
i u‖Lp

X
≤ C‖P

(δ)
i u‖Lp

X
,

holds true for all u ∈ Lp
X , where the constant C depends only on Up(X). The

projections P
(δ)
i , 0 ≤ i ≤ K(m), δ ∈ {0, 1}, are defined according to (4.16),

and K(m) ≤ 7 + 2 log2(1 + |m|).



The One-Third-Trick and Shift Operators 229

Proof. Note that by symmetry once we establish (4.18) for m ≥ 1, the
theorem will be proved.

Recalling the properties of the partition B
(δ)
i , 0 ≤ i ≤ K(m), δ ∈ {0, 1},

of D (see Lemma 4.1), we know that the collection

(4.19) {I, τm(I), I ∪ τm(I) : I ∈ σδ(B
(δ)
i )}

is nested, for all 0 ≤ i ≤ K(m) and δ ∈ {0, 1}. Throughout this proof let

m ∈ Z, 0 ≤ i ≤ K(m), δ ∈ {0, 1} and u ∈ P
(δ)
i (Lp

X) be fixed. According
to (4.16) we may assume that u has the representation

u =
∑

I∈B
(δ)
i

uIhI |I|
−1.

For every J ∈ σδ(D) let

(4.20) A(δ)(J) = J ∪ τm(J),

and define

(4.21) A
(δ)
j = {A(δ)(J) : J ∈ σδ(Dj) ∩ σδ(B

(δ)
i )}

for all j ∈ Z. Then specify the filtration {F
(δ)
j }j by

(4.22) F
(δ)
j = σ-alg

(

⋃

i≤j

A
(δ)
i

)

,

and observe that due to (4.19) every A(δ)(J), J ∈ σδ(Dj), is an atom for F
(δ)
j .

The sigma algebra σ-alg(
⋃

i≤j A
(δ)
i ) is the smallest sigma algebra containing

⋃

i≤j A
(δ)
i . The one-third-shift operator is given by

(4.23) Sδu =
∑

I∈B
(δ)
i

uIhσδ(I)|I|
−1 =

∑

J∈σδ(B
(δ)
i )

uσ−δ(J)hJ |J |
−1

(see (3.4) for details). We recall the notation

(u)j =
∑

|I|=2−j

uIhI |I|
−1 and I(u)j =

∑

|I|=2−j

uI1I |I|
−1,

and note that

(4.24) ‖TmSδu‖Lp
X
≈

1�

0

∥

∥

∥

∑

j∈Z

rj(t) I(TmSδu)j

∥

∥

∥

Lp
X

dt

(see (3.6)–(3.8)). If I ∈ Dj ∩ B
(δ)
i then

E(1σδ(I) |F
(δ)
j ) = |A(δ)(σδ(I))|−1

1A(δ)(σδ(I)) ≥
1

2
1τm(σδ(I)),
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therefore

I(TmSδu)j ≤ 2E(I(Sδu)j |F
(δ)
j ).

Thus, Kahane’s contraction principle and Bourgain’s version of Stein’s mar-
tingale inequality yield

1�

0

∥

∥

∥

∑

j∈Z

rj(t) I(Tm Sδu)j

∥

∥

∥

Lp
X

dt ≤
1�

0

∥

∥

∥

∑

j∈Z

rj(t) 2E(I(S
δu)j |F

(δ)
j )

∥

∥

∥

Lp
X

dt

.

1�

0

∥

∥

∥

∑

j∈Z

rj(t) I(S
δu)j

∥

∥

∥

Lp
X

dt

≈ ‖Sδu‖Lp
X
.

Combining the latter estimate with (4.24), Theorem 3.2 proves

(4.25) ‖TmSδu‖Lp
X
. ‖u‖Lp

X
.

According to (4.3) the shift operator Tm and the one-third-shift operator
S commute, so we have the identity

Tmu = (S−δ ◦ Tm ◦ Sδ)(u),

and we obtain, by an application of Theorem 3.2,

(4.26) ‖Tmu‖Lp
X
. ‖(Tm ◦ Sδ)(u)‖Lp

X
.

We conclude the proof by combining (4.26) and (4.25).

Remark 4.4. By slightly adjusting the construction of B
(δ)
i we could

replace Bourgain’s version of Stein’s martingale inequality by the martingale
transforms in [Fig88, Proposition 2, Step 0] in order to obtain (4.25).

Within this remark we shall make use of the following notation. If I ∈
D ∪ σ(D), then I0 is the uniquely defined interval J ∈ D ∪ σ(D) with
|J | = |I|/2 such that inf J = inf I, and I1 is the uniquely defined interval
J ∈ D ∪ σ(D) with |J | = |I|/2 such that supJ = sup I.

Let us now describe the aforementioned modifications. We have to replace
λ by λ+ 1 and redefine C0 and C1 as

C0(I,Ai) = {J ∈ Ai : |J | = 2−λ|I|, J ⊂ I0 and τm(J) ⊂ I0}

∪ {J ∈ Ai : |J | = 2−λ|I|, J ⊂ I1 and τm(J) ⊂ I1},

C1(I,Ai) = {J ∈ Ai : |J | = 2−λ|I|, J ⊂ I0 and τm(J) ∩ I0 = ∅}

∪ {J ∈ Ai : |J | = 2−λ|I|, J ⊂ I1 and τm(J) ∩ I1 = ∅}

(cf. (4.8) and (4.9)). This results in the collection

(4.27) {J0, τm(J)0, J1, τm(J)1, J ∪ τm(J) : J ∈ σδ(B
(δ)
i )}
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being nested for all 0 ≤ i ≤ K(m) and δ ∈ {0, 1}. With these modifications
let us define

d
(δ)
J,1 =

1

2
(hJ + hτm(J)) and d

(δ)
J,2 =

1

2
(hJ − hτm(J)),

for all J ∈ σδ(B
(δ)
i ). Since (4.27) is nested, {d

(δ)
J,1, d

(δ)
J,2 : J ∈ σ(B

(δ)
i )} forms

a martingale difference sequence. Observe hJ = d
(δ)
J,1 + d

(δ)
J,2 and hτm(J) =

d
(δ)
J,1 − d

(δ)
J,2, hence we may swap hJ and hτm(J) without using Bourgain’s

version of Stein’s martingale inequality.

5. A martingale decomposition for Um. Recall that in (4.1) we de-
fined the shift map τm for every m ∈ Z by

τm(I) = I +m|I|

for all I ∈ D ∪ σ(D). We introduce the operator Um by setting

(5.1) Um hI = 1τm(I) − 1I

for all I ∈ D∪σ(D). Although the operators Tm and Um appear to be similar,
Um is much harder to analyze than Tm. This is rooted in the observation that
{TmhI}I∈A is a martingale difference sequence for any choice of A ⊂ D ,
whereas whether {UmhI}I∈B forms a martingale difference sequence strongly
depends on the choice of B ⊂ D . Essentially the same method we used to

bound Tm for functions supported on the collections B
(0)
i , 0 ≤ i ≤ K(m),

qualifies for estimating Um, since Lemma 4.1 ensures that {UmhI : I ∈ B
(0)
i }

forms a martingale difference sequence. So the main obstacle is to estimate

Um on B
(1)
i , since {UmhI : I ∈ B

(1)
i } is not a martingale difference sequence.

The remedy to this problem is the martingale difference sequence decom-
position of Um into

Um = aI + bI + cI , I ∈ B
(1,ε)
i ,

for suitable subcollections B
(1,ε)
i , ε ∈ {0, 1}, of B

(1)
i , such that the collections

{aI : I ∈ B
(1,ε)
i }, {bI : I ∈ B

(1,ε)
i } and {cI : I ∈ B

(1,ε)
i } form martingale

difference sequences. Since there are 56 + 14 log2(|m|) subcollections B
(δ,ε)
i ,

we can obtain the estimate

‖Um : Lp
X → Lp

X‖ ≤ C(log2(2 + |m|))β for some 0 < β < 1,

established in [Fig88] by the same method we used for Tm in Section 4.
First, let us define the maps β0, β1 and β by

β0(I) = σ0(I) \ I,(5.2)

β1(I) = σ1(I) ∩ I,(5.3)

β(I) = β0(I) ∪ β1(I),(5.4)
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where σ0 and σ1 are given by (3.9) and (3.10). Secondly, set

γ0(I) = σ0(I) ∩ I,(5.5)

γ1(I) = σ1(I) \ I,(5.6)

γ(I) = γ0(I) ∪ γ1(I).(5.7)

The functions σ0, σ1, β0, β1 and γ0, γ1 are visualized in Figure 2.

2
3
|I | 1

3
|I | 2

3
|I | 1

3
|I | 2

3
|I | 1

3
|I | 2

3
|I | 1

3
|I |

β0(I) β1(I) γ0(τm(I)) γ1(τm(I))

σ0(I) σ1(I) σ0(τm(I)) σ1(τm(I))

I τm(I)

Fig. 2. The functions σ0, σ1, β0, β1 and γ0, γ1 applied to I or τm(I)

Similar to the combinatorial Lemma 4.1 for the operator Tm we shall now
display a combinatorial lemma for Um, which will enable us to use the same
method to estimate Um as well. The estimates of Um will be established in
Theorem 5.2.

Lemma 5.1. Let m ∈ Z, m 6= 0 and let B
(δ)
i , 0 ≤ i ≤ K(m), δ ∈ {0, 1},

and K(m) be defined as in Lemma 4.1. If we split each collection B
(1)
i into

(5.8) B
(1,ε)
i = B

(1)
i ∩ {τk(I) : I ∈ D , inf I = 0, k mod 2 = ε}

for all 0 ≤ i ≤ K(m), ε ∈ {0, 1}, then

{I, τm(I), I ∪ τm(I) : I ∈ B
(0)
i },(5.9)

{σ0(I), σ1(τm(I)), σ0(I) ∪ σ1(τm(I)) : I ∈ B
(1,ε)
i },(5.10)

{β0(I), β1(I), β0(I) ∪ β1(I) : I ∈ B
(1,ε)
i },(5.11)

{γ0(I), γ1(I), γ0(I) ∪ γ1(I) : I ∈ τm(B
(1,ε)
i )}(5.12)

are nested collections of sets, for all 0 ≤ i ≤ K(m) and ε ∈ {0, 1}.

Proof. By symmetry we may assume m ≥ 1. Let m ∈ Z, m ≥ 1, 0 ≤
i ≤ K(m) and ε ∈ {0, 1} be fixed throughout the rest of this proof. Given
I ∈ σδ(D) its predecessor π(I) is the uniquely determined interval J ∈ σδ(D)

such that J ⊃ I and |J | = 2|I|. Given intervals J ∈ B
(1)
i and K = πλ(J)
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observe that

(5.13) τm(J) ∩K = ∅, inf J ≥ infK +
3

4
|K|, τ−1(J) ⊂ K.

First, note that (5.9) is covered by Lemma 4.1.
Secondly, we will show that (5.10) is nested. Henceforth, we shall abbre-

viate B
(1,ε)
i by B. Let I, J ∈ B be such that

(

σ0(J) ∪ σ1(τm(J))
)

∩
(

σ0(I) ∪ σ1(τm(I))
)

6= ∅.

Note that if |I| = |J |, then I = J by definition of B. So assume that |J | < |I|.
Defining K := πλ(J) and recalling (5.13) we see inf J ≥ infK + 3

4 |K|,
therefore σ0(J) ⊂ σ1(K). Furthermore, considering the constraints for the
parameters λ and m we obtain

supσ1(τm(J)) ≤ supK +
2

3
|J |+m|J | < supK +

1

3
|K|,

thus σ1(τm(J)) ⊂ σ1(K) as well. So we have proved that σ0(J) ∪ σ1(J) ⊂
σ1(K). The nestedness of the one-third-shifted intervals implies either σ1(K)
⊂ σ0(I) or σ1(K) ⊂ σ1(I), hence

σ0(J) ∪ σ1(J) ⊂ σ0(I) or σ0(J) ∪ σ1(J) ⊂ σ1(I).

Thirdly, we prove the nestedness of (5.11). To this end, let I, J ∈ B be
such that

β(J) ∩ β(I) 6= ∅.

As in the proof of (5.10) we see that |I| = |J | implies I = J . Let us now
assume |J | < |I|,

(A) β(J) ∩ β(I) 6= ∅ and β(J) ∩ β(I)c 6= ∅.

Considering that β(I) = β0(I)∪β1(I) and β(J) ⊂ J∪τ−1(J), assumption (A)
is covered by the following four cases:

(1) inf β0(I) ∈ J ∪ τ−1(J),
(2) supβ0(I) ∈ J ∪ τ−1(J),
(3) inf β1(I) ∈ J ∪ τ−1(J),
(4) supβ1(I) ∈ J ∪ τ−1(J).

Assume case (1) is true. Define K = πλ(J) and note that |K| ≤ |I| by
definition of B. Since the endpoint of the one-third-shifted interval σ0(I) is
contained in a non-shifted smaller interval K, we obtain

(5.14) inf β0(I) = infK +
z

3
|K|

for some z ∈ {1, 2}, depending on the direction of the one-third-shift. We
know from (5.13) that inf J ≥ infK + 3

4 |K|, hence

inf J ∪ τ−1(J) ≥ infK +
11

16
|K| > infK +

2

3
|K|,
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which contradicts (5.14). If we assume case (2) is true, then supβ0(I) =
inf I and we find that inf J = inf I. Consequently, inf J = inf πλ(J), which
contradicts J ∈ B. Case (3) is analogous to (1), and case (4) is analogous
to (2). Altogether we have proved that assumption (A) is false, therefore,
considering that dist(β0(I), β1(I)) ≥

1
3 |I| and diam(β(J)) ≤ 1

8 |I| yields

β(J) ⊂ β0(I) or β(J) ⊂ β1(I)

for all I, J ∈ B with |J | < |I| such that β(J) ∩ β(I) 6= ∅.

The proof that (5.12) is nested uses essentially the same argument pre-
sented in the proof of (5.11), therefore we omit the details. Both of these
cases use that if J ∈ τm(B), then γ(J) ⊂ J ∪ τ1(J), π

λ(J) = πλ(τ1(J)) and
inf τ1(J) 6= inf πλ(τ1(J)).

With m ∈ Z fixed, we introduce the functions

aI = 1σ1(τm(I)) − 1σ0(I), I ∈ D ,(5.15)

bI = 1β0(I) − 1β1(I), I ∈ D ,(5.16)

cI = 1γ0(τm(I)) − 1γ1(τm(I)), I ∈ D(5.17)

(see Figure 3).

2
3
|I | 1

3
|I | 2

3
|I | 1

3
|I | 2

3
|I | 1

3
|I | 2

3
|I | 1

3
|I |

+1

β0(I)

−1

β1(I)

bI +1

γ0(τm(I))
−1

γ1(τm(I))
cI

−1

σ0(I) σ1(I)

+1

σ0(τm(I)) σ1(τm(I))

aI

I

τm(I)

−1

+1

UmhI

Fig. 3. Martingale decomposition of Um
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Accordingly, we define operators A, B and C as the linear extensions of

AhI = aI , I ∈ D ,(5.18)

BhI = bI , I ∈ D ,(5.19)

ChI = cI , I ∈ D .(5.20)

Note the identities

(5.21)

UmhI = aI + bI + cI , I ∈ D ,

Umu = Au+Bu+ Cu, u ∈ Lp
X ,

Au = (Um+1 ◦ S0)(u), u ∈ Lp
X ,

as well as the estimates

(5.22)
|bI | ≤ |hI |+ |S0(hI)|, I ∈ D ,

|cI | ≤ |Tm(S0hI)|+ |Tm(S1hI)|, I ∈ D

(see Figure 3).

We will introduce projections P
(0)
i , P

(1,ε)
i , 0 ≤ i ≤ K(m), ε ∈ {0, 1},

and estimate the operators A, B and C on their respective images (see The-
orem 5.2). Recall that

P
(0)
i u =

∑

I∈B
(0)
i

〈u, hI〉hI |I|
−1, 0 ≤ i ≤ K(m),

was already defined in (4.16). Accordingly, we set

(5.23) P
(1,ε)
i u =

∑

I∈B
(1,ε)
i

〈u, hI〉hI |I|
−1, 0 ≤ i ≤ K(m), ε ∈ {0, 1},

for all u ∈ Lp
X , where B

(1,ε)
i is defined in (5.8). Note that P

(1)
i = P

(1,0)
i +

P
(1,1)
i , where P

(1)
i was defined in (4.16). Thus, (4.17) implies the identity

(5.24) u =

K(m)
∑

i=0

P
(0)
i u+ P

(1,0)
i u+ P

(1,1)
i u, u ∈ Lp

X .

Consider the splitting of D into the sets B
(δ)
i , 0 ≤ i ≤ K(m), δ ∈ {0, 1}

(see Lemma 4.1 for details), which we used in Theorem 4.3 to treat the
operator Tm. Retracing our steps in the proof of Theorem 4.3 we shall find
that with the result in Lemma 5.1 we could actually repeat this proof with

the operator Tm ◦P
(δ)
i , δ ∈ {0, 1}, replaced by one of the operators Um ◦P

(0)
i

or A◦P
(1,ε)
i , ε ∈ {0, 1}. The residual terms B◦P

(1,ε)
i and C◦P

(1,ε)
i occurring

in the martingale decomposition of Um are dominated by (Id + S0) ◦ P
(1,ε)
i

and (Tm ◦ (S0 + S1)) ◦ P
(1,ε)
i , respectively.
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Theorem 5.2. Let m ∈ Z, m 6= 0 and let P
(0)
i , P

(1,ε)
i , ε ∈ {0, 1}, be

defined according to (4.16) and (5.23). Then

(5.25) Um u =

K(m)
∑

i=0

{

(Um ◦ P
(0)
i )(u) +

∑

ε∈{0,1}

((A+B+ C) ◦ P
(1,ε)
i )(u)

}

for all u ∈ Lp
X . Furthermore, we have the estimates

‖(Um ◦ P
(0)
i )(u)‖Lp

X
≤ C‖P

(0)
i u‖Lp

X
,(5.26)

‖(A ◦ P
(1,ε)
i )(u)‖Lp

X
≤ C‖P

(1,ε)
i u‖Lp

X
,(5.27)

‖(B ◦ P
(1,ε)
i )(u)‖Lp

X
≤ C‖P

(1,ε)
i u‖Lp

X
,(5.28)

‖(C ◦ P
(1,ε)
i )(u)‖Lp

X
≤ C‖P

(1,ε)
i u‖Lp

X
,(5.29)

for all u ∈ Lp
X , 0 ≤ i ≤ K(m) and ε ∈ {0, 1}. The constant C depends only

on Up(X) and we have the estimate K(m) ≤ 7 + 2 log2(|m|).

Proof. Let m ∈ Z, m 6= 0, 0 ≤ i ≤ K(m) and ε ∈ {0, 1} be fixed
throughout the proof. By symmetry we may assume that m ≥ 1.

Note that (5.21) and (5.24) imply identity (5.25).
From Lemma 5.1 we know that each of the collections

{UmhI : I ∈ B
(0)
i }, {AhI : I ∈ B

(1,ε)
i },

{BhI : I ∈ B
(1,ε)
i }, {ChI : I ∈ B

(1,ε)
i }

forms a martingale difference sequence. Hence, in order to estimate {UmhI :

I ∈ B
(0)
i } and {AhI : I ∈ B

(1,ε)
i } we can essentially repeat the proof of

Theorem 4.3, thereby obtaining (5.26) and (5.27). Since |bI | ≤ |hI |+ |S0(hI)|
(see (5.22)), we deduce from the UMD-property, Kahane’s inequality (2.3)
and Kahane’s contraction principle (2.2) that

‖(B ◦ P
(1,ε)
i )(u)‖Lp

X
. ‖P

(1,ε)
i u‖Lp

X
+ ‖(S0 ◦ P

(1,ε)
i )(u)‖Lp

X
.

The latter estimate together with Theorem 3.3 implies (5.28). Observe |cI | ≤
|Tm(S0hI)|+ |Tm(S1hI)| (see (5.22)), thus the UMD-property, Kahane’s in-
equality and Kahane’s contraction principle imply

‖(C ◦ P
(1,ε)
i )(u)‖Lp

X
. ‖(S0 ◦ Tm ◦ P

(1,ε)
i )(u)‖Lp

X
+ ‖(S1 ◦ Tm ◦ P

(1,ε)
i )(u)‖Lp

X
.

Note that (5.10) implies that

{σδ(I), σδ(τm(I)), σδ(I) ∪ σδ(τm(I)) : I ∈ B
(1,ε)
i }

is nested, hence we can replicate the proof of Theorem 4.3 once more.

From Theorems 4.3 and 5.2, one can obtain the estimates stated in The-
orem 5.3 below by exploiting the type and cotype inequalities for Tm, and
only the cotype inequality for Um. Inserting the estimates of Theorems 4.3
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and 5.2 into [Fig88, Lemma 1] one can obtain [Fig88, Theorem 1], stated
below for the sake of completeness.

Theorem 5.3 ([Fig88]). Let 1 < p < ∞, and X be a Banach space with

the UMD-property. For m ∈ Z let τm denote the shift map defined by

I 7→ I +m|I|.

Let Tm, Um denote the linear extensions of the maps

TmhI = hτm(I)

and

UmhI = 1τm(I) − 1I ,

respectively. Then

‖Tm : Lp
X → Lp

X‖ ≤ C(log2(2 + |m|))α,(5.30)

‖Um : Lp
X → Lp

X‖ ≤ C(log2(2 + |m|))β ,(5.31)

where the constant C > 0 depends only on Up(X) and 0 < α, β < 1. More-

over, if Lp
X has type T and cotype C, then one can take α = 1/T − 1/C and

β = 1− 1/C.

These bounds are used to establish equivalence of some bases to the Haar
system, e.g. the Franklin system (cf. [Fig88]). In [Fig90], T. Figiel bounds
singular integral operators S acting on vector-valued Lp spaces by means
of the estimates (5.30) and (5.31). This is achieved by decomposing S into
weighted series of the rearrangement operators Tm and Um.
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