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Summary. We find complete sets of generating relations between the elements [r] =
rn − r for n = 2l and for n = 3. One of these relations is the n-derivation property
[rs] = rn[s] + s[r], r, s ∈ R.

1. Introduction. Let R be a commutative ring with 1. In [2], the sec-
ond author introduced the ideals In(R) generated by all elements rn − r
where r ∈ R. It follows from [2, Proposition 5.5] that In(R) is precisely the
intersection of all maximal ideals M of R such that |R/M | − 1 divides n− 1
(in particular, for n = 3 this means that |R/M | = 2 or 3). These ideals are
used to find relations satisfied by mappings of higher degrees (see [2]–[5]).

The main result of [6] determines generating relations for the elements r2−r.
The purpose of this paper is to find generating relations for the generators
rn − r of In(R), where n is a power of 2 or n = 3 (Theorem 1). This will be
used in [1] to find generating relations for mappings of degree 5; however,
the present paper is independent of the theory of higher degree mappings.

If f is a mapping between R-modules and f(0) = 0 then we define by
induction the functions ∆mf in m variables as follows: ∆1f = f and

(∆m+1f)(x0, . . . , xm) = (∆mf)(x0 + x1, x2, . . . , xm)

− (∆mf)(x0, x2, . . . , xm)− (∆mf)(x1, x2, . . . , xm).

Then we have the following formula:

(1) f(x1 + · · ·+ xm) =

m∑
k=1

∑
1<i1<···<ik<m

(∆kf)(xi1 , . . . , xik).
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2. Definition and properties of n-derivations and the functor D.
Let n be a fixed natural number. By an n-derivation over R we will mean
a function f : R → M , where M is an R-module, satisfying the following
condition:

(Dn) f(rs) = rnf(s) + sf(r), r, s ∈ R.
For example, the function f : R→ R, f(r) = rn − r, is an n-derivation. On
the other hand, any (ordinary) derivation is a 1-derivation (observe that we
do not assume additivity in our definition).

Lemma 1. If f is an n-derivation then for any r, s ∈ R we have

(i) (rn − r)f(s) = (sn − s)f(r),

(ii) f(0) = f(1) = 0,

(iii) if s is invertible then f(s−1) = −s−n−1f(s),

(iv) f(r2) = (rn + r)f(r),

(v) f(r2s) = r2nf(s) + (rns+ rs)f(r),

(vi) f(r3) = (r2n + rn+1 + r2)f(r),

(vii) f(r2
k
) = ((r2

k−1
)n + r2

k−1
)((r2

k−2
)n + r2

k−2
) . . . (rn + r)f(r),

(viii) (∆kf)(tr1, . . . , trk)= tn(∆kf)(r1, . . . , rk) for k≥ 2, t, r1, . . . , rk∈R.

If we denote f̃(r, s) = sf(r)− rf(s) = snf(r)− rnf(s) for r, s ∈ R then

(ix) f̃(tr, ts) = tn+1f̃(r, s) for any r, s, t ∈ R.

Proof. Relation (i) follows from the two symmetric versions of (Dn).
The equalities f(0) = f(1) = 0 follow from (Dn) for r = s = 0 or 1. Using
(Dn) and (ii) we obtain 0 = f(1) = f(s · s−1) = snf(s−1) + s−1f(s), and
this gives (iii). Equality (iv) follows from (Dn), (v) from (iv) and (Dn),
(vi) from (v), and (vii) by induction from (iv). Moreover, (viii) holds for
k = 2 since

(∆2f)(tr, ts) = f(tr + ts)− f(tr)− f(ts)

= tnf(r + s) + (r + s)f(t)− tnf(r)− rf(t)− tnf(s)− sf(t)

= tn(f(r + s)− f(r)− f(s)) = tn(∆2f)(r, s),

and for k > 2 by induction. Finally, we prove (ix):

f̃(tr, ts) = ts(tnf(r) + rf(t))− tr(tnf(s) + sf(t)) = tn+1f̃(r, s).

Let D(R) = D(n)(R) denote the R-module generated by all elements 〈r〉,
r ∈ R, with the relations

(Dn) 〈rs〉 = rn〈s〉+ s〈r〉, r, s ∈ R.
Any unitary ring homomorphism i : R → R′ induces a module homomor-
phism D(i) : D(R)→ D(R′) over i such that D(i)(〈r〉) = 〈i(r)〉. This shows
that D is a functor. Observe that D(R) is a universal object with respect
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to n-derivations over R, in the sense that any n-derivation can be uniquely
expressed as the composition of the canonical n-derivation d : R → D(R),
d(r) = 〈r〉, and an R-homomorphism defined on D(R).

In particular, the n-derivation f : R→ R, f(r) = rn − r, gives

Corollary 1. There exists an R-homomorphism P : D(R) → In(R)
such that P (〈r〉) = rn − r for r ∈ R.

We now prove that D commutes with localizations. Let S be a mul-
tiplicatively closed set in R and let i : R → RS and i : M → MS be the
canonical homomorphisms, i(r) = r

1 , i(m) = m
1 .

Proposition 1. For any n-derivation f : R→M there exists a unique
n-derivation fS : RS → MS satisfying the condition fS(i(r)) = i(f(r)) for
r ∈ R. It is given by the formula

(2) fS

(
r

s

)
=
f(r)

s
−
(
r

s

)n f(s)

s

or equivalently

(3) fS

(
r

s

)
=
f̃(r, s)

sn+1
=
sf(r)− rf(s)

sn+1
.

Moreover, for any k ≥ 2,

(4) (∆kfS)

(
r1
t
, . . . ,

rk
t

)
=

(∆kf)(r1, . . . , rk)

tn
.

Proof. First observe that the right hand sides of (2) and (3) are equal
for any n-derivation f. Indeed, the definition of f̃ gives

f(r)

s
−
(
r

s

)n f(s)

s
=
snf(r)− rnf(s)

sn+1
=
f̃(r, s)

sn+1
.

The required condition means that fS
(
r
1

)
= f(r)

1 for r ∈ R. Let s ∈ S. If fS
is an n-derivation then

f(r)

1
= fS

(
r

1

)
= fS

(
r

s

s

1

)
=

(
r

s

)n

fS

(
s

1

)
+
s

1
fS

(
r

s

)
=

(
r

s

)n f(s)

1
+
s

1
fS

(
r

s

)
,

which gives (2). This proves the uniqueness of fS .

Now we define fS by (3). To prove that fS is properly defined, it suffices
to check that the formula remains the same if we replace r by tr and s by
ts for any t ∈ S. But this follows from Lemma 1(ix).

It follows by induction that (4) holds for t = 1. Then the general case
follows from Lemma 1(viii).
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It remains to prove (Dn) for fS . Let a
s and b

s be arbitrary elements of RS .
Using formula (3) we obtain

fS

(
a

s

b

s

)
−
(
a

s

)n

fS

(
b

s

)
− b

s
fS

(
a

s

)
=
s2f(ab)− abf(s2)

s2n+2
− an

sn
sf(b)− bf(s)

sn+1
− b

s

sf(a)− af(s)

sn+1

=
s2f(ab)− abf(s2)

s2n+2
− ans2f(b)− anbsf(s)

s2n+2
− bsn+1f(a)− absnf(s)

s2n+2

=
s2(f(ab)− anf(b)− sn−1bf(a))− ab(f(s2)− an−1sf(s)− snf(s))

s2n+2

=
s2(b− bsn−1)f(a)− ab(s− san−1)f(s)

s2n+2

=
bs((s− sn)f(a)− (a− an)f(s))

s2n+2
= 0

by (Dn) and Lemma 1(i) for f . This completes the proof.

Proposition 2. There exists an RS-isomorphism D(R)S ≈ D(RS) such

that 〈r〉s ↔
1
s

〈
r
1

〉
.

Proof. Proposition 1 applied to the canonical n-derivation d : R→ D(R),
d(r) = 〈r〉, gives an n-derivation dS : RS → D(R)S over RS ,

dS

(
r

s

)
=
〈r〉
s
−
(
r

s

)n 〈s〉
s
.

The universal property yields an RS-homomorphism g : D(RS) → D(R)S
such that

g

(〈
r

s

〉)
= dS

(
r

s

)
=
〈r〉
s
−
(
r

s

)n 〈s〉
s
.

On the other hand, the homomorphismD(i) : D(R)→D(RS) over i : R→RS ,
defined byD(i)(〈r〉) = 〈 r1〉, gives anRS-homomorphism h : D(R)S → D(RS)
such that

h

(
〈r〉
s

)
=

1

s

〈
r

1

〉
.

Observe that h = g−1. Indeed,

g

(
h

(
〈r〉
s

))
=

1

s
g

(〈
r

1

〉)
=

1

s

(
〈r〉
1
−
(
r

1

)n 〈1〉
1

)
=
〈r〉
s

by Lemma 1(ii). On the other hand, using Lemma 1(iii) and (D) we compute
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that

h

(
g

(〈
r

s

〉))
= h

(
〈r〉
s
−
(
r

s

)n 〈s〉
s

)
=

1

s

〈
r

1

〉
− rn

sn+1

〈
s

1

〉
=

1

s

〈
r

1

〉
+

(
r

1

)n〈1

s

〉
=

〈
r

1

1

s

〉
=

〈
r

s

〉
.

Hence h is an isomorphism, as required.

3. C-functions of degree n = 2l. Let n be a fixed natural number of
the form n = 2l, l = 1, 2, . . . . By a C-function of degree n over R we will
mean any n-derivation f : R→M satisfying the additional condition

(Cn) f(r + s) = f(r) + f(s) + p(r, s)f(−1), r, s ∈ R,

or equivalently

(C′n) (∆2f)(r, s) = p(r, s)f(−1), r, s ∈ R,

where

p(r, s) =
n−1∑
k=1

1

2

(
n

k

)
rn−ksk

(note that 1
2

(
n
k

)
∈ Z for k = 1, . . . , n− 1 because of the shape of n). Using

generalized Newton symbols

(i1, . . . , ik) =
(i1 + · · ·+ ik)!

i1! . . . ik!

=

(
i1 + · · ·+ ik

ik

)(
i1 + · · ·+ ik−1

ik−1

)
. . .

(
i1 + i2
i2

)
= (i1 + · · ·+ ik−1, ik)(i1, . . . , ik−1)

we define the following generalization of p(r, s):

p(r1, . . . , rk) =
∑ 1

2
(i1, . . . , ik)ri11 . . . r

ik
k ,

where the sum is over all systems of non-negative integers i1 . . . , ik such that
i1 + · · ·+ ik = n and at least two ij are non-zero (then all the coefficients in
the sum are integers).

Lemma 2. For any r1, . . . , rk, rk+1 ∈ R we have

(i) p(r1, . . . , rk, rk+1) = p(r1 + · · ·+ rk, rk+1) + p(r1, . . . , rk),

(ii) f(
∑k

i=1 ri) =
∑k

i=1 f(ri) + p(r1, . . . , rk)f(−1)

provided that f is a C-function of degree n.
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Proof. (i) The generalized Newton formula shows that

p(r1 + · · ·+ rk, rk+1) =
∑

j1+j2=n
j1,j2>0

1

2
(j1, j2)(r1 + · · ·+ rk)j1rj2k+1

=
∑

j1+j2=n
j1,j2>0

∑
i1+···+ik=j1

1

2
(j1, j2)(i1, . . . , ik)(ri11 · · · r

ik
k )rj2k+1

=
∑

i1+···+ik+1=n
i1+···+ik>0, ik+1>0

1

2
(i1 + · · ·+ ik, ik+1)(i1, . . . , ik)ri11 · · · r

ik
k r

ik+1

k+1

=
∑

i1+···+ik+1=n
i1+···+ik>0, ik+1>0

1

2
(i1, . . . , ik, ik+1)r

i1
1 · · · r

ik+1

k+1 .

Since (i1, . . . , ik, 0) = (i1, . . . , ik), the above is equal to p(r1, . . . , rk, rk+1)−
p(r1, . . . , rk), as required.

(ii) For k = 2 see (Cn). If (ii) holds for some k ≥ 2 then, by (Cn) and (i),

f
( k+1∑

i=1

ri

)
= f

( k∑
i=1

ri + rk+1

)
= f

( k∑
i=1

ri

)
+ f(rk+1) + p

( k∑
i=1

ri, rk+1

)
f(−1)

=
k∑

i=1

f(ri) + p(r1, . . . , rk)f(−1) + f(rk+1) + p(r1 + · · ·+ rk, rk+1)f(−1)

=

k+1∑
i=1

f(ri) + p(r1, . . . , rk+1)f(−1).

Since n = 2l is even, we have (−1)n − (−1) = 2, and hence Lemma 1(i)
gives 2f(r) = (rn − r)f(−1). The function f : R → R, f(r) = rn − r, is a
C-function of degree n. Indeed, it is an n-derivation and

(r + s)n − (r + s)− (rn − r)− (sn − s) =

n∑
k=0

(
n

k

)
rn−ksk − rn − sn

= 2
n−1∑
k=1

1

2

(
n

k

)
rn−ksk = 2p(r, s) = p(r, s)f(−1)

by the Newton binomial formula. Later, we prove that it is a universal
C-function of degree n (Theorem 1).

4. C-functions of degree 3. By a C-function of degree 3 over R we
will mean any 3-derivation f : R → M satisfying the following additional
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conditions for any a, b, r, s, t ∈ R :

3sf(r)− 3rf(s) = (r − s)(∆2f)(r, s),(C1)

(∆2f)(ar3, bs3)− (∆2f)(ar, bs) = 3a2bf(r2s) + 3ab2f(rs2),(C2)

(∆2f)(r + s, t) = (∆2f)(r, t) + (∆2f)(s, t) + rstf(2).(C3)

Observe that conditions (C1) and (C3) can be replaced respectively by

3f̃(r, s) = (r − s)(∆2f)(r, s),(C1′)

(∆3f)(r, s, t) = rstf(2).(C3′)

Lemma 3. If f : R→M is a C-function of degree 3 then for any r, s, t ∈
R and for any finite set of ri ∈ R we have

6f(r) = (r3 − r)f(2),(i)

(t3 − t)(∆2f)(r, s) = (3r2s+ 3rs2)f(t),(ii)

∆4f = 0,(iii)

f
(∑

i

ri

)
=
∑
i

f(ri) +
∑
i<j

(∆2f)(ri, rj) +
∑

i<j<k

rirjrkf(2).(iv)

Proof. Equality (i) is given by Lemma 1(i) for n = 3 and s = 2. Prop-
erty (ii) is obtained from the definition of ∆2f and Lemma 1(i). Indeed,

(t3 − t)(∆2f)(r, s) = (t3 − t)(f(r + s)− f(r)− f(s))

= ((r + s)3 − (r + s))f(t)− (r3 − r)f(t)− (s3 − s)f(t)

= (3r2s+ 3rs2)f(t).

Equality (iii) holds, since ∆3f is trilinear by (C3′). Finally, (iv) follows from
the formula (1) of the introduction, (C3′) and (iii) above.

Example 1. We show that the mapping f : R → R, f(r) = r3 − r, is a
C-function of degree 3. First observe that

(5) (∆2f)(r, s) = 3r2s+ 3rs2, (∆3f)(r, s, t) = 6rst.

Indeed,

(∆2f)(r, s) = f(r + s)− f(r)− f(s)

= (r + s)3 − (r + s)− (r3 − r)− (s3 − s) = 3r2s+ 3rs2,

(∆3f)(r, s, t) = (∆2f)(r + s, t)− (∆2f)(r, t)− (∆2f)(s, t)

= 3(r+ s)2t+ 3(r+ s)t2− (3r2t+ 3rt2)− (3s2t+ 3st2) = 6rst.
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We will check conditions (C1), (C2), (C3′):

(C1) 3sf(r)− 3rf(s)− (r − s)(∆2f)(r, s)

= 3s(r3 − r)− 3r(s3 − s)− (r − s)(3r2s+ 3rs2) = 0,

(C2) (∆2f)(ar3, bs3)− (∆2f)(ar, bs)− 3a2bf(r2s)− 3ab2f(rs2)

= 3(ar3)2bs3 + 3ar3(bs3)2 − (3(ar)2bs+ 3ar(bs)2)

−3a2b((r2s)3 − r2s)− 3ab2((rs2)3 − rs2)
= 3a2b(r6s3−r2s−r6s3+r2s)+3ab2(r3s6−rs2−r3s6+rs2) = 0,

and (C3′) follows directly from (5) because f(2) = 6.

5. The functors C = C(n). If n = 2l then we denote by C(R) =
C(n)(R) the R-module generated by the elements [r], r ∈ R, with the rela-
tions

[rs] = rn[s] + s[r], r, s ∈ R,(D)

[r + s] = [r] + [s] + p(r, s)[−1], r, s ∈ R.(C)

If n = 3 then we denote by C(R) = C(3)(R) the R-module generated by the
elements [r], r ∈ R, with the relations

[rs] = r3[s] + s[r], r, s ∈ R,(D)

3s[r]− 3r[s] = (r − s)[r, s], r, s ∈ R,(C1)

[ar3, bs3]− [ar, bs] = 3a2b[r2s] + 3ab2[rs2], a, b, r, s ∈ R,(C2)

[r + s, t] = [r, t] + [s, t] + rst[2], r, s, t ∈ R,(C3)

where [r, s] = [r + s]− [r]− [s] = (∆2[ ])(r, s).

Let n = 2l or 3. Any unitary ring homomorphism i : R → R′ induces a
module homomorphism C(i) : C(R) → C(R′) over i such that C(i)([r]) =
[i(r)]. This shows that C is a functor. Observe that C(R) is a universal
object with respect to C-functions of degree n over R, meaning that any
C-function of degree n can be uniquely expressed as a composition of the
canonical C-function c : R → C(R), c(r) = [r], and an R-homomorphism
defined on C(R).

In particular, the C-function f : R→ R, f(r) = rn − r, gives

Corollary 2. There exists an R-homomorphism P : C(R) → In(R)
such that P ([r]) = rn − r for r ∈ R.

Our goal is to show that P is an isomorphism (Theorem 1). As a first step,
we prove that C commutes with localizations. Let S be a multiplicatively
closed set in R and let i : R → RS and i : M → MS be the canonical
homomorphisms, i(r) = r

1 , i(m) = m
1 .
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Proposition 3. If f : R→M is a C-function of degree n then the only
n-derivation fS : RS → MS satisfying the condition fS(i(r)) = i(f(r)) for
all r ∈ R (Proposition 1) is a C-function of degree n.

Proof. First let n = 2l. Observe that fS(−1) = f(−1)
1 and

p

(
a

s
,
b

s

)
=

n−1∑
k=1

1

2

(
n

k

)(
a

s

)n−k( b
s

)k

=
p(a, b)

sn
.

Then using Proposition 1 we compute that

(C′n) (∆2fS)

(
a

s
,
b

s

)
=

(∆2f)(a, b)

sn
=
p(a, b)f(−1)

sn
= p

(
a

s
,
b

s

)
fS(−1).

Let now n = 3. We will prove that fS satisfies (C1′), (C2), (C3′). Let
a
t , b

t ,
c
t ,

r
t ,

s
t be arbitrary elements of RS .

(C1′) It follows from Lemma 1(ix) and Proposition 1 that

3f̃S

(
r

t
,
s

t

)
= 3

1

t4
f̃S

(
r

1
,
s

1

)
= 3

f̃(r, s)

t4

=
(r − s)(∆2f)(r, s)

t4
=

(
r

t
− s

t

)
(∆2fS)

(
r

t
,
s

t

)
.

(C2) Using Proposition 1 and Lemma 3(ii) we obtain

(∆2fS)

(
a

t

(
r

t

)3

,
b

t

(
s

t

)3)
− (∆2fS)

(
a

t

r

t
,
b

t

s

t

)
=

(∆2f)(ar3, bs3)

t12
− (∆2f)(ar, bs)

t6

=
(∆2f)(ar3, bs3)− (∆2f)(ar, bs)

t12
− (t9 − t3)(∆2f)(ar, bs)

t15

=
3a2bt3f(r2s) + 3ab2t3f(rs2)

t15
− (3(ar)2bs+ 3ar(bs2))f(t3)

t15

= 3
a2b

t3
t3f(r2s)− r2sf(t3)

t12
+ 3

ab2

t3
t3f(rs2)− rs2f(t3)

t12

= 3
a2b

t3
fS

(
r2s

t3

)
+ 3

ab2

t3
fS

(
rs2

t3

)
= 3

(
a

t

)2 b

t
fS

((
r

t

)2 s

t

)
+ 3

a

t

(
b

t

)2

fS

(
r

t

(
s

t

)2)
.

(C3′) Since fS(21) = f(2)
1 , it follows from Proposition 1 that

(∆3fS)

(
a

t
,
b

t
,
c

t

)
=

(∆3f)(a, b, c)

t3
=
abcf(2)

t3
=
a

t

b

t

c

t

f(2)

1
.
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As in Section 2, we deduce

Proposition 4. There exists an RS-isomorphism C(R)S ≈ C(RS) such

that [r]
s ↔

1
s

[
r
1

]
.

Proof. Replace 〈r〉 by [r] in the proof of Proposition 2.

6. The main lemmas. Let n = 2l or n = 3. We consider the kernel of
the R-homomorphism P : C(R)→ In(R), P ([r]) = rn − r for r ∈ R.

Lemma 4. In(R) Ker(P ) = 0.

Proof. Let x =
∑

i ai[ri] ∈ Ker(P ), that is,
∑

i ai(r
n
i − ri) = 0. Then (D)

shows that

(rn − r)x =
∑
i

ai(r
n − r)[ri] =

∑
i

ai(r
n
i − ri)[r] = 0[r] = 0.

Let n = 2l. Lemmas 2(ii) and 1(vii) give the following formulas:[ k∑
i=1

ri

]
=

k∑
i=1

[ri] + p(r1, . . . , rk)[−1],(6)

[rn] = [r2
l
] = ((r2

l−1
)n + r2

l−1
)((r2

l−2
)n + r2

l−2
) . . . (rn + r)[r].(7)

Lemma 5. Let n= 2l and x=
∑k

i=1 ai[ri] ∈Ker(P ), where one of the ri
is −1. If all ai belong to In(R)m for some m ≥ 0 then x =

∑k
i=1 bi[ri] where

all bi belong to In(R)nm+1.

Proof. By the assumption,
∑k

i=1 air
n
i =

∑k
i=1 airi. Using (6) we obtain[ k∑

i=1

airi

]
=

k∑
i=1

[airi] + p[−1] =

k∑
i=1

ai[ri] +

k∑
i=1

rni [ai] + p[−1],

[ k∑
i=1

air
n
i

]
=

k∑
i=1

[air
n
i ] + q[−1] =

k∑
i=1

ani [rni ] +

k∑
i=1

rni [ai] + q[−1],

where

p = p(a1r1, . . . , akrk) =
∑ 1

2
(i1, . . . , ik)ai11 . . . a

ik
k r

i1
1 . . . r

ik
k ,

q = p(a1r
n
1 , . . . , akr

n
k ) =

∑ 1

2
(i1, . . . , ik)ai11 . . . a

ik
k (ri11 . . . r

ik
k )n,

and the sums are over all systems of non-negative integers i1, . . . , ik such
that i1 + · · ·+ ik = n and at least two ij are non-zero. Since

k∑
i=1

ai[ri] +

k∑
i=1

rni [ai] + p[−1] =

k∑
i=1

ani [rni ] +

k∑
i=1

rni [ai] + q[−1],
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we obtain

x =
k∑

i=1

ai[ri] =
k∑

i=1

ani [rni ] + (q − p)[−1]

=

k∑
i=1

ani ((r2i
l−1

)n + r2i
l−1

)((r2i
l−2

)n + r2i
l−2

) . . .

. . . (rni + ri)[ri] + (q − p)[−1]

by (7). Since ai ∈ In(R)m it follows that ani ∈ In(R)nm and rni + ri =
(−ri)n − (−ri) ∈ In(R), since n is even. Hence

ani ((r2i
m−1

)n + r2i
m−1

)((r2i
m−2

)n + r2i
m−2

) . . . (rni + ri) ∈ In(R)nm+1.

Moreover, ai11 . . . a
ik
k ∈ In(R)nm since ai ∈ In(R)m and i1 + · · ·+ ik = n, and

(ri11 . . . r
ik
k )n − ri11 . . . r

ik
k ∈ In(R). Hence

q − p =
∑ 1

2
(i1, . . . , ik)ai11 . . . a

ik
k ((ri11 . . . r

ik
k )n − ri11 . . . r

ik
k ) ∈ In(R)nm+1.

This completes the proof.

The above lemma gives immediately

Corollary 3. Let n = 2l and x =
∑k

i=1 ai[ri] ∈ Ker(P ). Let M denote
the submodule of C(R) generated by [r1], . . . , [rk] and [−1]. Then

x ∈
∞⋂

m=0

In(R)mM.

Let now n = 3. Lemmas 3(iv) and 1(vi) give the formulas

(8)
[∑

i

ri

]
=
∑
i

[ri] +
∑
i<j

[ri, rj ] +
∑

i<j<k

rirjrk[2]

for any finite set of elements ri ∈ R, and

(9) [r3] = (r6 + r4 + r2)[r], r ∈ R.

Lemma 6. Let n = 3 and x =
∑

i ai[ri] ∈ Ker(P ) where one of the ri
is equal to 2. If all ai belong to I3(R)m for some m ≥ 0 and one of the
following conditions is satisfied:

(1) all ri belong to I3(R), or

(2) 3 ∈ I3(R),

then x =
∑

i bi[ri] where all bi belong to I3(R)3m+1.
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Proof. By the assumption,
∑

i air
3
i =

∑
i airi. Using (8), (9) and (D) we

obtain[∑
i

airi

]
=
∑
i

[airi] +
∑
i<j

[airi, ajrj ] +
∑

i<j<k

airiajrjakrk[2]

=
∑
i

ai[ri] +
∑
i

r3i [ai] +
∑
i<j

[airi, ajrj ] +
∑

i<j<k

airiajrjakrk[2]

and[∑
i

air
3
i

]
=
∑
i

[air
3
i ] +

∑
i<j

[air
3
i , ajr

3
j ] +

∑
i<j<k

air
3
i ajr

3
jakr

3
k[2]

=
∑
i

a3i [r
3
i ] +

∑
i

r3i [ai] +
∑
i<j

[air
3
i , ajr

3
j ] +

∑
i<j<k

air
3
i ajr

3
jakr

3
k[2]

=
∑
i

a3i (r
6
i + r4i + r2i )[ri] +

∑
i

r3i [ai] +
∑
i<j

[air
3
i , ajr

3
j ]

+
∑

i<j<k

air
3
i ajr

3
jakr

3
k[2].

Since the left hand sides above are equal, (C2) and Lemma 1(v) give

x =
∑
i

ai[ri]

=
∑
i

a3i (r
6
i + r4i + r2i )[ri] +

∑
i<j

[air
3
i , ajr

3
j ]−

∑
i<j

[airi, ajrj ]

+
∑

i<j<k

air
3
i ajr

3
jakr

3
k[2]−

∑
i<j<k

airiajrjakrk[2]

=
∑
i

a3i (r
6
i + r4i + r2i )[ri] +

∑
i<j

3a2i aj [r
2
i rj ] +

∑
i<j

3aia
2
j [rir

2
j ]

+
∑

i<j<k

aiajak(r3i r
3
j r

3
k − rirjrk)[2]

=
∑
i

a3i ((r
2
i )3 − r2i + ri(r

3
i − ri) + 3r2i )[ri]

+
∑
i<j

3a2i aj(r
6
i [rj ] + r3i rj [ri] + rirj [ri])

+
∑
i<j

3aia
2
j (r

6
j [ri] + rir

3
j [rj ] + rirj [rj ])

+
∑

i<j<k

aiajak((rirjrk)3 − rirjrk)[2].

Observe that (r2i )3 − r2i , r3i − ri, (rirjrk)3 − rirjrk ∈ I3(R); hence the sum-
mands not multiplied by 3 belong to I3(R)3m+1. If all ri belong to I3(R), or
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3 ∈ I3(R), the remaining summands also belong to I3(R)3m+1. This means
that in both cases all coefficients in the above sums belong to I3(R)3m+1.

Corollary 4. Let n = 3 and x =
∑

i ai[ri] ∈ Ker(P ). Let M denote
the submodule of C(R) generated by all [ri] and [2]. If one of the following
conditions is satisfied:

(1) all ri and 2 belong to I3(R), or
(2) 3 ∈ I3(R),

then x ∈
⋂∞

m=0 I3(R)mM .

7. The main theorem. Proving the following fact is the purpose of
this paper:

Theorem 1. Let C(R) = C(n)(R) where n = 2l, l = 1, 2, . . . or n = 3.
Then P : C(R) → In(R), P ([r]) = rn − r for r ∈ R, is an R-isomorphism.
In other words, if n = 2l, l = 1, 2, . . . , then the following are generating
relations between the generators [r] = rn − r of In(R):

[rs] = rn[s] + s[r], r, s ∈ R,(D)

[r + s] = [r] + [s] + p(r, s)[−1], r, s ∈ R,(C)

where

p(r, s) =
n−1∑
k=1

1

2

(
n

k

)
rn−ksk;

and if n = 3 then the following are generating relations between the genera-
tors [r] = r3 − r of I3(R):

[rs] = r3[s] + s[r], r, s ∈ R,(D)

3s[r]− 3r[s] = (r − s)[r, s], r, s ∈ R,(C1)

[ar3, bs3]− [ar, bs] = 3a2b[r2s] + 3ab2[rs2], a, b, r, s ∈ R,(C2)

[r + s, t] = [r, t] + [s, t] + rst[2], r, s, t ∈ R,(C3)

where [r, s] = [r + s]− [r]− [s] = (∆2[ ])(r, s).

Proof. Our goal is to prove that Ker(P ) = 0.

Noetherian case. Assume that R is noetherian. By Proposition 4 we
can assume that R is local and noetherian with quotient field K. Then
In(R) is the maximal ideal if |K| − 1 |n− 1, and In(R) = R otherwise (see
Introduction).

If In(R) = R then Lemma 4 shows that Ker(P ) = 0, as we want. So let
In(R) be the maximal ideal of R.

Assume first that n = 2l. Let x ∈ Ker(P ). Define the submodule M as in
Corollary 3 and observe that it is finitely generated over a local noetherian
ring. Then the intersection in the corollary is zero by the Krull intersection
theorem, and hence x = 0. This proves that Ker(P ) = 0.
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Let now n = 3. Then |K| = 2 or 3.

Case 1: |K| = 3. Then 3 ∈ I3(R). Let x ∈ Ker(P ). Define M as in
Corollary 4 and observe that condition (2) of the corollary holds. As before,
x = 0 by the Krull intersection theorem, and so Ker(P ) = 0.

Case 2: |K| = 2. Then 2 ∈ I3(R) and K = {I3(R), 1 + I3(R)}. Hence
the set of units of R is 1 + I3(R). Condition (C1) for s = 1 gives

3[r]− 3r[1] = (r − 1)([r + 1]− [r]− [1]),

and since [1] = 0 this shows that (r+2)[r] = (r−1)[r+1]. So if r is invertible
then so is r + 2, and

[r] =
r − 1

r + 2
[r + 1]

where r + 1 is non-invertible. Let x =
∑

i ai[ri] ∈ Ker(P ). If one of ri is
invertible then using the above formula we can replace [ri] by ri−1

ri+2 [ri+1]. So

we can assume that all ri above are non-invertible, that is, belong to I3(R).
Since 2 ∈ I3(R), condition (1) of Corollary 4 holds, and as before we find
that x = 0, and finally Ker(P ) = 0.

General case. Let x =
∑

i ai[ri] ∈ Ker(P ). Define S to be the subring
of R generated by all ai and ri. Since S is a finitely generated ring, and
hence noetherian, the previous part of the proof shows that P : C(S) → S
is injective. Let i : S → R denote the injection. Then x = (C(i))(y), where
y =

∑
i ai[ri] ∈ C(S). Since P (y) = P (x) = 0 we conclude that y = 0 and

consequently x = 0. This completes the proof.
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