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Stern Polynomials as Numerators of Continued Fractions
by

A. SCHINZEL

Summary. It is proved that the nth Stern polynomial Bn(t) in the sense of Klavžar,
Milutinović and Petr [Adv. Appl. Math. 39 (2007)] is the numerator of a continued fraction
of n terms. This generalizes a result of Graham, Knuth and Patashnik concerning the Stern
sequence Bn(1). As an application, the degree of Bn(t) is expressed in terms of the binary
expansion of n.

The diatomic sequence bn defined by the formula

b1 = 1, b2n = bn, b2n+1 = bn + bn+1 (n = 1, 2, . . . )

has been studied by many authors (see [7]). In particular, Graham, Knuth
and Patashnik [2, Exer. 6.50] have proved that if n has binary representation

(1) n =
a1
1
a2
0 . . .

ak
1 (ai > 0),

then bn is the numerator of the continued fraction

a1 +
1

a2
+ · · ·+

1

ak
.

The sequence bn has been generalized to polynomials in two different
ways [1], [3]. We shall follow the definition given by Klavžar, Milutinović
and Petr [3]:

B0(t) = 0,

B1(t) = 1,

B2n(t) = tBn(t),

B2n+1(t) = Bn(t) +Bn+1(t) (n = 1, 2, . . . ),

and we shall prove the following generalization of the last result.
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Theorem 1. If (1) holds, then Bn(t) is the numerator of the continued
fraction

Ta1 +
ta1

Ta2
+ · · ·+

tak−1

Tak
,

where

Ta = 1 + · · ·+ ta−1 =
ta − 1

t− 1
.

As an application we shall prove

Theorem 2. If (1) holds, then the degree of Bn(t) equals

a1 + · · ·+ ak − k +

⌊
l1 + 1

2

⌋
+

⌊
l2 + 1

2

⌋
+ · · ·+

⌊
lj + 1

2

⌋
,

where l1, . . . , lj are the lengths of blocks of 1’s occurring in this order in the
sequence a2, . . . , ak.

For the proof of Theorem 1 we need the following:

Definition. K0 = 1, K1(x1) = Tx1 , and for k = 2, 3, . . . ,

Kk(x1, . . . , xk) = TxkKk−1(x1, . . . , xk−1) + txk−1Kk−2(x1, . . . , xk−2).

Lemma 1 ([6, Corollary 2.2]). For α ≥ 0,

B2α−1(t) = Tα.

Lemma 2 ([5, Lemma 1]). For m ≥ 0 and 2α ≥ r ≥ 0,

B2αm+r(t) = B2α−r(t)Bm(t) +Br(t)Bm+1(t).

Lemma 3. For β ≥ α ≥ 0,

B2β−2α+1(t) = TαTβ−α + tβ−α.

Proof. Apply Lemma 2 with m = 2β−α − 1, r = 1.

Lemma 4. For every integer k ≥ 2 and all positive integers xi (i < k),

Kk(x1, . . . , xk−2, xk−1 − 1, 1) = Kk−1(x1, . . . , xk−1).

Proof. For k = 2 we have

K2(x1 − 1, 1) = K1(x1 − 1) + tx1−1 = Tx1 = K1(x1).

For k ≥ 3, by the definition above,

Kk(x1, . . . , xk−2, xk−1 − 1, 1)

= Kk−1(x1, . . . , xk−2, xk−1 − 1) + txk−1−1Kk−2(x1, . . . , xk−2)

= Kk−1(x1, . . . , xk−2, xk−1 − 1) + (Txk−1
− Txk−1−1)Kk−2(x1, . . . , xk−2)

= Kk−1(x1, . . . , xk−1) +Kk−1(x1, . . . , xk−2, xk−1 − 1)

− Txk−1−1Kk−2(x1, . . . , xk−2)− txk−2Kk−3(x1, . . . , xk−3)

= Kk−1(x1, . . . , xk−1).
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Proof of Theorem 1. We shall prove by induction on k a slightly more
general formula

(2) Bn(t) = Kk(a1, . . . , ak)

provided k is odd and

(3) n =
a1
1
a2
0 . . .

ak
1 ,

where ai > 0 (1 ≤ i ≤ k, i 6= k − 1), ak−1 ≥ 0.

For k = 1 the formula (2) follows from Lemma 1. Assume now that k ≥ 3
is odd, (3) holds and the formula (2) is true for k − 2. Then

n = 2ak−1+akm+ 2ak − 1, m =
a1
1
a2
0 . . .

ak−2

1 .

By Lemma 2,

Bn(t) = B2ak−1+ak−2ak+1(t)Bm(t) +B2ak−1(t)Bm+1(t),

and by Lemmas 1 and 3,

Bn(t) = (TakTak−1
+ tak−1)Bm(t) + Takt

ak−2B m+1

2
ak−2

(t).

Now, by the inductive assumption and by Lemma 4,

Bm(t) = Kk−2(a1, . . . , ak−2),

B m+1

2
ak−2

(t) = Kk−2(a1, . . . , ak−3 − 1, 1) = Kk−3(a1, . . . , ak−3).

Hence

Bn(t) = (TakTak−1
+ tak−1)Kk−2(a1, . . . , ak−2)+Takt

ak−2Kk−3(a1, . . . , ak−3),

while by the definition

Kk(a1, . . . , ak) = TakKk−1(a1, . . . , ak−1) + tak−1Kk−2(a1, . . . , ak−2)

= TakTak−1
Kk−2(a1, . . . , ak−2) + Takt

ak−2Kk−3(a1, . . . , ak−3)

+ tak−1Kk−2(a1, . . . , ak−2).

Therefore

Bn(t) = Kk(a1, . . . , ak)

and the inductive proof is complete.

Now Theorem 1 follows in view of §5 of [4].

For the proof of Theorem 2 we need two lemmas.

Lemma 5. If in the notation of [4],

(4)
Aν
Bν

= β0 +
α1

β1
+ · · ·+

αν

βν
,
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then

Aν = β0β1 · · ·βν
(

1 +

b(ν+1)/2c∑
µ=1

∑
0≤i1<···<iµ<ν

1

βi1 · · ·βiµ

µ∏
λ=1

αiλ+1

βiλ+1

)
,

where iλ+1 ≥ iλ + 2 (1 ≤ λ ≤ µ).

Proof. See [4, formula (13) on p. 9], where to avoid the collision of no-
tation we have replaced a by α, b by β and where Bn (not Bn(t)) does not
represent the Stern polynomial, but in accordance with the notation of [4]
the denominator of the continued fraction (4).

Lemma 6. If αi = tai (i = 1, . . . , k − 1), βi = Tai+1 (i = 0, . . . , k − 1)
and integers iλ (1 ≤ λ ≤ µ ≤ bk/2c) satisfy the conditions

(5) 0 ≤ i1 < · · · < iµ < k − 1, iλ+1 ≥ iλ + 2 (λ < µ),

then the polynomial

P =
β0β1 · · ·βk−1
βi1 · · ·βiµ

µ∏
λ=1

αiλ+1

βiλ+1

is monic of degree

a1 + · · ·+ ak − k +

µ∑
λ=1

(2− aiλ+2).

Proof. The polynomials αi(t) and βi(t) are monic and

degP = a1 + · · ·+ ak − k −
µ∑
λ=1

(aiλ+1 − 1) +

µ∑
λ=1

(aiλ+1 − aiλ+2 + 1)

= a1 + · · ·+ ak − k +

µ∑
λ=1

(2− aiλ+2).

Proof of Theorem 2. In view of Theorem 1 and Lemmas 5 and 6, if (1)
holds, then the degree of Bn equals a1 − 1 for k = 1, while for k ≥ 3 it is
the maximum of

(6) a1 + · · ·+ ak − k +

µ∑
λ=1

(2− aiλ+2)

over all sequences of integers iλ satisfying (5). If blocks of 1 occurring in the
sequence a2, . . . , ak start at positions p1, . . . , pj and thus end at positions
p1 + l1− 1, . . . , pj + lj − 1 (p1 > 1, pi+1 > pi + li), then the maximum of (6)
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is attained at

i1 = p1 − 2, i2 = p1, . . . , ibl1+1/2c = p1 + 2

⌊
l1 + 1

2

⌋
− 4,

ib(l1+1)/2c+1 = p2 − 2, . . . , ib(l1+1)/2c+b(l2+1)/2c = p2 + 2

⌊
l2 + 1

2

⌋
− 4, . . . ,

ib(l1+1)/2c+b(l2+1)/2c+···+b(lj+1)/2c = pj + 2

⌊
lj + 1

2

⌋
− 4.

The value of the maximum is that given in the theorem.
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