Stern Polynomials as Numerators of Continued Fractions

by
\section*{A. SCHINZEL}

Summary. It is proved that the nth Stern polynomial $B_{n}(t)$ in the sense of Klavžar, Milutinović and Petr [Adv. Appl. Math. 39 (2007)] is the numerator of a continued fraction of n terms. This generalizes a result of Graham, Knuth and Patashnik concerning the Stern sequence $B_{n}(1)$. As an application, the degree of $B_{n}(t)$ is expressed in terms of the binary expansion of n.

The diatomic sequence b_{n} defined by the formula

$$
b_{1}=1, \quad b_{2 n}=b_{n}, \quad b_{2 n+1}=b_{n}+b_{n+1} \quad(n=1,2, \ldots)
$$

has been studied by many authors (see [7]). In particular, Graham, Knuth and Patashnik [2, Exer. 6.50] have proved that if n has binary representation

$$
\begin{align*}
& a_{1} a_{2} \ldots \stackrel{a_{k}}{10} \ldots{ }_{1} \quad\left(a_{i}>0\right), \tag{1}
\end{align*}
$$

then b_{n} is the numerator of the continued fraction

$$
a_{1}+\frac{1}{\mid a_{2}}+\cdots+\frac{1}{\mid a_{k}} .
$$

The sequence b_{n} has been generalized to polynomials in two different ways [1], 3]. We shall follow the definition given by Klavžar, Milutinović and Petr [3]:

$$
\begin{aligned}
B_{0}(t) & =0 \\
B_{1}(t) & =1 \\
B_{2 n}(t) & =t B_{n}(t) \\
B_{2 n+1}(t) & =B_{n}(t)+B_{n+1}(t) \quad(n=1,2, \ldots),
\end{aligned}
$$

and we shall prove the following generalization of the last result.

2010 Mathematics Subject Classification: Primary 11B83.
Key words and phrases: Stern polynomials, continued fractions.

Theorem 1. If (1) holds, then $B_{n}(t)$ is the numerator of the continued fraction

$$
T_{a_{1}}+\frac{t^{a_{1}}}{\sqrt{T_{a_{2}}}}+\cdots+\frac{t^{a_{k-1}}}{\sqrt[T_{a_{k}}]{ }}
$$

where

$$
T_{a}=1+\cdots+t^{a-1}=\frac{t^{a}-1}{t-1}
$$

As an application we shall prove
Theorem 2. If (1) holds, then the degree of $B_{n}(t)$ equals

$$
a_{1}+\cdots+a_{k}-k+\left\lfloor\frac{l_{1}+1}{2}\right\rfloor+\left\lfloor\frac{l_{2}+1}{2}\right\rfloor+\cdots+\left\lfloor\frac{l_{j}+1}{2}\right\rfloor,
$$

where l_{1}, \ldots, l_{j} are the lengths of blocks of 1 's occurring in this order in the sequence a_{2}, \ldots, a_{k}.

For the proof of Theorem 1 we need the following:
Definition. $K_{0}=1, K_{1}\left(x_{1}\right)=T_{x_{1}}$, and for $k=2,3, \ldots$,
$K_{k}\left(x_{1}, \ldots, x_{k}\right)=T_{x_{k}} K_{k-1}\left(x_{1}, \ldots, x_{k-1}\right)+t^{x_{k-1}} K_{k-2}\left(x_{1}, \ldots, x_{k-2}\right)$.
Lemma 1 ([6, Corollary 2.2]). For $\alpha \geq 0$,

$$
B_{2^{\alpha}-1}(t)=T_{\alpha}
$$

Lemma 2 ([5, Lemma 1]). For $m \geq 0$ and $2^{\alpha} \geq r \geq 0$,

$$
B_{2^{\alpha} m+r}(t)=B_{2^{\alpha}-r}(t) B_{m}(t)+B_{r}(t) B_{m+1}(t)
$$

Lemma 3. For $\beta \geq \alpha \geq 0$,

$$
B_{2^{\beta}-2^{\alpha}+1}(t)=T_{\alpha} T_{\beta-\alpha}+t^{\beta-\alpha}
$$

Proof. Apply Lemma 2 with $m=2^{\beta-\alpha}-1, r=1$.
Lemma 4. For every integer $k \geq 2$ and all positive integers $x_{i}(i<k)$,

$$
K_{k}\left(x_{1}, \ldots, x_{k-2}, x_{k-1}-1,1\right)=K_{k-1}\left(x_{1}, \ldots, x_{k-1}\right)
$$

Proof. For $k=2$ we have

$$
K_{2}\left(x_{1}-1,1\right)=K_{1}\left(x_{1}-1\right)+t^{x_{1}-1}=T_{x_{1}}=K_{1}\left(x_{1}\right)
$$

For $k \geq 3$, by the definition above,

$$
\begin{aligned}
K_{k}(& \left.x_{1}, \ldots, x_{k-2}, x_{k-1}-1,1\right) \\
= & K_{k-1}\left(x_{1}, \ldots, x_{k-2}, x_{k-1}-1\right)+t^{x_{k-1}-1} K_{k-2}\left(x_{1}, \ldots, x_{k-2}\right) \\
= & K_{k-1}\left(x_{1}, \ldots, x_{k-2}, x_{k-1}-1\right)+\left(T_{x_{k-1}}-T_{x_{k-1}-1}\right) K_{k-2}\left(x_{1}, \ldots, x_{k-2}\right) \\
= & K_{k-1}\left(x_{1}, \ldots, x_{k-1}\right)+K_{k-1}\left(x_{1}, \ldots, x_{k-2}, x_{k-1}-1\right) \\
& -T_{x_{k-1}-1} K_{k-2}\left(x_{1}, \ldots, x_{k-2}\right)-t^{x_{k-2}} K_{k-3}\left(x_{1}, \ldots, x_{k-3}\right) \\
= & K_{k-1}\left(x_{1}, \ldots, x_{k-1}\right) .
\end{aligned}
$$

Proof of Theorem 1. We shall prove by induction on k a slightly more general formula

$$
\begin{equation*}
B_{n}(t)=K_{k}\left(a_{1}, \ldots, a_{k}\right) \tag{2}
\end{equation*}
$$

provided k is odd and

$$
\begin{align*}
& a_{1}^{a_{1} a_{2}} \ldots \stackrel{a_{k}}{10} \ldots \stackrel{1}{1}, \tag{3}
\end{align*}
$$

where $a_{i}>0(1 \leq i \leq k, i \neq k-1), a_{k-1} \geq 0$.
For $k=1$ the formula (2) follows from Lemma 1]. Assume now that $k \geq 3$ is odd, (3) holds and the formula (22) is true for $k-2$. Then

$$
n=2^{a_{k-1}+a_{k}} m+2^{a_{k}}-1, \quad m=\stackrel{a}{1}_{a_{1} a_{2}}^{10} \ldots \stackrel{a_{k-2}}{1} .
$$

By Lemma ${ }^{2}$,

$$
B_{n}(t)=B_{2^{a_{k-1}+a_{k}}-2^{a_{k+1}}}(t) B_{m}(t)+B_{2^{a_{k-1}}}(t) B_{m+1}(t),
$$

and by Lemmas 1 and 3 ,

$$
B_{n}(t)=\left(T_{a_{k}} T_{a_{k-1}}+t^{a_{k-1}}\right) B_{m}(t)+T_{a_{k}} t^{a_{k-2}} B_{\frac{m+1}{2^{a_{k-2}}}}(t) .
$$

Now, by the inductive assumption and by Lemma 4 ,

$$
\begin{aligned}
B_{m}(t) & =K_{k-2}\left(a_{1}, \ldots, a_{k-2}\right), \\
B_{\frac{m+1}{2^{m}-2}}(t) & =K_{k-2}\left(a_{1}, \ldots, a_{k-3}-1,1\right)=K_{k-3}\left(a_{1}, \ldots, a_{k-3}\right) .
\end{aligned}
$$

Hence
$B_{n}(t)=\left(T_{a_{k}} T_{a_{k-1}}+t^{a_{k-1}}\right) K_{k-2}\left(a_{1}, \ldots, a_{k-2}\right)+T_{a_{k}} t^{a_{k-2}} K_{k-3}\left(a_{1}, \ldots, a_{k-3}\right)$,
while by the definition

$$
\begin{aligned}
K_{k}\left(a_{1}, \ldots, a_{k}\right)= & T_{a_{k}} K_{k-1}\left(a_{1}, \ldots, a_{k-1}\right)+t^{a_{k-1}} K_{k-2}\left(a_{1}, \ldots, a_{k-2}\right) \\
= & T_{a_{k}} T_{a_{k-1}} K_{k-2}\left(a_{1}, \ldots, a_{k-2}\right)+T_{a_{k}} t^{a_{k-2}} K_{k-3}\left(a_{1}, \ldots, a_{k-3}\right) \\
& +t^{a_{k-1}} K_{k-2}\left(a_{1}, \ldots, a_{k-2}\right) .
\end{aligned}
$$

Therefore

$$
B_{n}(t)=K_{k}\left(a_{1}, \ldots, a_{k}\right)
$$

and the inductive proof is complete.
Now Theorem 1 follows in view of $\S 5$ of [4].
For the proof of Theorem 2 we need two lemmas.
Lemma 5. If in the notation of 4,

$$
\begin{equation*}
\frac{A_{\nu}}{B_{\nu}}=\beta_{0}+\frac{\alpha_{1} \mid}{\mid \beta_{1}}+\cdots+\frac{\alpha_{\nu} \mid}{\mid \beta_{\nu}}, \tag{4}
\end{equation*}
$$

then

$$
A_{\nu}=\beta_{0} \beta_{1} \cdots \beta_{\nu}\left(1+\sum_{\mu=1}^{\lfloor(\nu+1) / 2\rfloor} \sum_{0 \leq i_{1}<\cdots<i_{\mu}<\nu} \frac{1}{\beta_{i_{1}} \cdots \beta_{i_{\mu}}} \prod_{\lambda=1}^{\mu} \frac{\alpha_{i_{\lambda}+1}}{\beta_{i_{\lambda}+1}}\right)
$$

where $i_{\lambda+1} \geq i_{\lambda}+2(1 \leq \lambda \leq \mu)$.
Proof. See [4, formula (13) on p. 9], where to avoid the collision of notation we have replaced a by α, b by β and where $B_{n}\left(\right.$ not $\left.B_{n}(t)\right)$ does not represent the Stern polynomial, but in accordance with the notation of [4] the denominator of the continued fraction (4).

LEMMA 6. If $\alpha_{i}=t^{a_{i}}(i=1, \ldots, k-1), \beta_{i}=T_{a_{i+1}}(i=0, \ldots, k-1)$ and integers $i_{\lambda}(1 \leq \lambda \leq \mu \leq\lfloor k / 2\rfloor)$ satisfy the conditions

$$
\begin{equation*}
0 \leq i_{1}<\cdots<i_{\mu}<k-1, \quad i_{\lambda+1} \geq i_{\lambda}+2 \quad(\lambda<\mu) \tag{5}
\end{equation*}
$$

then the polynomial

$$
P=\frac{\beta_{0} \beta_{1} \cdots \beta_{k-1}}{\beta_{i_{1}} \cdots \beta_{i_{\mu}}} \prod_{\lambda=1}^{\mu} \frac{\alpha_{i_{\lambda}+1}}{\beta_{i_{\lambda}+1}}
$$

is monic of degree

$$
a_{1}+\cdots+a_{k}-k+\sum_{\lambda=1}^{\mu}\left(2-a_{i_{\lambda}+2}\right)
$$

Proof. The polynomials $\alpha_{i}(t)$ and $\beta_{i}(t)$ are monic and

$$
\begin{aligned}
\operatorname{deg} P & =a_{1}+\cdots+a_{k}-k-\sum_{\lambda=1}^{\mu}\left(a_{i_{\lambda}+1}-1\right)+\sum_{\lambda=1}^{\mu}\left(a_{i_{\lambda}+1}-a_{i_{\lambda}+2}+1\right) \\
& =a_{1}+\cdots+a_{k}-k+\sum_{\lambda=1}^{\mu}\left(2-a_{i_{\lambda}+2}\right)
\end{aligned}
$$

Proof of Theorem 2. In view of Theorem 1 and Lemmas 5 and 6, if (1) holds, then the degree of B_{n} equals $a_{1}-1$ for $k=1$, while for $k \geq 3$ it is the maximum of

$$
\begin{equation*}
a_{1}+\cdots+a_{k}-k+\sum_{\lambda=1}^{\mu}\left(2-a_{i_{\lambda}+2}\right) \tag{6}
\end{equation*}
$$

over all sequences of integers i_{λ} satisfying (5). If blocks of 1 occurring in the sequence a_{2}, \ldots, a_{k} start at positions p_{1}, \ldots, p_{j} and thus end at positions $p_{1}+l_{1}-1, \ldots, p_{j}+l_{j}-1\left(p_{1}>1, p_{i+1}>p_{i}+l_{i}\right)$, then the maximum of (6)
is attained at

$$
\begin{aligned}
& i_{1}=p_{1}-2, \quad i_{2}=p_{1}, \ldots, \quad i_{\left\lfloor l_{1}+1 / 2\right\rfloor}=p_{1}+2\left\lfloor\frac{l_{1}+1}{2}\right\rfloor-4 \\
& i_{\left\lfloor\left(l_{1}+1\right) / 2\right\rfloor+1}=p_{2}-2, \ldots, i_{\left\lfloor\left(l_{1}+1\right) / 2\right\rfloor+\left\lfloor\left(l_{2}+1\right) / 2\right\rfloor}=p_{2}+2\left\lfloor\frac{l_{2}+1}{2}\right\rfloor-4, \ldots, \\
& i_{\left\lfloor\left(l_{1}+1\right) / 2\right\rfloor+\left\lfloor\left(l_{2}+1\right) / 2\right\rfloor+\cdots+\left\lfloor\left(l_{j}+1\right) / 2\right\rfloor}=p_{j}+2\left\lfloor\frac{l_{j}+1}{2}\right\rfloor-4 .
\end{aligned}
$$

The value of the maximum is that given in the theorem.

References

[1] K. Dilcher and K. B. Stolarsky, A polynomial analogue to the Stern sequence, Int. J. Number Theory 3 (2007), 85-103.
[2] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, AddisonWesley, Reading, MA, 1994.
[3] S. Klavžar, U. Milutinović and C. Petr, Stern polynomials, Adv. Appl. Math. 39 (2007), 86-95.
[4] O. Perron, Die Lehre von den Kettenbrüchen, 2nd ed., Teubner, 1927; reprint, Chelsea, New York, 1950.
[5] A. Schinzel, On the factors of Stern polynomials (remarks on the preceding paper of M. Ulas), Publ. Math. Debrecen 79 (2011), 83-88.
[6] M. Ulas, On certain arithmetic properties of Stern polynomials, Publ. Math. Debrecen 79 (2011), 55-81.
[7] I. Urbiha, Some properties of a function studied by de Rham, Carlitz and Dijkstra and its relation to the (Eisenstein-)Stern's diatomic sequence, Math. Comm. 6 (2001), 181-198.
A. Schinzel

Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-656 Warszawa, Poland
E-mail: schinzel@impan.pl

