On n-derivations and Relations between Elements $r^{n}-r$ for Some n by Maciej MACIEJEWSKI and Andrzej PRÓSZYŃSKI

Presented by Andrzej SCHINZEL

Summary. We find complete sets of generating relations between the elements $[r]=$ $r^{n}-r$ for $n=2^{l}$ and for $n=3$. One of these relations is the n-derivation property $[r s]=r^{n}[s]+s[r], r, s \in R$.

1. Introduction. Let R be a commutative ring with 1 . In [2], the second author introduced the ideals $I_{n}(R)$ generated by all elements $r^{n}-r$ where $r \in R$. It follows from [2, Proposition 5.5] that $I_{n}(R)$ is precisely the intersection of all maximal ideals M of R such that $|R / M|-1$ divides $n-1$ (in particular, for $n=3$ this means that $|R / M|=2$ or 3). These ideals are used to find relations satisfied by mappings of higher degrees (see [2]-[5]). The main result of [6] determines generating relations for the elements $r^{2}-r$. The purpose of this paper is to find generating relations for the generators $r^{n}-r$ of $I_{n}(R)$, where n is a power of 2 or $n=3$ (Theorem 1). This will be used in [1] to find generating relations for mappings of degree 5; however, the present paper is independent of the theory of higher degree mappings.

If f is a mapping between R-modules and $f(0)=0$ then we define by induction the functions $\Delta^{m} f$ in m variables as follows: $\Delta^{1} f=f$ and

$$
\begin{aligned}
\left(\Delta^{m+1} f\right)\left(x_{0}, \ldots, x_{m}\right)= & \left(\Delta^{m} f\right)\left(x_{0}+x_{1}, x_{2}, \ldots, x_{m}\right) \\
& -\left(\Delta^{m} f\right)\left(x_{0}, x_{2}, \ldots, x_{m}\right)-\left(\Delta^{m} f\right)\left(x_{1}, x_{2}, \ldots, x_{m}\right) .
\end{aligned}
$$

Then we have the following formula:

$$
\begin{equation*}
f\left(x_{1}+\cdots+x_{m}\right)=\sum_{k=1}^{m} \sum_{1<i_{1}<\cdots<i_{k}<m}\left(\Delta^{k} f\right)\left(x_{i_{1}}, \ldots, x_{i_{k}}\right) . \tag{1}
\end{equation*}
$$

2010 Mathematics Subject Classification: 13C13, 13C05, 11E76.
Key words and phrases: ideals of commutative rings, generators and relations, higher degree mappings.

2. Definition and properties of n-derivations and the functor D.

Let n be a fixed natural number. By an n-derivation over R we will mean a function $f: R \rightarrow M$, where M is an R-module, satisfying the following condition:
(D_{n})

$$
f(r s)=r^{n} f(s)+s f(r), \quad r, s \in R
$$

For example, the function $f: R \rightarrow R, f(r)=r^{n}-r$, is an n-derivation. On the other hand, any (ordinary) derivation is a 1-derivation (observe that we do not assume additivity in our definition).

Lemma 1. If f is an n-derivation then for any $r, s \in R$ we have
(i) $\left(r^{n}-r\right) f(s)=\left(s^{n}-s\right) f(r)$,
(ii) $f(0)=f(1)=0$,
(iii) if s is invertible then $f\left(s^{-1}\right)=-s^{-n-1} f(s)$,
(iv) $f\left(r^{2}\right)=\left(r^{n}+r\right) f(r)$,
(v) $f\left(r^{2} s\right)=r^{2 n} f(s)+\left(r^{n} s+r s\right) f(r)$,
(vi) $f\left(r^{3}\right)=\left(r^{2 n}+r^{n+1}+r^{2}\right) f(r)$,
(vii) $f\left(r^{2^{k}}\right)=\left(\left(r^{2^{k-1}}\right)^{n}+r^{2^{k-1}}\right)\left(\left(r^{2^{k-2}}\right)^{n}+r^{2^{k-2}}\right) \ldots\left(r^{n}+r\right) f(r)$,
(viii) $\left(\Delta^{k} f\right)\left(\operatorname{tr}_{1}, \ldots, t r_{k}\right)=t^{n}\left(\Delta^{k} f\right)\left(r_{1}, \ldots, r_{k}\right)$ for $k \geq 2, t, r_{1}, \ldots, r_{k} \in R$.

If we denote $\tilde{f}(r, s)=s f(r)-r f(s)=s^{n} f(r)-r^{n} f(s)$ for $r, s \in R$ then (ix) $\tilde{f}(t r, t s)=t^{n+1} \tilde{f}(r, s)$ for any $r, s, t \in R$.

Proof. Relation (i) follows from the two symmetric versions of $\left(\mathrm{D}_{n}\right)$. The equalities $f(0)=f(1)=0$ follow from $\left(\mathrm{D}_{n}\right)$ for $r=s=0$ or 1 . Using $\left(\mathrm{D}_{n}\right)$ and (ii) we obtain $0=f(1)=f\left(s \cdot s^{-1}\right)=s^{n} f\left(s^{-1}\right)+s^{-1} f(s)$, and this gives (iii). Equality (iv) follows from $\left(\mathrm{D}_{n}\right)$, (v) from (iv) and (D_{n}), (vi) from (v), and (vii) by induction from (iv). Moreover, (viii) holds for $k=2$ since

$$
\begin{aligned}
\left(\Delta^{2} f\right)(t r, t s) & =f(t r+t s)-f(t r)-f(t s) \\
& =t^{n} f(r+s)+(r+s) f(t)-t^{n} f(r)-r f(t)-t^{n} f(s)-s f(t) \\
& =t^{n}(f(r+s)-f(r)-f(s))=t^{n}\left(\Delta^{2} f\right)(r, s)
\end{aligned}
$$

and for $k>2$ by induction. Finally, we prove (ix):

$$
\tilde{f}(t r, t s)=t s\left(t^{n} f(r)+r f(t)\right)-\operatorname{tr}\left(t^{n} f(s)+s f(t)\right)=t^{n+1} \tilde{f}(r, s)
$$

Let $D(R)=D^{(n)}(R)$ denote the R-module generated by all elements $\langle r\rangle$, $r \in R$, with the relations

$$
\begin{equation*}
\langle r s\rangle=r^{n}\langle s\rangle+s\langle r\rangle, \quad r, s \in R \tag{n}
\end{equation*}
$$

Any unitary ring homomorphism $i: R \rightarrow R^{\prime}$ induces a module homomorphism $D(i): D(R) \rightarrow D\left(R^{\prime}\right)$ over i such that $D(i)(\langle r\rangle)=\langle i(r)\rangle$. This shows that D is a functor. Observe that $D(R)$ is a universal object with respect
to n-derivations over R, in the sense that any n-derivation can be uniquely expressed as the composition of the canonical n-derivation $d: R \rightarrow D(R)$, $d(r)=\langle r\rangle$, and an R-homomorphism defined on $D(R)$.

In particular, the n-derivation $f: R \rightarrow R, f(r)=r^{n}-r$, gives
Corollary 1. There exists an R-homomorphism $P: D(R) \rightarrow I_{n}(R)$ such that $P(\langle r\rangle)=r^{n}-r$ for $r \in R$.

We now prove that D commutes with localizations. Let S be a multiplicatively closed set in R and let $i: R \rightarrow R_{S}$ and $i: M \rightarrow M_{S}$ be the canonical homomorphisms, $i(r)=\frac{r}{1}, i(m)=\frac{m}{1}$.

Proposition 1. For any n-derivation $f: R \rightarrow M$ there exists a unique n-derivation $f_{S}: R_{S} \rightarrow M_{S}$ satisfying the condition $f_{S}(i(r))=i(f(r))$ for $r \in R$. It is given by the formula

$$
\begin{equation*}
f_{S}\left(\frac{r}{s}\right)=\frac{f(r)}{s}-\left(\frac{r}{s}\right)^{n} \frac{f(s)}{s} \tag{2}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
f_{S}\left(\frac{r}{s}\right)=\frac{\tilde{f}(r, s)}{s^{n+1}}=\frac{s f(r)-r f(s)}{s^{n+1}} \tag{3}
\end{equation*}
$$

Moreover, for any $k \geq 2$,

$$
\begin{equation*}
\left(\Delta^{k} f_{S}\right)\left(\frac{r_{1}}{t}, \ldots, \frac{r_{k}}{t}\right)=\frac{\left(\Delta^{k} f\right)\left(r_{1}, \ldots, r_{k}\right)}{t^{n}} \tag{4}
\end{equation*}
$$

Proof. First observe that the right hand sides of (22) and (3) are equal for any n-derivation f. Indeed, the definition of \tilde{f} gives

$$
\frac{f(r)}{s}-\left(\frac{r}{s}\right)^{n} \frac{f(s)}{s}=\frac{s^{n} f(r)-r^{n} f(s)}{s^{n+1}}=\frac{\tilde{f}(r, s)}{s^{n+1}}
$$

The required condition means that $f_{S}\left(\frac{r}{1}\right)=\frac{f(r)}{1}$ for $r \in R$. Let $s \in S$. If f_{S} is an n-derivation then

$$
\begin{aligned}
\frac{f(r)}{1} & =f_{S}\left(\frac{r}{1}\right)=f_{S}\left(\frac{r}{s} \frac{s}{1}\right)=\left(\frac{r}{s}\right)^{n} f_{S}\left(\frac{s}{1}\right)+\frac{s}{1} f_{S}\left(\frac{r}{s}\right) \\
& =\left(\frac{r}{s}\right)^{n} \frac{f(s)}{1}+\frac{s}{1} f_{S}\left(\frac{r}{s}\right)
\end{aligned}
$$

which gives (2). This proves the uniqueness of f_{S}.
Now we define f_{S} by (3). To prove that f_{S} is properly defined, it suffices to check that the formula remains the same if we replace r by $t r$ and s by $t s$ for any $t \in S$. But this follows from Lemma 1(ix).

It follows by induction that (4) holds for $t=1$. Then the general case follows from Lemma 1(viii).

It remains to prove $\left(\mathrm{D}_{n}\right)$ for f_{S}. Let $\frac{a}{s}$ and $\frac{b}{s}$ be arbitrary elements of R_{S}. Using formula (3) we obtain

$$
\begin{aligned}
f_{S}\left(\frac{a}{s}\right. & \left.\frac{b}{s}\right)-\left(\frac{a}{s}\right)^{n} f_{S}\left(\frac{b}{s}\right)-\frac{b}{s} f_{S}\left(\frac{a}{s}\right) \\
& =\frac{s^{2} f(a b)-a b f\left(s^{2}\right)}{s^{2 n+2}}-\frac{a^{n}}{s^{n}} \frac{s f(b)-b f(s)}{s^{n+1}}-\frac{b}{s} \frac{s f(a)-a f(s)}{s^{n+1}} \\
& =\frac{s^{2} f(a b)-a b f\left(s^{2}\right)}{s^{2 n+2}}-\frac{a^{n} s^{2} f(b)-a^{n} b s f(s)}{s^{2 n+2}}-\frac{b s^{n+1} f(a)-a b s^{n} f(s)}{s^{2 n+2}} \\
& =\frac{s^{2}\left(f(a b)-a^{n} f(b)-s^{n-1} b f(a)\right)-a b\left(f\left(s^{2}\right)-a^{n-1} s f(s)-s^{n} f(s)\right)}{s^{2 n+2}} \\
& =\frac{s^{2}\left(b-b s^{n-1}\right) f(a)-a b\left(s-s a^{n-1}\right) f(s)}{s^{2 n+2}} \\
& =\frac{b s\left(\left(s-s^{n}\right) f(a)-\left(a-a^{n}\right) f(s)\right)}{s^{2 n+2}}=0
\end{aligned}
$$

by $\left(\mathrm{D}_{n}\right)$ and Lemma 1 (i) for f. This completes the proof.
Proposition 2. There exists an R_{S}-isomorphism $D(R)_{S} \approx D\left(R_{S}\right)$ such that $\frac{\langle r\rangle}{s} \leftrightarrow \frac{1}{s}\left\langle\frac{r}{1}\right\rangle$.

Proof. Proposition 1 applied to the canonical n-derivation $d: R \rightarrow D(R)$, $d(r)=\langle r\rangle$, gives an n-derivation $d_{S}: R_{S} \rightarrow D(R)_{S}$ over R_{S},

$$
d_{S}\left(\frac{r}{s}\right)=\frac{\langle r\rangle}{s}-\left(\frac{r}{s}\right)^{n} \frac{\langle s\rangle}{s} .
$$

The universal property yields an R_{S}-homomorphism $g: D\left(R_{S}\right) \rightarrow D(R)_{S}$ such that

$$
g\left(\left\langle\begin{array}{l}
r \\
\left.\frac{r}{s}\right\rangle
\end{array}\right)=d_{S}\binom{r}{s}=\frac{\langle r\rangle}{s}-\binom{r}{s}^{n} \frac{\langle s\rangle}{s}\right.
$$

On the other hand, the homomorphism $D(i): D(R) \rightarrow D\left(R_{S}\right)$ over $i: R \rightarrow R_{S}$, defined by $D(i)(\langle r\rangle)=\left\langle\frac{r}{1}\right\rangle$, gives an R_{S}-homomorphism $h: D(R)_{S} \rightarrow D\left(R_{S}\right)$ such that

$$
h\left(\frac{\langle r\rangle}{s}\right)=\frac{1}{s}\left\langle\frac{r}{1}\right\rangle
$$

Observe that $h=g^{-1}$. Indeed,

$$
g\left(h\left(\frac{\langle r\rangle}{s}\right)\right)=\frac{1}{s} g\left(\left\langle\frac{r}{1}\right\rangle\right)=\frac{1}{s}\left(\frac{\langle r\rangle}{1}-\left(\frac{r}{1}\right)^{n} \frac{\langle 1\rangle}{1}\right)=\frac{\langle r\rangle}{s}
$$

by Lemma 1(ii). On the other hand, using Lemma 1(iii) and (D) we compute
that

$$
\begin{aligned}
h\left(g\left(\left\langle\frac{r}{s}\right\rangle\right)\right) & =h\left(\frac{\langle r\rangle}{s}-\left(\frac{r}{s}\right)^{n} \frac{\langle s\rangle}{s}\right)=\frac{1}{s}\left\langle\frac{r}{1}\right\rangle-\frac{r^{n}}{s^{n+1}}\left\langle\frac{s}{1}\right\rangle \\
& =\frac{1}{s}\left\langle\frac{r}{1}\right\rangle+\left(\frac{r}{1}\right)^{n}\left\langle\frac{1}{s}\right\rangle=\left\langle\frac{r}{1} \frac{1}{s}\right\rangle=\left\langle\begin{array}{c}
r \\
\left.\frac{s}{s}\right\rangle
\end{array} .\right.
\end{aligned}
$$

Hence h is an isomorphism, as required.
3. C-functions of degree $n=2^{l}$. Let n be a fixed natural number of the form $n=2^{l}, l=1,2, \ldots$ By a C-function of degree n over R we will mean any n-derivation $f: R \rightarrow M$ satisfying the additional condition
$\left(\mathrm{C}_{n}\right) \quad f(r+s)=f(r)+f(s)+p(r, s) f(-1), \quad r, s \in R$,
or equivalently
$\left(\mathrm{C}_{n}^{\prime}\right)$

$$
\left(\Delta^{2} f\right)(r, s)=p(r, s) f(-1), \quad r, s \in R
$$

where

$$
p(r, s)=\sum_{k=1}^{n-1} \frac{1}{2}\binom{n}{k} r^{n-k} s^{k}
$$

(note that $\frac{1}{2}\binom{n}{k} \in \mathbb{Z}$ for $k=1, \ldots, n-1$ because of the shape of n). Using generalized Newton symbols

$$
\begin{aligned}
\left(i_{1}, \ldots, i_{k}\right) & =\frac{\left(i_{1}+\cdots+i_{k}\right)!}{i_{1}!\ldots i_{k}!} \\
& =\binom{i_{1}+\cdots+i_{k}}{i_{k}}\binom{i_{1}+\cdots+i_{k-1}}{i_{k-1}} \ldots\binom{i_{1}+i_{2}}{i_{2}} \\
& =\left(i_{1}+\cdots+i_{k-1}, i_{k}\right)\left(i_{1}, \ldots, i_{k-1}\right)
\end{aligned}
$$

we define the following generalization of $p(r, s)$:

$$
p\left(r_{1}, \ldots, r_{k}\right)=\sum \frac{1}{2}\left(i_{1}, \ldots, i_{k}\right) r_{1}^{i_{1}} \ldots r_{k}^{i_{k}}
$$

where the sum is over all systems of non-negative integers $i_{1} \ldots, i_{k}$ such that $i_{1}+\cdots+i_{k}=n$ and at least two i_{j} are non-zero (then all the coefficients in the sum are integers).

LEMMA 2. For any $r_{1}, \ldots, r_{k}, r_{k+1} \in R$ we have
(i) $p\left(r_{1}, \ldots, r_{k}, r_{k+1}\right)=p\left(r_{1}+\cdots+r_{k}, r_{k+1}\right)+p\left(r_{1}, \ldots, r_{k}\right)$,
(ii) $f\left(\sum_{i=1}^{k} r_{i}\right)=\sum_{i=1}^{k} f\left(r_{i}\right)+p\left(r_{1}, \ldots, r_{k}\right) f(-1)$
provided that f is a C-function of degree n.

Proof. (i) The generalized Newton formula shows that

$$
\begin{aligned}
& p\left(r_{1}+\cdots+\right.\left.r_{k}, r_{k+1}\right)=\sum_{\substack{j_{1}+j_{2}=n \\
j_{1}, j_{2}>0}} \frac{1}{2}\left(j_{1}, j_{2}\right)\left(r_{1}+\cdots+r_{k}\right)^{j_{1}} r_{k+1}^{j_{2}} \\
&= \sum_{\substack{j_{1}+j_{2}=n \\
j_{1}, j_{2}>0}} \sum_{i_{1}+\cdots+i_{k}=j_{1}} \frac{1}{2}\left(j_{1}, j_{2}\right)\left(i_{1}, \ldots, i_{k}\right)\left(r_{1}^{i_{1}} \cdots r_{k}^{i_{k}}\right) r_{k+1}^{j_{2}} \\
&=\sum_{\substack{i_{1}+\cdots+i_{k+1}=n \\
i_{1}+\cdots+i_{k}>0, i_{k+1}>0}} \frac{1}{2}\left(i_{1}+\cdots+i_{k}, i_{k+1}\right)\left(i_{1}, \ldots, i_{k}\right) r_{1}^{i_{1}} \cdots r_{k}^{i_{k}} r_{k+1}^{i_{k+1}} \\
&=\sum_{\substack{i_{1}+\cdots+i_{k+1}=n \\
i_{1}+\cdots+i_{k}>0, i_{k+1}>0}} \frac{1}{2}\left(i_{1}, \ldots, i_{k}, i_{k+1}\right) r_{1}^{i_{1}} \cdots r_{k+1}^{i_{k+1}} .
\end{aligned}
$$

Since $\left(i_{1}, \ldots, i_{k}, 0\right)=\left(i_{1}, \ldots, i_{k}\right)$, the above is equal to $p\left(r_{1}, \ldots, r_{k}, r_{k+1}\right)-$ $p\left(r_{1}, \ldots, r_{k}\right)$, as required.
(ii) For $k=2$ see $\left(\mathrm{C}_{n}\right)$. If (ii) holds for some $k \geq 2$ then, by $\left(\mathrm{C}_{n}\right)$ and (i),

$$
\begin{aligned}
& f\left(\sum_{i=1}^{k+1} r_{i}\right)=f\left(\sum_{i=1}^{k} r_{i}+r_{k+1}\right) \\
& \quad=f\left(\sum_{i=1}^{k} r_{i}\right)+f\left(r_{k+1}\right)+p\left(\sum_{i=1}^{k} r_{i}, r_{k+1}\right) f(-1) \\
& \quad=\sum_{i=1}^{k} f\left(r_{i}\right)+p\left(r_{1}, \ldots, r_{k}\right) f(-1)+f\left(r_{k+1}\right)+p\left(r_{1}+\cdots+r_{k}, r_{k+1}\right) f(-1) \\
& \quad=\sum_{i=1}^{k+1} f\left(r_{i}\right)+p\left(r_{1}, \ldots, r_{k+1}\right) f(-1)
\end{aligned}
$$

Since $n=2^{l}$ is even, we have $(-1)^{n}-(-1)=2$, and hence Lemma 1(i) gives $2 f(r)=\left(r^{n}-r\right) f(-1)$. The function $f: R \rightarrow R, f(r)=r^{n}-r$, is a C-function of degree n. Indeed, it is an n-derivation and

$$
\begin{aligned}
(r+s)^{n}-(r+s)-\left(r^{n}-r\right) & -\left(s^{n}-s\right)=\sum_{k=0}^{n}\binom{n}{k} r^{n-k} s^{k}-r^{n}-s^{n} \\
& =2 \sum_{k=1}^{n-1} \frac{1}{2}\binom{n}{k} r^{n-k} s^{k}=2 p(r, s)=p(r, s) f(-1)
\end{aligned}
$$

by the Newton binomial formula. Later, we prove that it is a universal C-function of degree n (Theorem 1).
4. C-functions of degree 3. By a C-function of degree 3 over R we will mean any 3-derivation $f: R \rightarrow M$ satisfying the following additional
conditions for any $a, b, r, s, t \in R$:

$$
\begin{align*}
& 3 s f(r)-3 r f(s)=(r-s)\left(\Delta^{2} f\right)(r, s) \tag{C1}\\
& \left(\Delta^{2} f\right)\left(a r^{3}, b s^{3}\right)-\left(\Delta^{2} f\right)(a r, b s)=3 a^{2} b f\left(r^{2} s\right)+3 a b^{2} f\left(r s^{2}\right) \tag{C2}\\
& \left(\Delta^{2} f\right)(r+s, t)=\left(\Delta^{2} f\right)(r, t)+\left(\Delta^{2} f\right)(s, t)+r s t f(2) \tag{C3}
\end{align*}
$$

Observe that conditions (C1) and (C3) can be replaced respectively by

$$
\begin{align*}
& 3 \tilde{f}(r, s)=(r-s)\left(\Delta^{2} f\right)(r, s) \\
& \left(\Delta^{3} f\right)(r, s, t)=r s t f(2)
\end{align*}
$$

Lemma 3. If $f: R \rightarrow M$ is a C-function of degree 3 then for any $r, s, t \in$ R and for any finite set of $r_{i} \in R$ we have

$$
\begin{equation*}
6 f(r)=\left(r^{3}-r\right) f(2) \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left(t^{3}-t\right)\left(\Delta^{2} f\right)(r, s)=\left(3 r^{2} s+3 r s^{2}\right) f(t) \tag{ii}
\end{equation*}
$$

(iii) $\quad \Delta^{4} f=0$,
(iv) $\quad f\left(\sum_{i} r_{i}\right)=\sum_{i} f\left(r_{i}\right)+\sum_{i<j}\left(\Delta^{2} f\right)\left(r_{i}, r_{j}\right)+\sum_{i<j<k} r_{i} r_{j} r_{k} f(2)$.

Proof. Equality (i) is given by Lemma 1(i) for $n=3$ and $s=2$. Property (ii) is obtained from the definition of $\Delta^{2} f$ and Lemma 1(i). Indeed,

$$
\begin{aligned}
\left(t^{3}-t\right)\left(\Delta^{2} f\right)(r, s) & =\left(t^{3}-t\right)(f(r+s)-f(r)-f(s)) \\
& =\left((r+s)^{3}-(r+s)\right) f(t)-\left(r^{3}-r\right) f(t)-\left(s^{3}-s\right) f(t) \\
& =\left(3 r^{2} s+3 r s^{2}\right) f(t)
\end{aligned}
$$

Equality (iii) holds, since $\Delta^{3} f$ is trilinear by ($\mathrm{C} 3^{\prime}$). Finally, (iv) follows from the formula (1) of the introduction, ($\mathrm{C} 3^{\prime}$) and (iii) above.

Example 1. We show that the mapping $f: R \rightarrow R, f(r)=r^{3}-r$, is a C-function of degree 3 . First observe that

$$
\begin{equation*}
\left(\Delta^{2} f\right)(r, s)=3 r^{2} s+3 r s^{2}, \quad\left(\Delta^{3} f\right)(r, s, t)=6 r s t \tag{5}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
\left(\Delta^{2} f\right)(r, s) & =f(r+s)-f(r)-f(s) \\
& =(r+s)^{3}-(r+s)-\left(r^{3}-r\right)-\left(s^{3}-s\right)=3 r^{2} s+3 r s^{2} \\
\left(\Delta^{3} f\right)(r, s, t) & =\left(\Delta^{2} f\right)(r+s, t)-\left(\Delta^{2} f\right)(r, t)-\left(\Delta^{2} f\right)(s, t) \\
& =3(r+s)^{2} t+3(r+s) t^{2}-\left(3 r^{2} t+3 r t^{2}\right)-\left(3 s^{2} t+3 s t^{2}\right)=6 r s t
\end{aligned}
$$

We will check conditions (C1), (C2), (C3'):

$$
\begin{align*}
& 3 s f(r)-3 r f(s)-(r-s)\left(\Delta^{2} f\right)(r, s) \tag{C1}\\
& \quad=3 s\left(r^{3}-r\right)-3 r\left(s^{3}-s\right)-(r-s)\left(3 r^{2} s+3 r s^{2}\right)=0 \\
& \left(\Delta^{2} f\right)\left(a r^{3}, b s^{3}\right)-\left(\Delta^{2} f\right)(a r, b s)-3 a^{2} b f\left(r^{2} s\right)-3 a b^{2} f\left(r s^{2}\right) \tag{C2}\\
& \quad=3\left(a r^{3}\right)^{2} b s^{3}+3 a r^{3}\left(b s^{3}\right)^{2}-\left(3(a r)^{2} b s+3 a r(b s)^{2}\right) \\
& \quad-3 a^{2} b\left(\left(r^{2} s\right)^{3}-r^{2} s\right)-3 a b^{2}\left(\left(r s^{2}\right)^{3}-r s^{2}\right) \\
& \quad=3 a^{2} b\left(r^{6} s^{3}-r^{2} s-r^{6} s^{3}+r^{2} s\right)+3 a b^{2}\left(r^{3} s^{6}-r s^{2}-r^{3} s^{6}+r s^{2}\right)=0
\end{align*}
$$

and (C3') follows directly from (5) because $f(2)=6$.
5. The functors $C=C^{(n)}$. If $n=2^{l}$ then we denote by $C(R)=$ $C^{(n)}(R)$ the R-module generated by the elements $[r], r \in R$, with the relations

$$
\begin{align*}
& {[r s]=r^{n}[s]+s[r], \quad r, s \in R} \tag{D}\\
& {[r+s]=[r]+[s]+p(r, s)[-1], \quad r, s \in R} \tag{C}
\end{align*}
$$

If $n=3$ then we denote by $C(R)=C^{(3)}(R)$ the R-module generated by the elements $[r], r \in R$, with the relations

$$
\begin{align*}
& {[r s]=r^{3}[s]+s[r], \quad r, s \in R} \tag{D}\\
& 3 s[r]-3 r[s]=(r-s)[r, s], \quad r, s \in R \\
& {\left[a r^{3}, b s^{3}\right]-[a r, b s]=3 a^{2} b\left[r^{2} s\right]+3 a b^{2}\left[r s^{2}\right], \quad a, b, r, s \in R} \\
& {[r+s, t]=[r, t]+[s, t]+r s t[2], \quad r, s, t \in R,} \tag{C3}
\end{align*}
$$

where $[r, s]=[r+s]-[r]-[s]=\left(\Delta^{2}[]\right)(r, s)$.
Let $n=2^{l}$ or 3 . Any unitary ring homomorphism $i: R \rightarrow R^{\prime}$ induces a module homomorphism $C(i): C(R) \rightarrow C\left(R^{\prime}\right)$ over i such that $C(i)([r])=$ $[i(r)]$. This shows that C is a functor. Observe that $C(R)$ is a universal object with respect to C-functions of degree n over R, meaning that any C-function of degree n can be uniquely expressed as a composition of the canonical C-function $c: R \rightarrow C(R), c(r)=[r]$, and an R-homomorphism defined on $C(R)$.

In particular, the C-function $f: R \rightarrow R, f(r)=r^{n}-r$, gives
Corollary 2. There exists an R-homomorphism $P: C(R) \rightarrow I_{n}(R)$ such that $P([r])=r^{n}-r$ for $r \in R$.

Our goal is to show that P is an isomorphism (Theorem11. As a first step, we prove that C commutes with localizations. Let S be a multiplicatively closed set in R and let $i: R \rightarrow R_{S}$ and $i: M \rightarrow M_{S}$ be the canonical homomorphisms, $i(r)=\frac{r}{1}, i(m)=\frac{m}{1}$.

Proposition 3. If $f: R \rightarrow M$ is a C-function of degree n then the only n-derivation $f_{S}: R_{S} \rightarrow M_{S}$ satisfying the condition $f_{S}(i(r))=i(f(r))$ for all $r \in R$ (Proposition 1) is a C-function of degree n.

Proof. First let $n=2^{l}$. Observe that $f_{S}(-1)=\frac{f(-1)}{1}$ and

$$
p\left(\frac{a}{s}, \frac{b}{s}\right)=\sum_{k=1}^{n-1} \frac{1}{2}\binom{n}{k}\left(\frac{a}{s}\right)^{n-k}\left(\frac{b}{s}\right)^{k}=\frac{p(a, b)}{s^{n}}
$$

Then using Proposition 1 we compute that
$\left(\mathrm{C}_{n}^{\prime}\right) \quad\left(\Delta^{2} f_{S}\right)\left(\frac{a}{s}, \frac{b}{s}\right)=\frac{\left(\Delta^{2} f\right)(a, b)}{s^{n}}=\frac{p(a, b) f(-1)}{s^{n}}=p\left(\frac{a}{s}, \frac{b}{s}\right) f_{S}(-1)$.
Let now $n=3$. We will prove that f_{S} satisfies $\left(\mathrm{C} 1^{\prime}\right),(\mathrm{C} 2),\left(\mathrm{C} 3^{\prime}\right)$. Let $\frac{a}{t}, \frac{b}{t}, \frac{c}{t}, \frac{r}{t}, \frac{s}{t}$ be arbitrary elements of R_{S}.
(C^{\prime}) It follows from Lemma 1(ix) and Proposition 1 that

$$
\begin{aligned}
3 \tilde{f}_{S}\left(\frac{r}{t}, \frac{s}{t}\right) & =3 \frac{1}{t^{4}} \tilde{f}_{S}\left(\frac{r}{1}, \frac{s}{1}\right)=3 \frac{\tilde{f}(r, s)}{t^{4}} \\
& =\frac{(r-s)\left(\Delta^{2} f\right)(r, s)}{t^{4}}=\left(\frac{r}{t}-\frac{s}{t}\right)\left(\Delta^{2} f_{S}\right)\left(\frac{r}{t}, \frac{s}{t}\right)
\end{aligned}
$$

(C2) Using Proposition 1 and Lemma 3(ii) we obtain

$$
\begin{aligned}
\left(\Delta^{2} f_{S}\right) & \left(\frac{a}{t}\left(\frac{r}{t}\right)^{3}, \frac{b}{t}\left(\frac{s}{t}\right)^{3}\right)-\left(\Delta^{2} f_{S}\right)\left(\frac{a}{t} \frac{r}{t}, \frac{b}{t} \frac{s}{t}\right) \\
& =\frac{\left(\Delta^{2} f\right)\left(a r^{3}, b s^{3}\right)}{t^{12}}-\frac{\left(\Delta^{2} f\right)(a r, b s)}{t^{6}} \\
& =\frac{\left(\Delta^{2} f\right)\left(a r^{3}, b s^{3}\right)-\left(\Delta^{2} f\right)(a r, b s)}{t^{12}}-\frac{\left(t^{9}-t^{3}\right)\left(\Delta^{2} f\right)(a r, b s)}{t^{15}} \\
& =\frac{3 a^{2} b t^{3} f\left(r^{2} s\right)+3 a b^{2} t^{3} f\left(r s^{2}\right)}{t^{15}}-\frac{\left(3(a r)^{2} b s+3 a r\left(b s^{2}\right)\right) f\left(t^{3}\right)}{t^{15}} \\
& =3 \frac{a^{2} b}{t^{3}} \frac{t^{3} f\left(r^{2} s\right)-r^{2} s f\left(t^{3}\right)}{t^{12}}+3 \frac{a b^{2}}{t^{3}} \frac{t^{3} f\left(r s^{2}\right)-r s^{2} f\left(t^{3}\right)}{t^{12}} \\
& =3 \frac{a^{2} b}{t^{3}} f_{S}\left(\frac{r^{2} s}{t^{3}}\right)+3 \frac{a b^{2}}{t^{3}} f_{S}\left(\frac{r s^{2}}{t^{3}}\right) \\
& =3\left(\frac{a}{t}\right)^{2} \frac{b}{t} f_{S}\left(\left(\frac{r}{t}\right)^{2} \frac{s}{t}\right)+3 \frac{a}{t}\left(\frac{b}{t}\right)^{2} f_{S}\left(\frac{r}{t}\left(\frac{s}{t}\right)^{2}\right)
\end{aligned}
$$

$\left(\mathrm{C} 3^{\prime}\right)$ Since $f_{S}\left(\frac{2}{1}\right)=\frac{f(2)}{1}$, it follows from Proposition 1 that

$$
\left(\Delta^{3} f_{S}\right)\left(\frac{a}{t}, \frac{b}{t}, \frac{c}{t}\right)=\frac{\left(\Delta^{3} f\right)(a, b, c)}{t^{3}}=\frac{a b c f(2)}{t^{3}}=\frac{a}{t} \frac{b}{t} \frac{c}{t} \frac{f(2)}{1}
$$

As in Section 2, we deduce
Proposition 4. There exists an R_{S}-isomorphism $C(R)_{S} \approx C\left(R_{S}\right)$ such that $\frac{[r]}{s} \leftrightarrow \frac{1}{s}\left[\frac{r}{1}\right]$.

Proof. Replace $\langle r\rangle$ by $[r]$ in the proof of Proposition 2 .
6. The main lemmas. Let $n=2^{l}$ or $n=3$. We consider the kernel of the R-homomorphism $P: C(R) \rightarrow I_{n}(R), P([r])=r^{n}-r$ for $r \in R$.

Lemma 4. $I_{n}(R) \operatorname{Ker}(P)=0$.
Proof. Let $x=\sum_{i} a_{i}\left[r_{i}\right] \in \operatorname{Ker}(P)$, that is, $\sum_{i} a_{i}\left(r_{i}^{n}-r_{i}\right)=0$. Then (D) shows that

$$
\left(r^{n}-r\right) x=\sum_{i} a_{i}\left(r^{n}-r\right)\left[r_{i}\right]=\sum_{i} a_{i}\left(r_{i}^{n}-r_{i}\right)[r]=0[r]=0
$$

Let $n=2^{l}$. Lemmas 2(ii) and 1(vii) give the following formulas:

$$
\begin{equation*}
\left[\sum_{i=1}^{k} r_{i}\right]=\sum_{i=1}^{k}\left[r_{i}\right]+p\left(r_{1}, \ldots, r_{k}\right)[-1] \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\left[r^{n}\right]=\left[r^{2 l}\right]=\left(\left(r^{2^{l-1}}\right)^{n}+r^{2^{l-1}}\right)\left(\left(r^{2^{l-2}}\right)^{n}+r^{2^{l-2}}\right) \ldots\left(r^{n}+r\right)[r] \tag{7}
\end{equation*}
$$

LEMMA 5. Let $n=2^{l}$ and $x=\sum_{i=1}^{k} a_{i}\left[r_{i}\right] \in \operatorname{Ker}(P)$, where one of the r_{i} is -1 . If all a_{i} belong to $I_{n}(R)^{m}$ for some $m \geq 0$ then $x=\sum_{i=1}^{k} b_{i}\left[r_{i}\right]$ where all b_{i} belong to $I_{n}(R)^{n m+1}$.

Proof. By the assumption, $\sum_{i=1}^{k} a_{i} r_{i}^{n}=\sum_{i=1}^{k} a_{i} r_{i}$. Using (6) we obtain

$$
\begin{aligned}
& {\left[\sum_{i=1}^{k} a_{i} r_{i}\right]=\sum_{i=1}^{k}\left[a_{i} r_{i}\right]+p[-1]=\sum_{i=1}^{k} a_{i}\left[r_{i}\right]+\sum_{i=1}^{k} r_{i}^{n}\left[a_{i}\right]+p[-1]} \\
& {\left[\sum_{i=1}^{k} a_{i} r_{i}^{n}\right]=\sum_{i=1}^{k}\left[a_{i} r_{i}^{n}\right]+q[-1]=\sum_{i=1}^{k} a_{i}^{n}\left[r_{i}^{n}\right]+\sum_{i=1}^{k} r_{i}^{n}\left[a_{i}\right]+q[-1]}
\end{aligned}
$$

where

$$
\begin{aligned}
p & =p\left(a_{1} r_{1}, \ldots, a_{k} r_{k}\right)
\end{aligned}=\sum \frac{1}{2}\left(i_{1}, \ldots, i_{k}\right) a_{1}^{i_{1}} \ldots a_{k}^{i_{k}} r_{1}^{i_{1}} \ldots r_{k}^{i_{k}}, ~\left(a_{1} r_{1}^{n}, \ldots, a_{k} r_{k}^{n}\right)=\sum \frac{1}{2}\left(i_{1}, \ldots, i_{k}\right) a_{1}^{i_{1}} \ldots a_{k}^{i_{k}}\left(r_{1}^{i_{1}} \ldots r_{k}^{i_{k}}\right)^{n}, ~ l
$$

and the sums are over all systems of non-negative integers i_{1}, \ldots, i_{k} such that $i_{1}+\cdots+i_{k}=n$ and at least two i_{j} are non-zero. Since

$$
\sum_{i=1}^{k} a_{i}\left[r_{i}\right]+\sum_{i=1}^{k} r_{i}^{n}\left[a_{i}\right]+p[-1]=\sum_{i=1}^{k} a_{i}^{n}\left[r_{i}^{n}\right]+\sum_{i=1}^{k} r_{i}^{n}\left[a_{i}\right]+q[-1]
$$

we obtain

$$
\begin{aligned}
& x= \sum_{i=1}^{k} a_{i}\left[r_{i}\right]=\sum_{i=1}^{k} a_{i}^{n}\left[r_{i}^{n}\right]+(q-p)[-1] \\
&= \sum_{i=1}^{k} a_{i}^{n}\left(\left(r_{i}^{2 l-1}\right)^{n}+r_{i}^{2 l-1}\right)\left(\left(r_{i}^{2^{l-2}}\right)^{n}+\right. \\
&\left.\quad r_{i}^{2^{l-2}}\right) \ldots \\
& \ldots\left(r_{i}^{n}+r_{i}\right)\left[r_{i}\right]+(q-p)[-1]
\end{aligned}
$$

by (7). Since $a_{i} \in I_{n}(R)^{m}$ it follows that $a_{i}^{n} \in I_{n}(R)^{n m}$ and $r_{i}^{n}+r_{i}=$ $\left(-r_{i}\right)^{n}-\left(-r_{i}\right) \in I_{n}(R)$, since n is even. Hence

$$
a_{i}^{n}\left(\left(r_{i}^{2 m-1}\right)^{n}+r_{i}^{2 m-1}\right)\left(\left(r_{i}^{2 m-2}\right)^{n}+r_{i}^{2 m-2}\right) \ldots\left(r_{i}^{n}+r_{i}\right) \in I_{n}(R)^{n m+1}
$$

Moreover, $a_{1}^{i_{1}} \ldots a_{k}^{i_{k}} \in I_{n}(R)^{n m}$ since $a_{i} \in I_{n}(R)^{m}$ and $i_{1}+\cdots+i_{k}=n$, and $\left(r_{1}^{i_{1}} \ldots r_{k}^{i_{k}}\right)^{n}-r_{1}^{i_{1}} \ldots r_{k}^{i_{k}} \in I_{n}(R)$. Hence

$$
q-p=\sum \frac{1}{2}\left(i_{1}, \ldots, i_{k}\right) a_{1}^{i_{1}} \ldots a_{k}^{i_{k}}\left(\left(r_{1}^{i_{1}} \ldots r_{k}^{i_{k}}\right)^{n}-r_{1}^{i_{1}} \ldots r_{k}^{i_{k}}\right) \in I_{n}(R)^{n m+1}
$$

This completes the proof.
The above lemma gives immediately
Corollary 3. Let $n=2^{l}$ and $x=\sum_{i=1}^{k} a_{i}\left[r_{i}\right] \in \operatorname{Ker}(P)$. Let M denote the submodule of $C(R)$ generated by $\left[r_{1}\right], \ldots,\left[r_{k}\right]$ and $[-1]$. Then

$$
x \in \bigcap_{m=0}^{\infty} I_{n}(R)^{m} M
$$

Let now $n=3$. Lemmas 3 (iv) and 1 (vi) give the formulas

$$
\begin{equation*}
\left[\sum_{i} r_{i}\right]=\sum_{i}\left[r_{i}\right]+\sum_{i<j}\left[r_{i}, r_{j}\right]+\sum_{i<j<k} r_{i} r_{j} r_{k}[2] \tag{8}
\end{equation*}
$$

for any finite set of elements $r_{i} \in R$, and

$$
\begin{equation*}
\left[r^{3}\right]=\left(r^{6}+r^{4}+r^{2}\right)[r], \quad r \in R \tag{9}
\end{equation*}
$$

LEMMA 6. Let $n=3$ and $x=\sum_{i} a_{i}\left[r_{i}\right] \in \operatorname{Ker}(P)$ where one of the r_{i} is equal to 2. If all a_{i} belong to $I_{3}(R)^{m}$ for some $m \geq 0$ and one of the following conditions is satisfied:
(1) all r_{i} belong to $I_{3}(R)$, or
(2) $3 \in I_{3}(R)$,
then $x=\sum_{i} b_{i}\left[r_{i}\right]$ where all b_{i} belong to $I_{3}(R)^{3 m+1}$.

Proof. By the assumption, $\sum_{i} a_{i} r_{i}^{3}=\sum_{i} a_{i} r_{i}$. Using (8), (9) and (D) we obtain

$$
\begin{aligned}
{\left[\sum_{i} a_{i} r_{i}\right] } & =\sum_{i}\left[a_{i} r_{i}\right]+\sum_{i<j}\left[a_{i} r_{i}, a_{j} r_{j}\right]+\sum_{i<j<k} a_{i} r_{i} a_{j} r_{j} a_{k} r_{k}[2] \\
& =\sum_{i} a_{i}\left[r_{i}\right]+\sum_{i} r_{i}^{3}\left[a_{i}\right]+\sum_{i<j}\left[a_{i} r_{i}, a_{j} r_{j}\right]+\sum_{i<j<k} a_{i} r_{i} a_{j} r_{j} a_{k} r_{k}[2]
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\sum_{i} a_{i} r_{i}^{3}\right]=} & \sum_{i}\left[a_{i} r_{i}^{3}\right]+\sum_{i<j}\left[a_{i} r_{i}^{3}, a_{j} r_{j}^{3}\right]+\sum_{i<j<k} a_{i} r_{i}^{3} a_{j} r_{j}^{3} a_{k} r_{k}^{3}[2] \\
= & \sum_{i} a_{i}^{3}\left[r_{i}^{3}\right]+\sum_{i} r_{i}^{3}\left[a_{i}\right]+\sum_{i<j}\left[a_{i} r_{i}^{3}, a_{j} r_{j}^{3}\right]+\sum_{i<j<k} a_{i} r_{i}^{3} a_{j} r_{j}^{3} a_{k} r_{k}^{3}[2] \\
= & \sum_{i} a_{i}^{3}\left(r_{i}^{6}+r_{i}^{4}+r_{i}^{2}\right)\left[r_{i}\right]+\sum_{i} r_{i}^{3}\left[a_{i}\right]+\sum_{i<j}\left[a_{i} r_{i}^{3}, a_{j} r_{j}^{3}\right] \\
& +\sum_{i<j<k} a_{i} r_{i}^{3} a_{j} r_{j}^{3} a_{k} r_{k}^{3}[2] .
\end{aligned}
$$

Since the left hand sides above are equal, (C2) and Lemma 1(v) give

$$
\begin{aligned}
x= & \sum_{i} a_{i}\left[r_{i}\right] \\
= & \sum_{i} a_{i}^{3}\left(r_{i}^{6}+r_{i}^{4}+r_{i}^{2}\right)\left[r_{i}\right]+\sum_{i<j}\left[a_{i} r_{i}^{3}, a_{j} r_{j}^{3}\right]-\sum_{i<j}\left[a_{i} r_{i}, a_{j} r_{j}\right] \\
& +\sum_{i<j<k} a_{i} r_{i}^{3} a_{j} r_{j}^{3} a_{k} r_{k}^{3}[2]-\sum_{i<j<k} a_{i} r_{i} a_{j} r_{j} a_{k} r_{k}[2] \\
= & \sum_{i} a_{i}^{3}\left(r_{i}^{6}+r_{i}^{4}+r_{i}^{2}\right)\left[r_{i}\right]+\sum_{i<j} 3 a_{i}^{2} a_{j}\left[r_{i}^{2} r_{j}\right]+\sum_{i<j} 3 a_{i} a_{j}^{2}\left[r_{i} r_{j}^{2}\right] \\
& +\sum_{i<j<k} a_{i} a_{j} a_{k}\left(r_{i}^{3} r_{j}^{3} r_{k}^{3}-r_{i} r_{j} r_{k}\right)[2] \\
= & \sum_{i} a_{i}^{3}\left(\left(r_{i}^{2}\right)^{3}-r_{i}^{2}+r_{i}\left(r_{i}^{3}-r_{i}\right)+3 r_{i}^{2}\right)\left[r_{i}\right] \\
& +\sum_{i<j} 3 a_{i}^{2} a_{j}\left(r_{i}^{6}\left[r_{j}\right]+r_{i}^{3} r_{j}\left[r_{i}\right]+r_{i} r_{j}\left[r_{i}\right]\right) \\
& +\sum_{i<j} 3 a_{i} a_{j}^{2}\left(r_{j}^{6}\left[r_{i}\right]+r_{i} r_{j}^{3}\left[r_{j}\right]+r_{i} r_{j}\left[r_{j}\right]\right) \\
& +\sum_{i<j<k} a_{i} a_{j} a_{k}\left(\left(r_{i} r_{j} r_{k}\right)^{3}-r_{i} r_{j} r_{k}\right)[2] .
\end{aligned}
$$

Observe that $\left(r_{i}^{2}\right)^{3}-r_{i}^{2}, r_{i}^{3}-r_{i},\left(r_{i} r_{j} r_{k}\right)^{3}-r_{i} r_{j} r_{k} \in I_{3}(R)$; hence the summands not multiplied by 3 belong to $I_{3}(R)^{3 m+1}$. If all r_{i} belong to $I_{3}(R)$, or
$3 \in I_{3}(R)$, the remaining summands also belong to $I_{3}(R)^{3 m+1}$. This means that in both cases all coefficients in the above sums belong to $I_{3}(R)^{3 m+1}$.

Corollary 4. Let $n=3$ and $x=\sum_{i} a_{i}\left[r_{i}\right] \in \operatorname{Ker}(P)$. Let M denote the submodule of $C(R)$ generated by all $\left[r_{i}\right]$ and [2]. If one of the following conditions is satisfied:
(1) all r_{i} and 2 belong to $I_{3}(R)$, or
(2) $3 \in I_{3}(R)$, then $x \in \bigcap_{m=0}^{\infty} I_{3}(R)^{m} M$.
7. The main theorem. Proving the following fact is the purpose of this paper:

Theorem 1. Let $C(R)=C^{(n)}(R)$ where $n=2^{l}, l=1,2, \ldots$ or $n=3$. Then $P: C(R) \rightarrow I_{n}(R), P([r])=r^{n}-r$ for $r \in R$, is an R-isomorphism. In other words, if $n=2^{l}, l=1,2, \ldots$, then the following are generating relations between the generators $[r]=r^{n}-r$ of $I_{n}(R)$:

$$
\begin{equation*}
[r s]=r^{n}[s]+s[r], \quad r, s \in R, \tag{D}
\end{equation*}
$$

$$
\begin{equation*}
[r+s]=[r]+[s]+p(r, s)[-1], \quad r, s \in R, \tag{C}
\end{equation*}
$$

where

$$
p(r, s)=\sum_{k=1}^{n-1} \frac{1}{2}\binom{n}{k} r^{n-k} s^{k} ;
$$

and if $n=3$ then the following are generating relations between the generators $[r]=r^{3}-r$ of $I_{3}(R)$:

$$
\begin{equation*}
[r s]=r^{3}[s]+s[r], \quad r, s \in R, \tag{D}
\end{equation*}
$$

$$
\begin{equation*}
3 s[r]-3 r[s]=(r-s)[r, s], \quad r, s \in R, \tag{C1}
\end{equation*}
$$

where $[r, s]=[r+s]-[r]-[s]=\left(\Delta^{2}[]\right)(r, s)$.
Proof. Our goal is to prove that $\operatorname{Ker}(P)=0$.
Noetherian case. Assume that R is noetherian. By Proposition 4 we can assume that R is local and noetherian with quotient field K. Then $I_{n}(R)$ is the maximal ideal if $|K|-1 \mid n-1$, and $I_{n}(R)=R$ otherwise (see Introduction).

If $I_{n}(R)=R$ then Lemma 4 shows that $\operatorname{Ker}(P)=0$, as we want. So let $I_{n}(R)$ be the maximal ideal of R.

Assume first that $n=2^{l}$. Let $x \in \operatorname{Ker}(P)$. Define the submodule M as in Corollary 3 and observe that it is finitely generated over a local noetherian ring. Then the intersection in the corollary is zero by the Krull intersection theorem, and hence $x=0$. This proves that $\operatorname{Ker}(P)=0$.

Let now $n=3$. Then $|K|=2$ or 3 .
Case 1: $|K|=3$. Then $3 \in I_{3}(R)$. Let $x \in \operatorname{Ker}(P)$. Define M as in Corollary 4 and observe that condition (2) of the corollary holds. As before, $x=0$ by the Krull intersection theorem, and so $\operatorname{Ker}(P)=0$.

Case 2: $|K|=2$. Then $2 \in I_{3}(R)$ and $K=\left\{I_{3}(R), 1+I_{3}(R)\right\}$. Hence the set of units of R is $1+I_{3}(R)$. Condition (C1) for $s=1$ gives

$$
3[r]-3 r[1]=(r-1)([r+1]-[r]-[1]),
$$

and since $[1]=0$ this shows that $(r+2)[r]=(r-1)[r+1]$. So if r is invertible then so is $r+2$, and

$$
[r]=\frac{r-1}{r+2}[r+1]
$$

where $r+1$ is non-invertible. Let $x=\sum_{i} a_{i}\left[r_{i}\right] \in \operatorname{Ker}(P)$. If one of r_{i} is invertible then using the above formula we can replace $\left[r_{i}\right]$ by $\frac{r_{i}-1}{r_{i}+2}\left[r_{i}+1\right]$. So we can assume that all r_{i} above are non-invertible, that is, belong to $I_{3}(R)$. Since $2 \in I_{3}(R)$, condition (1) of Corollary 4 holds, and as before we find that $x=0$, and finally $\operatorname{Ker}(P)=0$.

General case. Let $x=\sum_{i} a_{i}\left[r_{i}\right] \in \operatorname{Ker}(P)$. Define S to be the subring of R generated by all a_{i} and r_{i}. Since S is a finitely generated ring, and hence noetherian, the previous part of the proof shows that $P: C(S) \rightarrow S$ is injective. Let $i: S \rightarrow R$ denote the injection. Then $x=(C(i))(y)$, where $y=\sum_{i} a_{i}\left[r_{i}\right] \in C(S)$. Since $P(y)=P(x)=0$ we conclude that $y=0$ and consequently $x=0$. This completes the proof.

References

[1] M. Maciejewski and A. Prószyński, Mappings of degree 5, part II, in preparation.
[2] A. Prószyński, Forms and mappings. I: Generalities, Fund. Math. 122 (1984), 219-235.
[3] A. Prószyński, Forms and mappings. III: Regular m-applications, Comment. Math. 28 (1989), 305-330.
[4] A. Prószyński, Forms and mappings. IV: Degree 4, Bull. Polish Acad. Sci. 37 (1989), 269-278.
[5] A. Prószyński, Mappings of Higher Degrees, WSP, Bydgoszcz, 1987 (in Polish).
[6] A. Prószyński, Relations between elements $r^{2}-r$, Bull. Polish Acad. Sci. Math. 55 (2007), 317-323.

Maciej Maciejewski, Andrzej Prószyński
Kazimierz Wielki University
85-072 Bydgoszcz, Poland
E-mail: maciejm@ukw.edu.pl, apmat@ukw.edu.pl

