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Summary. General nonlinear Volterra difference equations with infinite delay are con-
sidered. A new explicit criterion for global exponential stability is given. Furthermore, we
present a stability bound for equations subject to nonlinear perturbations. Two examples
are given to illustrate the results obtained.

1. Introduction. Volterra difference equations are widely used in the
modeling of processes in continuous mechanics and biomechanics, problems
of control and estimations, and some schemes of numerical solutions of in-
tegral and integro-differential equations (see e.g. [BH], [E05], [L], [MW]).

In particular, problems of stability of Volterra difference equations have
attracted much attention during the last twenty years (see e.g. [ACF]–[ES],
[KCT], [M97], [NNSM]–[SB] and references therein).

In the literature, various methods have been used to investigate stability
of Volterra difference equations, such as Lyapunov functions, comparison
theorems, Bohl–Perron type theorems, topological methods, etc. (see e.g.
[BK12], [CKRV98], [CKRV00], [E05], [E09], [KCT]). Recently, E. Braverman
and I. M. Karabash [BK12] gave some Bohl–Perron-type stability theorems
which show relations between exponential stability and (lp, lq)-stability of
Volterra difference equations with infinite delay. Using Lyapunov function-
als, Y. N. Raffoul and Y. M. Dib [RD] derived conditions for asymptotic
stability and exponential stability of Volterra discrete-time equations with
finite delay subject to nonlinear perturbations. For a nice survey, see [KCT].
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To the best of our knowledge, there are not many explicit criteria for
exponential stability of nonlinear Volterra difference equations with infinite
delay (see [BK12], [E09], [KCT]). In this paper, we present a new approach to
global exponential stability of Volterra difference equations with infinite de-
lay. Our approach is based on the celebrated Perron–Frobenius theorem and
the comparison principle. Consequently, we get a new explicit criterion for
global exponential stability of the zero solution of the general time-varying
Volterra difference equation with infinite delay. Furthermore, we derive an
explicit stability bound for equations subject to nonlinear time-varying per-
turbations. Two examples are given to illustrate the results obtained.

We now present some notation and preliminary results. For a natural
number k, denote k := {1, . . . , k}. Write Z+ := {k ∈ Z : k ≥ 0} and
Z− := {k ∈ Z : k ≤ 0}. For l, q ∈ Z+, let Rl×q be the set of all real

l × q-matrices and Rl×q+ be the set of all l × q-matrices with nonnegative
entries. Inequalities between real matrices or vectors will be understood
componentwise, i.e. A ≥ B if and only if aij ≥ bij , i ∈ l, j ∈ q, where

A = (aij), B = (bij) ∈ Rl×q. Furthermore, A � B means that aij > bij
for all i ∈ l, j ∈ q. If x = (x1, . . . , xm)T ∈ Rm and P = (pij) ∈ Rl×q
we define |x| = (|xi|) and |P | = (|pij |). For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) = max{|z| : z ∈ σ(A)}, where
σ(A) := {z ∈ C : det(zIm −A) = 0} is the set of all eigenvalues of A.

A norm ‖ ·‖ on Rm is said to be monotonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖
for all x, y ∈ Rm. Throughout the paper, the norm of vectors is assumed to
be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is always understood
as the operator norm defined by ‖M‖ = max‖y‖=1 ‖My‖, where Rl and Rq
are provided with some monotonic vector norms. The operator norm ‖ · ‖
has the following property (see e.g. [HS]):

‖P‖ ≤
∥∥|P |∥∥ ≤ ‖Q‖ whenever |P | ≤ Q, for P ∈ Rl×q, Q ∈ Rl×q+ .

Finally, for given α > 1, set

lα(Rm×m) :=
{

(U(k))k : U(k) ∈ Rm×m (k ∈ Z),
∞∑
k=0

‖U(k)‖αk <∞
}
.

The next theorem summarizes some basic properties of nonnegative ma-
trices which will be used in what follows.

Theorem 1.1 ([HS]). Let M ∈ Rm×m+ and t ∈ R. Then

(i) (Perron–Frobenius) ρ(M) is an eigenvalue of M and there exists a
nonnegative eigenvector x ∈ Rm, x 6= 0, such that Mx = ρ(M)x.

(ii) (tIm −M)−1 exists and is nonnegative if and only if t > ρ(M).

The following is immediate from Theorem 1.1.
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Theorem 1.2 ([NH]). Let M ∈ Rm×m+ . Then the following statements
are equivalent:

(i) ρ(M) < 1.
(ii) ∃p ∈ Rm, p� 0 : Mp� p.

(iii) (Im −M)−1 ≥ 0.

2. An explicit criterion for global exponential stability. Consider
a nonlinear Volterra difference equation with infinite delay of the form

(2.1) x(n+ 1) = F
(
n, x(n),

n∑
k=−∞

G(n, k, x(k))
)
, n ≥ n0,

where F (·, ·, ·) : Z+×Rm×Rm → Rm and G(·, ·, ·) : Z+×Z×Rm → Rm are
given functions such that F (n, 0, 0) = 0 for all n ∈ Z+ and G(n, k, 0) = 0
for n ∈ Z+, k ∈ Z, n ≥ k (i.e. ξ = 0 is an equilibrium point of the equation
(2.1)).

For given γ > 1, denote

Bγ :=
{
ϕ(·) : Z− → Rm : sup

k∈Z−

‖ϕ(k)‖γk <∞
}
,

the phase space, a Banach space with the norm ‖ϕ‖γ = supk∈Z− ‖ϕ(k)‖γk
(see e.g. [ACF]). With fixed n0 ∈ Z+ and given ϕ ∈ Bγ , consider for (2.1)
an initial condition of the form

(2.2) x(n0 + k) = ϕ(k), k ∈ Z−.

Equation (2.1) can be written as a functional difference equation of the
form

(2.3) x(n+ 1) = N
(
n, xn

)
, n ≥ n0,

where xn ∈ Bγ is defined by xn(k) := x(n + k), k ∈ Z−, and N (·, ·) :
Z+ × Bγ → Rm is given by

N (n, ϕ) := F
(
n, ϕ(0),

n∑
k=−∞

G(n, k, ϕ(k − n))
)
, (n, ϕ) ∈ Z+ × Bγ .

Throughout we assume that

(H1) There exist A,B ∈ Rm×m+ such that

|F (n, x, y)| ≤ A|x|+B|y|, ∀n ∈ Z+, ∀x, y ∈ Rm.

(H2) There exists C(·) : Z+ → Rm×m+ such that{ |G(n, k, x)| ≤ C(n− k)|x|, ∀n ∈ Z+, ∀k ∈ Z, n ≥ k, ∀x, y ∈ Rm;

(C(n))n ∈ lγ(Rm×m) for some γ > 1.
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By virtue of (H1) and (H2), N (·, ·) is well-defined on Z+ × Bγ . Further-
more, the initial value problem (2.1)–(2.2) always has a unique solution,
denoted by x(·, n0, ϕ).

Definition 2.1. The zero solution of (2.1) is said to be globally expo-
nentially stable (briefly, GES) in Bγ if there exist K > 0 and λ ∈ (0, 1) such
that

(2.4) ‖x(n, n0, ϕ)‖ ≤ Kλn−n0‖ϕ‖γ , ∀n ≥ n0, ∀ϕ ∈ Bγ .

We are now in a position to state the first result of this paper; its proof
is given in the Appendix.

Theorem 2.2. Suppose (H1) and (H2) hold. If ρ(A+B
∑∞

k=0C(k)) < 1
then the zero solution of (2.1) is GES in Bγ0 for some γ0 ∈ (1, γ].

Remark 2.3. Roughly speaking, (H1)–(H2) means that the nonlinear
time-varying equation (2.1) is “bounded above” by the linear time-invariant
equation

(2.5) y(n+ 1) = Ay(n) +
n∑

k=−∞
BC(n− k)x(k), n ∈ Z+.

Then Theorem 2.2 says that if (2.5) is GES in Bγ0 for some γ0 ∈ (1, γ]
((C(n))n ∈ lγ(Rm×m), γ > 1 and ρ(A + B

∑∞
k=0C(k)) < 1), then the zero

solution of (2.1) is GES in Bγ0 , too.

In particular, for the time-varying Volterra difference equation with in-
finite delay

(2.6) y(n+ 1) = A(n)y(n) +

n∑
k=−∞

B
(
n, k, y(k)

)
, n ∈ Z+,

the following is immediate from Theorem 2.2.

Corollary 2.4. Suppose there exist A ∈ Rm×m+ and C(·) : Z+ → Rm+
such that

|A(n)| ≤ A and |B(n, k, x)| ≤ C(n− k)|x|, ∀n, k ∈ Z+, n ≥ k, ∀x ∈ Rm.

If (C(n))n ∈ lγ(Rm×m) for some γ > 1 and ρ(A +
∑∞

k=0C(k)) < 1 then
(2.6) is GES in Bγ0 for some γ0 ∈ (1, γ].

Remark 2.5. In particular, when A(·) ≡ A ∈ Rm×m and B(n, k, x) :=
C(n− k)x, n ≥ k, x ∈ Rm, (2.6) reduces to a linear time-invariant equation
of convolution type

(2.7) y(n+ 1) = Ay(n) +

n∑
k=−∞

C(n− k)y(k), n ∈ Z+.
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Assume that (C(n))n ∈ l1(Rm×m). It is well-known that (2.7) is uniformly
asymptotically stable if and only if det

(
Imz−A−

∑∞
i=0 z

−iC(i)
)
6= 0 for all

z ∈ C with |z| ≥ 1 (see e.g. [E09, Theorem 3.2]). Note that this condition
holds if ρ(|A|+

∑∞
i=0 |C(i)|) < 1 (see e.g. [NNSM, Theorem 3.10]). Moreover,

if (2.7) is uniformly asymptotically stable then it is GES if and only if
((C(n))n ∈ lγ(Rm×m) for some γ > 1 (see e.g. [ES]). Therefore, Corollary
2.4 can be seen as a “generalization” of [ES, Theorem 5] to semilinear time-
varying equations of the form (2.6).

We illustrate Theorem 2.2 by an example.

Example 2.6. Consider equation (2.1) in R2 with F (·, ·, ·) and G(·, ·, ·)
defined by

F (n, x, y) =

√ x21
144 sin2(nx2) +

x22
64 + y21e

−ny22

arctan
(

nx1
6(n+1) + 11y1

6 + 3y2
)
 ,

and

G(n, k, x) =

 ln
(
1 + 3e−k2an−k|x1|

4[3(n−k)+1][3(n−k)+4]

)
x1
16

(
a
2

)n−k
+ 3an−kx2

2[2(n−k)+3][2(n−k)+5]

 ,

where a ∈ (0, 1), x := (x1, x2)
T , y := (y1, y2)

T ∈ R2, n ∈ Z+, k ∈ Z, n ≥ k.
Since√

x21
144

sin2(nx2) +
x22
64

+ y21e
−ny22 ≤ 1

12
|x1|+

1

8
|x2|+ |y1|,∣∣∣∣arctan

(
nx1

6(n+ 1)
+

11y1
6

+ 3y2

)∣∣∣∣ ≤ 1

6
|x1|+

11

6
|y1|+ 3|y2|,

ln

(
1 +

3e−k
2
an−k|x1|

4[3(n− k) + 1][3(n− k) + 4]

)
≤ 3an−k

4[3(n− k) + 1][3(n− k) + 4]
|x1|,

for all xi, yi ∈ R, i ∈ {1, 2}, n ∈ Z+, k ∈ Z, n ≥ k, it follows that

|F (n, x, y)| ≤ A|x|+B|y|, |G(n, k, x)| ≤ C(n− k)|x|,
where

A :=

(
1/12 1/8

1/6 0

)
, B :=

(
1 0

11/6 3

)
,

C(k) := ak

 3
4(3k+1)(3k+4) 0

1
2k+4

3
2(2k+3)(2k+5)

 , k ∈ Z+.

Furthermore, since
∞∑
k=0

C(k) ≤

(
1/4 0

1/8 1/4

)
, A+B

∞∑
k=0

C(k) ≤M :=

(
1/3 1/8

1 3/4

)
,
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we have

ρ
(
A+B

∞∑
k=0

C(k)
)
≤ ρ(M) =

1

24
(13 +

√
97) < 1.

Let R2×2 be endowed with the 1-norm (see e.g. [E05]), that is, for A =
(aij) ∈ R2×2, ‖A‖1 = max1≤j≤2

∑2
i=1 |aij |. Note that ‖C(k)‖1 ≤ 1

4a
k for

all k ∈ Z+. Choosing β ∈ (1, a−1), we have
∑∞

k=0 ‖C(k)‖1βk < ∞. Thus,
(C(k))k ∈ lβ(R2×2) and so the zero solution of (2.1) is GES in Bβ0 for some
β0 ∈ (1, β], by Theorem 2.2.

3. Stability of perturbed systems. Suppose (H1)–(H2) hold and
ρ(A + B

∑∞
k=0C(k)) < 1. Thus, the zero solution of (2.1) is GES in Bγ0

for some γ0 ∈ (1, γ], by Theorem 2.2. Consider a perturbed equation of the
form

(3.1) x(n+ 1)

= F
(
n, x(n),

n∑
k=−∞

G(n, k, x(k))
)

+ F̃
(
n, x(n),

n∑
k=−∞

G̃(n, k, x(k))
)
.

Here F (·, ·, ·) and G(·, ·, ·) are as in (2.1), whereas

F̃ (·, ·, ·) : Z+ × Rm × Rm → Rm and G̃(·, ·, ·) : Z+ × Z× Rm → Rm

are unknown. Furthermore, we assume that

(3.2)


|F̃ (n, x, y)| ≤ ∆1|x|+∆2|y|, ∀n ∈ Z+, ∀x, y ∈ Rm,
|G̃(n, k, x)| ≤ ∆G(n− k)|x|, ∀n ∈ Z+, k ∈ Z, n ≥ k, ∀x ∈ Rm,
(∆G(n))n ∈ lβ(Rm×m) for some β > 1.

where ∆1 ∈ Rm×m+ , ∆2 ∈ Rm×m+ , ∆G(·) : Z+ → Rm×m+ .

We are now in a position to state the main result of this section; its proof
is given in the Appendix.

Theorem 3.1. Assume that (3.2) holds. If

(3.3) ‖∆1‖+

∞∑
k=0

‖∆2∆G(k)‖ < 1

‖(Im −A−B
∑∞

k=0C(k))−1‖
,

then the zero solution of (3.1) remains GES in Bω for some ω ∈ (1, β0] with
β0 := min{γ, β}.

Remark 3.2. When γ = β = 1, a similar result to Theorem 3.1, but for
uniform asymptotical stability of linear time-invariant Volterra difference
equations of convolution type, can be found in [NNSM, Theorem 5.2].

We illustrate Theorem 3.1 by an example.
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Example 3.3. Consider a scalar Volterra difference equation with infi-
nite delay

(3.4) x(n+ 1) = F
(
n, x(n),

n∑
k=−∞

G(n, k, x(k))
)
, n ∈ Z+,

where

(3.5)

F (n, x, y) = arctan

(
nx

4n+ 1
+ y

)
,

G(n, k, x) =
2an−ke−x

2
x

[3(n− k) + 1][3(n− k) + 4]
,

where a ∈ (0, 1), n ∈ Z+, k ∈ Z, n ≥ k, x, y ∈ R.
Since∣∣∣∣arctan

(
nx

4n+ 1
+ y

)∣∣∣∣ ≤ 1

4
|x|+ |y| and |2an−ke−x2 | ≤ 2an−k

for all n ∈ Z+, k ∈ Z, x, y ∈ R, it follows that

|F (n, x, y)| ≤ A|x|+B|y| and |G(n, k, x)| ≤ C(n− k)|x|
for all x, y ∈ R, n ∈ Z+, k ∈ Z, n ≥ k, where

A =
1

4
, B = 1, C(n) =

2an

(3n+ 1)(3n+ 4)
, n ∈ Z+.

Clearly,

A+B

∞∑
n=0

C(n) ≤
1

4
+

∞∑
n=0

2

(3n+ 1)(3n+ 4)
=

1

4
+

2

3
< 1

and C(n) ≤ 1
2a

n for all n ∈ Z+. Choosing γ ∈ (1, a−1), we have aγ ∈ (0, 1)
and

∑∞
n=0C(n)γn < ∞. Thus, the zero solution of (3.4) is GES in Bγ0 for

some γ ∈ (1, γ], by Theorem 2.2.
Consider a perturbed Volterra difference equation with infinite delay of

the form

(3.6) x(n+ 1)

= F
(
n, x(n),

n∑
k=−∞

G(n, k, x(k))
)

+ F̃
(
n, x(n),

n∑
k=−∞

G̃(n, k, x(k))
)
,

where F (·, ·, ·) and G(·, ·, ·) are as in (3.4)–(3.5), and F̃ (·, ·) and G̃(·, ·, ·) are
given by

F̃ (n, x, y) =
2− sin2(nx)∆1(n)x

5
+ sin(∆2y),

G̃(n, k, x) = cos k ln(1 +∆G(n− k)|x|),
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where x, y ∈ R, n ∈ Z+, k ∈ Z, n ≥ k; ∆1(·) : Z+ → R and ∆G(·) : Z+ → R+

are unknown functions satisfying supn∈Z+
|∆1(n)| < ∞ and (∆G(n))n is in

lβ1(R) for some β1 > 1; ∆2 is a positive real parameter.
It is clear that

|F̃ (n, x, y)| ≤ ∆1|x|+∆2|y| and |G̃(n, k, x)| ≤ ∆G(n− k)|x|,
for all x ∈ R, n ∈ Z+, k ∈ Z, n ≥ k, where ∆1 := 1

5 supn∈Z+
|∆1(n)|.

By Theorem 3.1, the zero solution of (3.6) is GES in Bβ2 for some β2 > 1
provided

∆1 +∆2

∞∑
k=0

∆G(k) <
1(

1−
1

4
−
∞∑
k=0

2ak

(3k + 1)(3k + 4)

)−1 ,
or equivalently,

∆1 +∆2

∞∑
k=0

∆G(k) < 1− p,

where

p :=
1

4
+
∞∑
k=0

2ak

(3k + 1)(3k + 4)
∈ (0, 1) and a ∈ (0, 1).

4. Appendix: Proofs of Theorems 2.2 and 3.1

4.1. Proof of Theorem 2.2. We show that the zero solution of (2.1)
is GES in Bγ0 for some γ0 ∈ (1, γ] provided ρ(A+B

∑∞
k=0C(k)) < 1.

Since ρ(A+ B
∑∞

k=0C(k)) < 1 and (C(n))n ∈ lγ(Rm×m) with γ > 1, it
follows that

ρ
(
A+B

∞∑
k=0

C(k)γk1

)
< 1 for some γ1 ∈ (1, γ],

by continuity of the spectral radius. Furthermore, since A+B
∑∞

k=0C(k)γk1
≥ 0 and ρ(A+B

∑∞
k=0C(k)γk1 ) < 1, by Theorem 1.2(ii), there exists p ∈ Rm+ ,

p � 0, such that (A + B
∑∞

k=0C(k)γk1 )p � p. By continuity, there exists
γ2 > 1 such that (

A+B
∞∑
k=0

C(k)γk1

)
p ≤ γ−12 p.

Let γ0 := min{γ1, γ2}. Clearly, γ0 > 1 and

(4.1)
(
A+B

∞∑
k=0

C(k)γk0

)
p ≤ γ−10 p.

We first show that if γ0 ≥ γ then the zero solution of (2.1) is GES in Bγ .
The proof consists of two steps.
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Step I. We show that

‖x(n, n0, ϕ)‖ ≤ Kλn−n0 , ∀n, n0 ∈ Z+, n ≥ n0, ∀ϕ ∈ Bγ , ‖ϕ‖γ ≤ 1,

for some K > 0 and λ ∈ (0, 1).
Since p� 0, there exists M > 1 (independent of n0) such that |ϕ(n)|γn

�Mp for all n ∈ Z− and ϕ ∈ Bγ with ‖ϕ‖γ ≤ 1, or equivalently,

(4.2) |ϕ(n− n0)| �Mγ−(n−n0)p, ∀n ∈ Z, n ≤ n0, ∀ϕ ∈ Bγ , ‖ϕ‖γ ≤ 1.

Set λ := γ−10 and u(n) := Mλn−n0p, n ∈ Z. From (2.2) and (4.2), it follows
that

(4.3) |x(n)| � u(n), ∀n ∈ Z, n ≤ n0.
It is worth noticing that

|x(n0 + 1)|
(2.1),(H1),(H2)

≤ A|x(n0)|+B

n0∑
k=−∞

C(n0 − k)|x(k)|

(4.3)

≤ Au(n0) +B

n0∑
k=−∞

C(n0 − k)u(k)

= AMp+B

n0∑
k=−∞

C(n0 − k)Mλk−n0p

= M
(
A+B

∞∑
k=0

C(k)γk0

)
p

(4.1)

≤ Mγ−10 p
γ≤γ0
≤ Mγ−1p

= u(n0 + 1).

By induction, we can show that |x(n)| = |x(n, n0, ϕ)| ≤Mλn−n0p for all
n ≥ n0. By the monotonicity of vector norms, it follows that

‖x(n, n0, ϕ)‖ ≤M‖p‖λn−n0 = Kλn−n0 , ∀n ≥ n0,
where K := M‖p‖.

Step II. We show that (2.4) holds.
Consider the linear Volterra difference equation

(4.4) y(n+ 1) = Ay(n) +
n∑

k=−∞
BC(n− k)y(k), n ∈ Z+.

where A,B,C(·) are as in (H1) and (H2).
By Step I, we have ‖y(n, n0, ϕ)‖ ≤ Kλn−n0 for all n ≥ n0 and any ϕ ∈ Bγ

with ‖ϕ‖γ ≤ 1. By the linearity of (4.4),∥∥∥∥y(n, n0, ϕ

‖ϕ‖γ

)∥∥∥∥ =
1

‖ϕ‖γ
‖y(n, n0, ϕ)‖ ≤ Kλn−n0 , ∀n ≥ n0,
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for all ϕ ∈ Bγ , ϕ 6= 0. Therefore,

(4.5) ‖y(n, n0, ϕ)‖ ≤ Kλn−n0‖ϕ‖γ , ∀n ≥ n0, ∀ϕ ∈ Bγ .
For a given ϕ ∈ Bγ , let x(·) := x(·, n0, ϕ) be the solution of (2.1)–(2.2)
and let y(·) := y(·, n0, |ϕ|) be the solution of (4.4) with the initial condi-
tion y(n0 + k) = |ϕ|(k),∀k ∈ R−, where |ϕ|(n) := |ϕ(n)|, n ∈ Z. Since
A,B,C(n) ≥ 0 for n ∈ Z+ and |ϕ| ≥ 0, it follows that y(n) ≥ 0 for all
n ≥ n0.

Note that

|x(n0 + 1)|
(2.1),(H1),(H2)

≤ A|x(n0)|+B

n0∑
k=−∞

C(n0 − k)|x(k)|

(2.2)
= A|ϕ(0)|+

n0∑
k=−∞

BC(n0 − k)|ϕ(k − n0)|

(4.4)
= Ay(n0) +

n0∑
k=−∞

BC(n0 − k)y(k)

= y(n0 + 1).

By induction, |x(n)| ≤ y(n) for all n ≥ n0. By the monotonicity of vector
norms,

(4.6) ‖x(n)‖ ≤
∥∥|x(n)|

∥∥ ≤ ‖y(n)‖, ∀n ≥ n0.
Thus, (2.4) follows from (4.5) and (4.6). Hence, the zero solution of (2.1) is
GES in Bγ .

If 1 < γ0 < γ then (H2) holds for γ0 ∈ (1, γ). Note that Bγ0 ⊂ Bγ for
γ0 ∈ (1, γ]. Therefore, N (·, ·) is well-defined on Z+×Bγ0 . Then (2.1) is GES
in Bγ0 , by the above result. This completes the proof.

4.2. Proof of Theorem 3.1. Let

M := A+

∞∑
k=0

BC(k).

By the assumption, ρ(M) < 1. Since M,A,B, ∆1, ∆2, ∆G(k), k ∈ Z+, are
nonnegative, so is M +∆1 +

∑∞
k=0∆2∆G(k). We first show that (3.2) and

(3.3) imply

ρ0 := ρ
(
M +∆1 +

∞∑
k=0

∆2∆G(k)
)
< 1.

Assume on the contrary that ρ0 ≥ 1. By the Perron–Frobenius Theorem
(Theorem 1.1(i)), there exists x ∈ Rm+ , x 6= 0, such that(

M +∆1 +
∞∑
k=0

∆2∆G(k)
)
x = ρ0x,
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or equivalently,

(4.7) (ρ0Im −M)x =
(
∆1 +

∞∑
k=0

∆2∆G(k)
)
x.

Let H(t) := (tIm −M), t ∈ R. Since ρ(M) < 1 ≤ ρ0, H(ρ0)
−1 and H(1)−1

exist and are nonnegative, by Theorem 1.1(ii). From (4.7), it follows that

H(ρ0)
−1
(
∆1 +

∞∑
k=0

∆2∆G(k)
)
x = x.

Taking norms of both sides of the last equation, we have

(4.8) ‖H(ρ0)
−1‖
(
‖∆1‖+

∞∑
k=0

‖∆2∆G(k)‖
)
‖x‖ ≥ ‖x‖.

Since x 6= 0, (4.8) implies

(4.9) ‖∆1‖+

∞∑
k=0

‖∆2∆G(k)‖ ≥ 1

‖H(ρ0)−1‖
.

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 − 1)(H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, ‖H(1)−1‖ ≥ ‖H(ρ0)

−1‖ ≥ 0.
It follows from (4.9) that

‖∆1‖+

∞∑
k=0

‖∆2∆G(k)‖ ≥
1

‖H(1)−1‖
=

1

‖(Im −A−B
∑∞

k=0C(k))−1‖
.

However, this conflicts with (3.3). Therefore, ρ0 < 1.

We now show that the zero solution of (3.1) is GES in Bω for some ω ∈
(1, β0], with β0 := min{γ, β}. Since (C(n))n ∈ lγ(Rm×m) and (∆G(n))n ∈
lβ(Rm×m), we have (C(n) + ∆G(n))n ∈ lβ0(Rm×m). The remainder of the
proof is similar to that of Theorem 2.2 and is omitted.
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