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Summary. The celebrated 1967 pole assignment theory of W. M. Wonham for linear
finite-dimensional control systems has been applied to various stabilization problems both
of finite and infinite dimension. Besides existing approaches developed so far, we propose
a new approach to feedback stabilization of linear systems, which leads to a clearer and
more explicit construction of a feedback scheme.

1. Introduction. Since the celebrated pole assignment theory [7] for
linear control systems of finite dimension appeared, the theory has been ap-
plied to various stabilization problems, both of finite and infinite dimension,
such as the one with boundary output/boundary input scheme (see, e.g., [5]
and the references therein).

The symbol Hn, n = 1, 2, . . . , hereafter will denote a finite-dimensional
Hilbert space with dimHn = n, equipped with inner product 〈·, ·〉n and
norm ‖ · ‖n. The symbol ‖ · ‖n is also used for the L (Hn)-norm. Let A, B,
and C be operators in L (Hn), L (CN ;Hn), and L (Hn;CN ), respectively.
Given A, C, and any set of n complex numbers, Z = {ζi}1≤i≤n, the problem
is to seek a suitable B such that σ(A + BC) = Z. Or, given A and B, its
algebraic counterpart is to seek a C such that σ(A+BC) = Z. Stimulated
by the result of [7], various approaches and algorithms for computation of
B or C have been proposed (see, e.g., [2–4]). As long as the author knows,
however, each approach needs much preparation and background in linear
algebra to achieve stabilization and determine the necessary parameters.
Explicit realizations of B or C sometimes seem complicated. One reason is
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no doubt the complexity of the process of determining B or C that exactly
satisfy the relation σ(A+BC) = Z.

Let us describe our control system: The system, consisting of a state
x(·) ∈ Hn, output y = Cx ∈ CN , and input u ∈ CN , is described by a linear
differential equation in Hn,

(1.1)
dx

dt
= Ax+Bu, y = Cx, x(0) = x0 ∈ Hn.

Here,

Bu =
N∑
k=1

ukbk for u = (u1 . . . uN )T ∈ CN ,

Cx = (〈x, c1〉n . . . 〈x, cN 〉n)T for x ∈ Hn,

(. . .)T being the transpose of vectors or matrices. The vectors ck ∈ Hn denote
given weights of the observation (output); and bk ∈ Hn are actuators to be
constructed. By setting u = y in (1.1), the control system yields a feedback
system,

(1.2)
dx

dt
= (A+BC)x, x(0) = x0 ∈ Hn.

According to the choice of a basis for Hn, the operators A, B, and C are
identified with matrices of suitable size.

Let us assume that σ(A)∩C+ 6= ∅, so that the system (1.1) with u = 0 is
unstable. Given a µ > 0, the stabilization problem for the finite-dimensional
control system (1.2) is to seek a B or a C such that

(1.3) ‖et(A+BC)‖n ≤ const e−µt, t ≥ 0.

The pole assignment theory [7] plays a fundamental role in the above prob-
lem, and has been applied so far to various linear systems. The theory is
stated as follows: Let Z = {ζi}1≤i≤n be any set of n complex numbers,
where some ζi may coincide. Then there exists an operator B such that
σ(A+BC) = Z if and only if the pair (C,A) is observable. Thus, if the set
Z is chosen such that maxζ∈Z Re ζ, say −µ1 (= Re ζ1), is negative, and if
there is no generalized eigenspace of A+BC corresponding to ζ1, we obtain
the decay estimate (1.3).

Now we ask: Do we need all information on σ(A + BC) for stabiliza-
tion? In fact, to obtain the decay estimate (1.3), it is not necessary to
designate all elements of the set Z. What is really necessary is the num-
ber −µ = maxζi∈Z Re ζi, say = Re ζ1, and the spectral property that ζ1
does not allow any generalized eigenspace; the latter is the requirement that
no factor of algebraic growth in time is added to the right-hand side of
(1.3). In fact, when an algebraic growth is added, the decay property be-
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comes a little worse, and the constant (≥ 1) in (1.3) increases. The above
operator A + BC also appears, as a pseudo-substructure, in stabilization
problems for infinite-dimensional linear systems such as parabolic or re-
tarded systems (see, e.g., [5]): These systems are decomposed into two, and
understood as composite systems consisting of two states; one belongs to
a finite-dimensional subspace, and the other to an infinite-dimensional one.
It is impossible, however, to manage the infinite-dimensional substructures.
Thus, no matter how precisely the finite-dimensional spectrum σ(A + BC)
could be assigned, it does not exactly dominate the whole structure of infi-
nite dimension. In other words, the assigned spectrum of finite dimension is
not necessarily a subset of the spectrum of the infinite-dimensional feedback
control system.

In view of the above observations, our aim is to develop a new approach
much simpler than in the existing literature, which allows us to construct
a desired operator B or a set of actuators bk ensuring the decay (1.3) in
a simpler and more explicit manner (see (2.7) just below Lemma 2.2). The
result is, however, not so sharp as in [7] in the sense that it does not generally
provide the precise location of the assigned eigenvalues (1). From the above
viewpoint of infinite-dimensional control theory, however, the result would
be meaningful enough, and satisfactory for stabilization.

Our approach is based on a Sylvester equation of finite dimension. Syl-
vester equations in infinite-dimensional spaces have also been studied ex-
tensively (see, e.g., [1] for equations involving only bounded operators), and
even unboundedness of the given operators is allowed [5]. The Sylvester
equation in this paper is of finite dimension, so that there arises no diffi-
culty caused by the complexity of infinite dimension. Given a positive integer
s and vectors ξk ∈ Hs, 1 ≤ k ≤ N , let us consider the Sylvester equation
in Hn:

(1.4)

XA−MX = ΞC, Ξ ∈ L (CN ;Hs), where

Ξu =

N∑
k=1

ukξk for u = (u1 . . . uN )T ∈ CN .

Here, M denotes a given operator in L (Hs), and ξk vectors to be designed
in Hs. A possible solution X would belong to L (Hn;Hs). The approach
via Sylvester equations is found, e.g., in [2–4], where, by setting n = s,
a condition for the existence of the bounded inverse X−1 ∈ L (Hn) is sought.
Choosing an M such that σ(M) ⊂ C−, it is then proved that

A− (X−1Ξ)C = X−1MX, σ(X−1MX) = σ(M) ⊂ C−,

(1) In the case where we can choose N = 1, our result exactly coincides with the
standard pole assignment theory in [7] (see our Proposition 2.3).
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the left-hand side of which means a desired perturbed operator. The proce-
dure of its derivation is, however, rather complicated, and the choice of the
ξk is unclear. In fact, X−1 might not exist for some ξk.

Our new approach is rather different. Let us characterize the operator A
in (1.4). There is a set of eigenpairs {−λi, ϕij} with the following properties:

(i) σ(A) = {−λi; 1 ≤ i ≤ n′ (≤ n)}, λi 6= λj for i 6= j; and
(ii) Aϕij = −λiϕij +

∑
k<j α

i
jkϕik, 1 ≤ i ≤ n′, 1 ≤ j ≤ mi.

Let P−λi be the projector in Hn corresponding to the eigenvalue −λi. Then
we see that P−λiu =

∑mi
j=1 uijϕij for u ∈ Hn. The restriction of A onto the

invariant subspace P−λiHn is, in the basis {ϕi1, . . . , ϕimi}, represented by
the mi ×mi upper triangular matrix −Λi, where

Λi|(j,k) =


−αikj , j < k,

λi, j = k,

0, j > k.

If we set Λi = λi + Ni, the matrix Ni is nilpotent, that is, Nmi
i = 0. The

minimum integer n such that kerNn
i = kerNn+1

i , denoted as li, is called
the ascent of −λi−A. It is well known that the ascent li coincides with the
order of the pole −λi of the resolvent (λ−A)−1. The Laurent expansion of
(λ−A)−1 in a neighborhood of the pole −λi ∈ σ(A) is expressed as

(1.5)

(λ−A)−1 =

li∑
j=1

K−j
(λ+ λi)j

+
∞∑
j=0

(λ+ λi)
jKj , where

li ≤ mi, Kj =
1

2πi

�

|ζ+λi|=δ

(ζ −A)−1

(ζ + λi)j+1
dζ, j = 0,±1,±2, . . . .

Note that K−1 = P−λi . The set {ϕij ; 1 ≤ i ≤ n′, 1 ≤ j ≤ mi} forms a basis
for Hn. Each x ∈ Hn is uniquely expressed as x =

∑
i,j xijϕij . Let T be a

bijection, defined as Tx = (x11 x12 . . . xn′mn′
)T. Then A is identified with

the upper triangular matrix −Λ;

(1.6) TAT−1 = −Λ = −diag (Λ1 . . . Λn′).

We turn to the operator M in (1.4). Let ηij , 1 ≤ i ≤ n, 1 ≤ j ≤ `i,
be an orthonormal basis for Hs. Then necessarily s =

∑n
i=1 `i ≥ n. Every

vector v ∈ Hs is expressed as v =
∑n

i=1

∑`i
j=1 vijηij , where vij = 〈v, ηij〉s.

Let {µi}n1=1 be a set of positive numbers such that 0 < µ1 < · · · < µn, and
set

(1.7) Mv = −
n∑
i=1

`i∑
j=1

µivijηij for v =
n∑
i=1

`i∑
j=1

vijηij , vij = 〈v, ηij〉s.
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It is apparent that (i) σ(M) = {−µi}ni=1; and (ii) (µi+M)ηij = 0, 1 ≤ i ≤ n,
1 ≤ j ≤ `i. The operator M is self-adjoint, and negative-definite,

〈Mv, v〉s = −
n∑
i=1

ni∑
j=1

µi|vij |2 ≤ −µ1‖v‖2s.

Let Q−µi be the projector in Hs corresponding to the eigenvalue −µi ∈
σ(M), say Q−µiv =

∑`i
j=1 vijηij for v =

∑
i,j vijηij . We put an additional

condition on M in (1.7):

(1.8) σ(A) ∩ σ(M) = ∅.
Assuming (1.8), we derive our first result. Since the proof is carried out in
exactly the same manner as in [5], it is omitted.

Proposition 1.1. Suppose that the condition (1.8) is satisfied. Then the
Sylvester equation (1.4) admits a unique operator solution X ∈ L (Hn;Hs).
The solution X is expressed as

Xu =
−1

2πi

�

Γ

(λ−M)−1ΞC(λ−A)−1u dλ = −
∑

λ∈σ(M)

QλΞC(λ−A)−1u

=
n∑
i=1

Q−µiΞC(µi +A)−1u,

where Γ denotes a Jordan contour encircling σ(M) in its inside, with σ(A)
outside Γ . The above first expression is the so called Rosenblum formula [1].

Our main results are stated as Theorem 2.1 and Lemma 2.2 in the next
section, where a more explicit and concrete expression than ever before of
a set of stabilizing actuators bk in (1.2) is obtained. As we see in the next
section, an advantage of considering the operator X ∈ L (Hn;Hs) with
s ≥ n is that the bounded inverse (X∗X)−1 is ensured under a reasonable
assumption on the operator Ξ. A numerical example is also given. Finally,
Proposition 2.3 is stated, where our feedback scheme exactly coincides with
the standard pole assignment theory [7] in the case where we can choose
N = 1.

2. Main results. We assume that σ(A) ∩ C+ 6= ∅, so that the semi-
group etA, t ≥ 0, is unstable. We construct suitable actuators bk ∈ Hn in
(1.2) such that et(A+BC) has a preassigned decay rate, say −µ1 (see (1.7)).
The operator (C CA . . . CAn−1)T belongs to L (Hn;CnN ). Recall that the
observability condition on the pair (C,A) is that it is injective, in other
words, ker(C CA . . . CAn−1)T = {0}. Throughout the section, the condi-
tion (1.8) is assumed in the Sylvester equation (1.4). Then we obtain one of
the main results:
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Theorem 2.1. Assume that

(2.1)
ker (C CA . . . CAn−1)T = {0},
kerQ−µiΞ = {0}, 1 ≤ i ≤ n.

Then kerX = {0}.

Proof. Let Xu = 0. In view of Proposition 1.1, we see that

Q−µiΞC(µi +A)−1u = 0, 1 ≤ i ≤ n.
Since kerQ−µiΞ = {0}, 1 ≤ i ≤ n, by (2.1), we obtain

(2.2)
C(µi +A)−1u = 0, 1 ≤ i ≤ n, or

〈(µi +A)−1u, ck〉n = 0, 1 ≤ k ≤ N, 1 ≤ i ≤ n.

Set fk(λ;u) = 〈(λ + A)−1u, ck〉n. By recalling that T (λ − A)−1T−1 =
(λ + Λ)−1 (see (1.6)), fk(λ;u) is rewritten as 〈(λ + Λ)−1Tu, (T−1)∗ck〉Cn .
Each element of the n × n matrix (λ + Λ)−1 is a rational function of λ;
its denominator is a polynomial of order n, and the numerator at most of
order n − 1. This means that each fk(λ;u) is a rational function of λ, the
denominator of which is a polynomial of order n, and the numerator of order
n− 1. Since the numerator of fk has at least n distinct zeros µi, 1 ≤ i ≤ n,
by (2.2), we conclude that

fk(λ;u) = 〈(λ+A)−1u, ck〉n = 0, −λ ∈ ρ(A), 1 ≤ k ≤ N.
Let c ∈ ρ(A), and set Ac = c−A. In view of the identity

(λ+A)−1 = Ac(λ+A)−1A−1c = −A−1c + (λ+ c)(λ+A)−1A−1c ,

let us introduce a series of rational functions f lk(λ;u), l = 0, 1, . . . , as

f0k (λ;u) = fk(λ;u), f l+1
k (λ;u) =

f lk(λ;u)

λ+ c
, l = 0, 1, . . . .

It is easily seen that

(2.3) f lk(λ;u) = 〈(λ+A)−1A−lc u, ck〉n −
l∑

i=1

1

(λ+ c)i
〈A−(l+1−i)

c u, ck〉n,

and

f lk(λ;u) = 0, λ ∈ −ρ(A) \ {−c}, 1 ≤ k ≤ N, l ≥ 0.

In view of the Laurent expansion (1.5) of (λ − A)−1 in a neighborhood of
−λi, we obtain

0 = fk(λ;u)

= −
li∑
j=1

〈K−ju, ck〉n
(−λ+ λi)j

−
∞∑
j=0

(−λ+ λi)
j〈Kju, ck〉n, 1 ≤ k ≤ N,
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in a neighborhood of λi. Calculation of the residue of fk(λ;u) at λi implies
that

(2.4)
〈K−1u, ck〉n = 〈P−λiu, ck〉n = 0, 1 ≤ i ≤ n′, 1 ≤ k ≤ N, or

CP−λiu = 0, 1 ≤ i ≤ n′.

As for f lk(λ;u), l ≥ 1, we have a similar expression in a neighborhood of λi,

f lk(λ;u) = −
li∑
j=1

〈K−jA−lc u, ck〉n
(−λ+ λi)j

−
∞∑
j=0

(−λ+ λi)
j〈KjAc

−lu, ck〉n

−
l∑

i=1

1

(λ+ c)i
〈A−(l+1−i)

c u, ck〉n = 0

by (2.3). Note that K−1A
−l
c u = P−λiA

−l
c u = A−lc P−λiu. Calculation of the

residue of f lk(λ;u) at λi similarly implies that

〈K−1A−lc u, ck〉n = 〈A−lc P−λiu, ck〉n = 0, 1 ≤ i ≤ n′, 1 ≤ k ≤ N, or

CA−lc P−λiu = 0, 1 ≤ i ≤ n′, l ≥ 1.

Combining these with the above relation (2.4), we see that

(2.5) (C CA−1c . . . CA−(n−1)c )TP−λiu = 0, 1 ≤ i ≤ n′.
It is clear that ker (C CA . . . CAn−1)T = ker (C CAc . . . CA

n−1
c )T, where

Ac = c−A. Thus, by the first condition of (2.1), it is easily seen that

ker (C CA−1c . . . CA−(n−1)c )T = ker (C CA . . . CAn−1)T = {0}.
Thus, (2.5) immediately implies that P−λiu = 0 for 1 ≤ i ≤ n′, and finally
that u = 0.

By Theorem 2.1, there is a positive constant such that

‖Xu‖s ≥ const ‖u‖n, ∀u ∈ Hn.

The derivation of the above positive lower bound of ‖Xu‖s is due to a
specific nature of finite-dimensional spaces. The operator X∗X ∈ L (Hn) is
self-adjoint, and positive-definite. In fact, by the relation

const ‖u‖2n ≤ ‖Xu‖2s = 〈Xu,Xu〉s = 〈X∗Xu, u〉n ≤ ‖X∗Xu‖n‖u‖n,
we see that ‖X∗Xu‖n ≥ const ‖u‖n. Thus the bounded inverse (X∗X)−1 ∈
L (Hn) exists. We go back to the Sylvester equation (1.4). Setting X∗X =
X ∈ L (Hn) and X∗MX = M ∈ L (Hn), we obtain the relation

A− (X∗X)−1X∗MX = (X∗X)−1X∗ΞC, or

A−
N∑
k=1

〈·, ck〉nX −1X∗ξk = X −1M .
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Both operators X and M are self-adjoint, but X −1M is not. The following
assertion is the second of our main results, and leads to a stabilization
result:

Lemma 2.2. Assume that (2.1) is satisfied. Then σ(X −1M ) is con-
tained in R1

−. Actually,

(2.6) −λ∗ = maxσ(X −1M ) ≤ −µ1.

In addition, there is no generalized eigenspace for any λ ∈ σ(X −1M ).

Remark. By Lemma 2.2, we obtain a decay estimate

(2.7) ‖exp t(A− (X∗X)−1X∗ΞC)‖n = ‖exp t(X −1M )‖n
≤ const e−µ1t, t ≥ 0.

In fact, the last assertion of the lemma ensures that no algebraic growth
in time arises in the semigroup, regarding the greatest eigenvalue. Thus,
the set of actuators bk = −(X∗X)−1X∗ξk, 1 ≤ k ≤ N , in other words,
B = −(X∗X)−1X∗Ξ, explicitly gives the desired set of actuators in (1.2).

Proof of Lemma 2.2. Since X is positive-definite, we can find a non-
unique bijection U ∈ L (Hn) such that

X = X∗X = U ∗U ,

the so called Cholesky factorization. Define M ′ = (U ∗)−1MU −1 =
(U −1)∗MU −1. Then M ′ ∈ L (Hn) is a self-adjoint operator, enjoying
some properties similar to those of X −1M . In fact, let λ ∈ σ(X −1M ),
or (λX −M )u = 0 for some u 6= 0. Then, since

0 = (λU ∗U −M )u = U ∗(λ− (U ∗)−1MU −1)U u

= U ∗(λ−M ′)U u = 0,

we see that λ belongs to σ(M ′). The converse relation is also correct, which
means that

σ(X −1M ) = σ(M ′) ⊂ R1.

Inequality (2.6) is achieved by applying the well known min-max principle
to M ′, or more directly by the following observation: Let λ ∈ σ(X −1M ),
and (λX −M )u = 0 for some u 6= 0. Then

λ‖Xu‖2s = λ〈X u, u〉n = 〈Mu, u〉n = 〈MXu,Xu〉s ≤ −µ1‖Xu‖2s,

from which (2.6) immediately follows, since Xu 6= 0.

Next let us show that there is no generalized eigenspace for λ ∈
σ(X −1M ). Let (λ − X −1M )2u = 0 for some u 6= 0. Setting v =
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(λ−X −1M )u, we calculate

0 = X (λ−X −1M )2u = (λX −M )v

= (λU ∗U −M )v = U ∗(λ− (U ∗)−1MU −1)U v

= U ∗(λ−M ′)w = 0, w = U v,

or (λ−M ′)w = 0. On the other hand, since

w = U v = U (λ−X −1M )u = U (λ−U −1(U ∗)−1M )u

= (λ− (U ∗)−1MU −1)U u = (λ−M ′)U u,

we see that

0 = (λ−M ′)w = (λ−M ′)2U u, U u 6= 0.

But M ′ is self-adjoint, so that there is no generalized eigenspace for λ ∈
σ(M ′). Thus, U u turns out to be an eigenvector of M ′ for λ, and

0 = U ∗(λ−M ′)U u = U ∗(λ− (U ∗)−1MU −1)U u

= (λU ∗U −M )u = (λX −M )u.

This means that u is an eigenvector of X −1M for λ.

The following example shows that λ∗ = −maxσ(X −1M ) does not gen-
erally coincide with the prescribed µ1.

Example. Let n = 3, and set H3 = C3, so that A is a 3× 3 matrix. Let
A = −diag (a a b), where a, b ≤ 0 and a 6= b. Since n = 3, n′ = 2, m1 = 2,
and m2 = 1, we choose N = 2, s = 6, H6 = C6, and `1 = `2 = `3 = 2. As for
the operator C ∈ L (C3;C2), let us consider the case, for example, where
c1 = (1 0 1)T and c2 = (0 1 0)T. The operator C is a 2× 3 matrix given by(
1 0 1
0 1 0

)
. The pair (C,A) is then observable, and the first condition of (2.1)

is satisfied.

To consider the Sylvester equation (1.4), let {ηij ; 1 ≤ i ≤ 3, j =
1, 2} be a standard basis for C6 such that η11 = (1 0 0 . . . 0)T, η12 =
(0 1 0 . . . 0)T, η21 = (0 0 1 . . . 0)T, . . . , and η32 = (0 . . . 0 1)T. Set
M = −diag (µ1 µ1 µ2 µ2 µ3 µ3) for 0 < µ1 < µ2 < µ3. In the operator
Ξ given by Ξu = u1ξ1 + u2ξ2 for (u1 u2)

T ∈ C2, set ξ1 = (1 0 1 0 1 0)T

and ξ2 = (0 1 0 1 0 1)T. Then we see that kerQ−µiΞ = {0}, 1 ≤ i ≤ 3,
and the second condition of (2.1) is satisfied. The unique solution X ∈
L (C3;C6) to the Sylvester equation (1.4) is a 6 × 3 matrix described as
(u = (u11 u12 u21)

T ∈ C3)
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Xu =



〈(µ1 +A)−1u, c1〉
〈(µ1 +A)−1u, c2〉
〈(µ2 +A)−1u, c1〉
〈(µ2 +A)−1u, c2〉
〈(µ3 +A)−1u, c1〉
〈(µ3 +A)−1u, c2〉


=



1

µ1 − a
0

1

µ1 − b

0
1

µ1 − a
0

1

µ2 − a
0

1

µ2 − b

0
1

µ2 − a
0

1

µ3 − a
0

1

µ3 − b

0
1

µ3 − a
0



u11u12

u21

 ,

where 〈·, ·〉 denotes the inner product in C3. Setting, for computational con-
venience,

α =

(
1

µ1 − a
1

µ2 − a
1

µ3 − a

)T

, β =

(
1

µ1 − b
1

µ2 − b
1

µ3 − b

)T

,

1 = (1 1 1)T,

we see that

(X∗X)−1 =
1

γ

 |β|2 0 −〈α, β〉
0 |β|2 − 〈α, β〉2/|α|2 0

−〈α, β〉 0 |α|2

 ,

where γ = |α|2|β|2 − 〈α, β〉2. By noting that X∗ξ1 = (〈α, 1〉 0 〈β, 1〉)T and
X∗ξ2 = (0 〈α, 1〉 0)T, the matrixA−(X∗X)−1X∗ΞC is concretely described
as

−diag (a a b)

−1

γ


|β|2〈α, 1〉 − 〈α, β〉〈β, 1〉 0 |β|2〈α, 1〉 − 〈α, β〉〈β, 1〉

0 〈α, 1〉(|β|2 − 〈α, β〉2/|α|2) 0

|α|2〈β, 1〉 − 〈α, β〉〈α, 1〉 0 |α|2〈β, 1〉 − 〈α, β〉〈α, 1〉

.
It is apparent that one of the eigenvalues of this matrix is the (2, 2)-element:

−a− 〈α, 1〉
γ

(
|β|2 − 〈α, β〉

2

|α|2

)
= −a− 〈α, 1〉

|α|2
,

and is certainly smaller than −µ1. Note that

0 < λ∗ − µ1 ≤
1

|α|2

(
µ2 − µ1

(µ2 − a)2
+

µ3 − µ1
(µ3 − a)2

)
→ 0, µ2, µ3 →∞.
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The other eigenvalues are those of the matrix

(2.8) − 1

γ

(
|β|2〈α, 1〉 − 〈α, β〉〈β, 1〉+ γa |β|2〈α, 1〉 − 〈α, β〉〈β, 1〉

|α|2〈β, 1〉 − 〈α, β〉〈α, 1〉 |α|2〈β, 1〉 − 〈α, β〉〈α, 1〉+ γb

)
.

To see that these eigenvalues are generally smaller than −µ1, let us consider
a numerical example: Let (µ1 µ2 µ3) = (2 3 4), a = 0, and b = −1. Then

α =

(
1

2

1

3

1

4

)T

, β =

(
1

3

1

4

1

5

)T

, |α|2 =
61

144
, |β|2 =

769

3600
,

〈α, β〉 =
3

10
, 〈α, 1〉 =

13

12
, 〈β, 1〉 =

47

60
,

γ = |α|2|β|2 − 〈α, β〉2 =
253

518400
.

One of the eigenvalues −a − 〈α, 1〉/|α|2 is −156/61 < −2 (= −µ1). The
matrix (2.8) is then

−1

253

(
−1860 −1860

3540 3287

)
,

the eigenvalues of which are denoted as ζ1 and ζ2. Then ζ2 < −156/61 <
ζ1 < −2 = −µ1, and thus −λ∗ = ζ1 < −µ1 = −2.

We close this paper with the following remark: There is a case where λ∗
coincides with µ1. Following [6], let us consider (1.2) in the space Hn = Cn
(see (1.6)). All operators A, B, and C are then matrices of respective sizes.
Let σ(A) consist only of simple eigenvalues, so that mi = 1, 1 ≤ i ≤ n, and
n = n′. Thus we can choose N = 1, `i = 1, 1 ≤ i ≤ n, and thus s = n.
The operator in (2.7) is written as A− (X∗X)−1X∗ΞC, where Ξu = uξ for
u ∈ C1, and C = 〈·, c〉n, c = (c1 . . . cn)T ∈ Cn. The observability condition
then turns out to be ci 6= 0, 1 ≤ i ≤ n. Let us consider the Sylvester equation
(1.4) in Hs = Cn. By setting ξ = (1 1 . . . 1)T ∈ Cn, the solution X to (1.4)
is an n× n matrix, and has a bounded inverse:

X = ΦC̃, where

Φ =

(
1

µi − λj
;
i ↓ 1, . . . , n,

j → 1, . . . , n

)
and C̃ = diag (c1 . . . cn).

Thus, A−(X∗X)−1X∗ΞC = A−X−1ξcT. We have shown in [6] that, given a
set {µi}1≤i≤n, there is a unique h ∈ Cn such that σ(A−hcT) = {−µi}1≤i≤n,
and that h is expressed as
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h =



h1

h2

h3
...

hn


=
−1

∆



1
c1
∆1f(λ1)

− 1
c2
∆2f(λ2)

1
c3
∆3f(λ3)

...

(−1)n−1 1
cn
∆nf(λn)


, where f(λ) =

n∏
i=1

(λ− µi),

∆ =
∏

1≤i<j≤n
(λi − λj), ∆k =

∏
1≤i<j≤n
i,j 6=k

(λi − λj), 1 ≤ k ≤ n.

Proposition 2.3. Suppose in Lemma 2.2 that σ(A) consists only of
simple eigenvalues. Set ξ = (1 1 . . . 1)T as above. Then X−1ξ = h, and
thus λ∗ = µ1. In fact, σ(A− (X∗X)−1X∗ΞC) = {−µi}1≤i≤n.

Proof. The relation X−1ξ = h is rewritten as

−∆



1

1

1
...

1


= ΦĈ



1
c1
∆1f(λ1)

− 1
c2
∆2f(λ2)

1
c3
∆3f(λ3)

...

(−1)n−1 1
cn
∆nf(λn)


= Φ



∆1f(λ1)

−∆2f(λ2)

∆3f(λ3)
...

(−1)n−1∆nf(λn)


.

In other words, we show that

(2.9) −
n∑
j=1

(−1)j−1∆jf(λj)

µi − λj

=

n∑
j=1

(−1)j−1∆j

(=λn−1
j +··· )︷ ︸︸ ︷∏

1≤`≤n
6̀=i

(λj − µ`) = ∆, 1 ≤ i ≤ n.

The left-hand side of (2.9), a polynomial of λi, 1 ≤ i ≤ n, is in particular
a polynomial of λ1 of order n − 1, and the coefficient of λn−11 is ∆1 =∏

2≤i<j≤n(λi − λj). For j < k, let us compare the jth and the kth terms.

The following lemma is elementary:

Lemma 2.4 ([6]). Let 1 ≤ j < k ≤ n. In the product ∆k, a polynomial
of {λi}i 6=k, set λj = λk. Then,

∆k = (−1)k−1+j∆j .

In the left-hand side of (2.9), set λj = λk. Since the terms other than
the jth and the kth contain the factor λj−λk, they become 0. The kth term
is then
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(−1)k−1∆k

∏
1≤`≤n
6̀=i

(λk − µ`) = (−1)k−1(−1)k−1−j∆j

∏
1≤`≤n
`6=i

(λk − µ`)

= −(−1)j−1∆j

∏
1≤`≤n
` 6=i

(λj − µ`) = −(the jth term).

Thus the left-hand side of (2.9) has factors λj − λk, j < k, and is written
as c∆. But c∆ is a polynomial of λ1 of order n − 1, and the coefficient of
λn−11 is c∆1. This means that c = 1, and the proof of relation (2.9) is now
complete.
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