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Summary. Asymptotic formulae are provided for the number of representations of a
natural number as the sum of four and of three squares that are pairwise coprime.

1. Introduction. In a recent contribution to this journal Professor
Schinzel established that all sufficiently large natural numbers in the union
A of the congruence classes 3, 4, 7, 12, 15 and 19 modulo 24 are sums of four
integral squares that are coprime in pairs [6]. The numbers in the remaining
classes cannot be represented in the proposed manner, as is readily checked
by considering squares modulo 24. The argument invokes the Siegel–Walfisz
theorem, so that no bound can be named for the size of the exceptions in
Schinzel’s theorem. The object of this note is to respond affirmatively to his
inquiries whether the result can be demonstrated effectively, and whether
sums of three pairwise coprime squares could be treated in like manner,
the necessary congruence condition now being that the number to be rep-
resented is in one of the classes 2, 3, 6, 11, 14 and 18 modulo 24. When
s = 3 or 4, our argument yields asymptotic formulae for the number Rs(n)
of natural numbers x1, . . . , xs with

x21 + x22 + . . .+ x2s = n, (xi, xj) = 1 (1 ≤ i < j ≤ s),
and with these in hand, we are able to deduce the following.

Theorem 1. There exist positive numbers c, n0 such that R4(n) ≥ cn
for all natural numbers n ∈ A with n ≥ n0. Further, for any ε > 0 there
are positive numbers c(ε), n0(ε) such that R3(n) ≥ c(ε)n1/2−ε for all natural
numbers n ≥ n0(ε) with n+ 1 ∈ A.
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Our estimations of R4(n) are effective, and it would be possible to assign
a numerical value to n0. Schinzel has conjectured that for all n > 268 with
n ∈ A one has R4(n) ≥ 1. With a refined version of our approach and
the help of machine computation, it is perhaps possible to check this. In
contrast, our lower bound for R3(n) stems from Siegel’s theorem, and is
therefore ineffective.

Throughout this paper, the letter p denotes a prime.

2. Large common factors. The evaluation of Rs(n) depends on an
auxiliary upper bound for the number of representations of n as the sum of
s squares with a large common factor between two of the squares involved.
Such representations are rare, but when s = 3 a proof of this fact requires
some care.

Lemma 1. Let c and m be natural numbers, and let %c(m) denote the
number of solutions of x2 + cy2 = m in non-negative numbers x, y. Then
the bound %c(m) � mε holds uniformly in all c that are expressible as the
sum of two integral squares.

Proof. When c > m, we have %c(m) ≤ 1. When c ≤ m, write c = c1c
2
2

with squarefree c1 to see that %c(m) ≤ %c1(m). Since c is a sum of two
squares, it follows that c1 is divisible by no prime congruent to 3 mod 4.
Hence, −4c1 is a fundamental discriminant, and Satz 8.3 of Zagier [10] im-
plies that

%c1(m) ≤ 6
∑
d|m

(
−4c1
d

)
.

A divisor function estimate completes the proof of the lemma.

Lemma 2. Let s = 3 or 4, and let 1 ≤ D ≤ n1/6. Let Ts(n,D) denote
the number of solutions in positive integers of x21 + x22 + · · · + x2s = n with
(x1, x2) ≥ D. Then Ts(n,D)� ns/2−1+εD−1.

Proof. Note that for all x counted here one has xi ≤ n1/2. Hence, the
number of choices for x1, x2 with (x1, x2) ≥ D does not exceed 4nD−1. For
any fixed such choice of x1, x2, Lemma 1 shows that the number of solutions
in x3, x4 of x23 + x24 = n − x21 − x22 is O(nε). This proves Lemma 2 when
s = 4.

More care is required when s = 3. Let U(n, d) denote the number of
solutions in natural numbers of x21 + x22 + x23 = n with (x1, x2) = d. Then

(1) T3(n,D) =
∑

D≤d≤n1/2

U(n, d).

For any d ≤ n1/2, consider a prime p with pe ‖ (d2, n), and suppose that e
is odd. Then pe ‖ n and pe+1 | d2. For any solution x counted by U(n, d) it



Sums of Squares 217

follows that x23 ≡ n mod pe+1, and further that pe ‖ x23, which is impossible.
We conclude that U(n, d) = 0 in all cases where (d2, n) is not a square.

We may now suppose that (d2, n) = u2, and hence that d = uv. For
any solution x counted by U(n, d), we have (d2, n) |x23, whence u |x3. Now
xi = dyi (i = 1, 2) and x3 = uz with natural numbers y1, y2, z. It follows
that U(n, d) does not exceed the number of solutions in y1, y2, z of

(2) v2(y21 + y22) + z2 = nu−2.

Note that (nu−2, v) = 1. Equation (2) implies z ≤ n1/2u−1 and z2 ≡
nu−2 mod v2, forcing z into no more than O(vε) congruence classes
modulo v2. Hence, the number of choices for z does not exceed �
vε(n1/2u−1v−2 + 1), and for any chosen z, Lemma 1 shows that the num-
ber of solutions of (2) in y1, y2 is bounded by O(nε). This yields U(n, d)�
nε(n1/2u−1v−2 + 1) and∑
D≤d≤n1/3

U(n, d)� nε
∑
u2|n

∑
D/u≤v≤n1/3/u

n1/2

uv2
+ n1/3+ε � n1/2+2ε

D
+ n1/3+ε,

which is acceptable. The above discussion also shows that the sum

U =
∑

n1/3<d≤n1/2

U(n, d)

does not exceed the number of solutions of (2) in natural numbers y1, y2, z,
u, v with u2 |n, (y1, y2) = 1, (v, nu−2) = 1 and uv > n1/3. For the solutions
counted here, (2) implies that yi ≤ n1/2/(uv) ≤ n1/6, so that there are at
most n1/3 choices for the pairs y1, y2. For any fixed choice of y1, y2, we infer
from Lemma 1 that the number of solutions of (2) in v and z is O(nε). Hence
U � n1/3+ε, and the desired bound for T3(n,D) follows from (1).

3. Initial transformation. The opening game begins with the obvious
identity

(3) Rs(n) =
∑

x21+···+x2s=n

∑
dij |(xi,xj)
1≤i<j≤s

µ(dij).

In the interest of brevity, let d = (dij)1≤i<j≤s, and put

(4) µ(d) =
∏

1≤i<j≤s
µ(dij), |d| = max

1≤i<j≤s
|dij |.

In the later proceedings, we will use this notation also for vectors of different
format. Now choose a number θ with 0 < θ < 1/6. Let R′s(n) denote the
portion of the sum in (3) where |d| ≤ nθ, and let R′′s(n) be the complemen-
tary part where |d| > nθ. By symmetry and a divisor function estimate, one
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has R′′s(n)� nεTs(n, n
θ). Hence, by Lemma 2,

(5) Rs(n) = R′s(n) +O(ns/2−1−θ+ε).

Further, one infers directly from the definition that R′s(n) equals

(6)
∑
|d|≤nθ

µ(d) #{x ∈ Ns : x21+· · ·+x2s = n, dij | (xi, xj) (1 ≤ i < j ≤ s)}.

For 1 ≤ l ≤ s, set

(7) Cl =
∏

1≤i<l
dil

∏
l<j≤s

dlj , cl =
∏
p|Cl

p.

For squarefree dij , the simultaneous conditions dij | (xi, xj) (1 ≤ i < j ≤ s)
are equivalent to cl |xl for 1 ≤ l ≤ s. Hence, if rc(n) denotes the number of
solutions of

c21y
2
1 + · · ·+ c2sy

2
s = n

in natural numbers y1, . . . , ys, we find from (5) and (6) that

(8) Rs(n) =
∑
|d|≤nθ

µ(d)rc(n) +O(ns/2−1−θ+ε).

Here c is defined in terms of d via (7). For later use, we summarise certain
properties of the mapping d 7→ c in the next lemma. It features the set
U = {u ∈ N : p |u⇒ p2 |u} of squareful numbers.

Lemma 3. Let s = 3 or 4, and suppose that d = (dij)1≤i<j≤s with
µ(d)2 = 1 and c ∈ Ns correspond via (7). Then µ(c)2 = 1 and c1 · · · cs ∈ U .
Further |c| ≤ |d|s−1.

Proof. Let p be a prime with p | c1. Then there is some j ∈ {2, . . . , s}
with p | d1j , and it follows that p | cj . By symmetry, this argument shows
that c1 · · · cs is squareful. The other claims are immediate from (7).

4. Sums of four squares. At this point, the treatment of the cases
s = 3 and s = 4 can no longer be performed in parallel. For s = 4, the
case on which we concentrate first, the method rests on results obtained in
collaboration with Fouvry [3]. Let

(9) S(q, a) =

q∑
x=1

e(ax2/q)

and

(10) A(q, c, n) = q−4
q∑

a=1
(a,q)=1

e(−an/q)
4∏
j=1

S(q, ac2j ).
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As a special case of [3, Lemma 1], we recall the estimate

(11) A(q, c, n)� qε−3/2
(
(q, n)(q, c21)(q, c

2
2)(q, c

2
3)(q, c

2
4)
)1/2

.

It follows that the series

(12) S(c, n) =
∞∑
q=1

A(q, c, n)

converges absolutely. The next lemma is a simplified version of [3, Theo-
rem 3].

Lemma 4. There is a positive number δ such that uniformly for all
c ∈ N4 with µ(c)2 = 1 and |c| ≤ n1/24 one has

rc(n) =

(
π

4

)2S(c, n)n

c1c2c3c4
+O(n1−2δ).

We may take δ ≤ 1/4 and θ = δ/6. Then, by (8) and Lemma 4,

(13) R4(n) =

(
π

4

)2

n
∑
|d|≤nθ

µ(d)
S(c, n)

c1c2c3c4
+O(n1−θ+ε).

Here and in similar expressions later, c is defined in terms of d via (7).

Lemma 5. For natural numbers n the multiple series

V (n) =
∑
d∈N6

µ(d)2|d|1/4 |S(c, n)|
c1c2c3c4

converges, and V (n)� nε.

Equipped with this lemma, we see that the singular series

(14) E4(n) =
∑
d∈N6

µ(d)2
S(c, n)

c1c2c3c4

converges absolutely, and that this expression differs from its truncated ver-
sion in (13) by an amount not exceeding V (n)n−θ/4 � n−θ/5. By (13), we
may conclude as follows.

Theorem 2. There is a positive number η with the property that

R4(n) =

(
π

4

)2

E4(n)n+O(n1−η).

It remains to establish Lemma 5. By (11) and (12),

(15) V (n)�
∞∑
q=1

qε−3/2(q, n)1/2F (q)
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where

F (q) =
∑
d∈N6

µ(d)2|d|1/4
(
(q, c21)(q, c

2
2)(q, c

2
3)(q, c

2
3)
)1/2

c1c2c3c4
.

When all dij are squarefree, we infer from (7) that dij | ci and dij | cj . This
implies dij ≤ (cicj)

1/2, whence |d| ≤ (c1c2c3c4)
1/2, and consequently

(16) F (q) ≤
∑
d∈N6

µ(d)2
(
(q, c21)(q, c

2
2)(q, c

2
3)(q, c

2
3)
)1/2

(c1c2c3c4)7/8
.

We now wish to bound the right hand side above by a sum over c. Let

C = {c ∈ N4 : µ(c)2 = 1, c1c2c3c4 ∈ U }.
Then, by Lemma 3, all c that occur on the right hand side of (16) are in C .
In the reverse direction, let c ∈ C . Then any d with µ(d)2 = 1 corresponding
to c via (7) satisfies dij | ci, dij | cj for all 1 ≤ i < j ≤ 4. Hence, the number
of d that yield the same c is bounded by O(|c|ε). Therefore, by (16),

(17) F (q)�
∑
c∈C

µ(c)2
(
(q, c21)(q, c

2
2)(q, c

2
3)(q, c

2
3)
)1/2

(c1c2c3c4)6/7
�
∑
u∈U

u−6/7fq(u)

where

(18) fq(u) =
∑
c∈N4

c1c2c3c4=u

µ(c)2
(
(q, c21)(q, c

2
2)(q, c

2
3)(q, c

2
3)
)1/2

.

It is immediate that the function fq(u) is multiplicative in u. Also, for a
prime p and l ∈ N, the solutions of c1c2c3c4 = pl with µ(c)2 = 1 have
exactly l of the cj equal to p, and the remaining ones equal to 1. Hence
fq(p

l) = 0 for all l ≥ 5. Rewriting the right hand side of (17) as an Euler
product yields

(19) F (q)�
∏
p

(
1 + p−12/7fq(p

2) + p−18/7fq(p
3) + p−24/7fq(p

4)
)
.

The remark preceding (19) together with (18) also shows that for p - q one
has fq(p

l) ≤ 6 for 2 ≤ l ≤ 4, whence the corresponding Euler factors in (19)
are of the form 1 +O(p−12/7). Further, when p ‖ q and 2 ≤ l ≤ 4, we again
find from (18) that

fq(p
l) = fp(p

l) =
∑

c1c2c3c4=pl

µ(c)2
(
(p, c1)(p, c2)(p, c3)(p, c4)

)1/2 ≤ 6pl/2.

Similarly, when p2 | q, one finds that

fq(p
l) = fp2(pl) =

∑
c1c2c3c4=pl

µ(c)2
(
(p2, c21)(p

2, c22)(p
2, c23)(p

2, c24)
)1/2 ≤ 6pl.
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On collecting together, one derives from (19) that

F (q)�
∏
p‖q

(1 + 18p−5/7)
∏
p2|q

(1 + 18p4/7)� qεq
2/7
2

where q2 ∈ U is defined through the unique factorisation q = q1q2 with
(q1, q2) = 1, µ(q1)

2 = 1. By (15) we now see that

V (n)�
∞∑
q1=1

µ(q1)
2q
ε−3/2
1 (q1, n)1/2

∑
q2∈U

q
ε−17/14
2 (q2, n)1/2 � nε.

This completes the proof of Lemma 5.

5. The quaternary singular product. The definition of E4(n) in (14)
involves an oscillating sum that stems from the use of the inclusion-exclusion
principle in the transition to (8) in Section 2. This disguises the arithmetical
information typically encoded in a singular series. In fact, E4(n) should be
related to the number Mn(q) of incongruent solutions of

(20) x21 + x22 + x23 + x24 ≡ n mod q, (xi, xj , q) = 1 (1 ≤ i < j ≤ 4)

in x1, x2, x3, x4. In this section, such a relation is established by a method
that, in some sense, reverses the manipulations leading from (3) to (8). The
argument will also present E4(n) as an Euler product from which a lower
bound can be deduced along very familiar lines.

Lemma 6. For all n ∈ N the function Mn(q) is multiplicative in q.

Proof. Observe that if d ∈ N is coprime to q then the mapping x 7→ dx
is a bijection between the solutions counted by Mn(q) and Mnd2(q). In par-
ticular, one then has Mn(q) = Mnd2(q).

Next suppose that q = q′q′′ with (q′, q′′) = 1, and choose natural numbers
n′, n′′ with n ≡ q′′2n′ mod q′ and n ≡ q′2n′′ mod q′′. We now apply the
Chinese remainder theorem and write x = q′x′′ + q′′x′ in (20) to see that
the mapping x 7→ (x′,x′′) is a bijection between the solutions x counted by
Mn(q) and the pairs (x′,x′′) counted by Mn′(q′) and Mn′′(q′′), respectively.
The two remarks together establish the lemma.

Lemma 7. Let p1, . . . , pt be distinct primes and write Π = p1 · · · pt.
Further, let h ≥ 5 and Q = Πh. Then

(21)
∑
dij |Q

1≤i<j≤4

µ(d)

c1c2c3c4

∑
q|Q

A(q, c, n) = Q−3Mn(Q).
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Proof. As in (3), we find that

Mn(Q) =

Q∑
x1,x2,x3,x4=1

x21+x
2
2+x

2
3+x

2
4≡n mod Q

∑
dij |(xi,xj ,Q)
1≤i<j≤4

µ(d) =
∑
dij |Q

1≤i<j≤4

µ(d)Wn(Q, c)

where Wn(Q, c) is the number of solutions of x21 + x22 + x23 + x24 ≡ n mod Q
with 1 ≤ xi ≤ Q and ci |xi (1 ≤ i ≤ 4). We write xi = ciyi and note
that by (7) the ci are squarefree numbers that divide Π. It follows that
Wn(Q, c) equals the number of solutions of c21y

2
1 + · · · + c24y

2
4 ≡ n mod Q

with 1 ≤ yi ≤ Q/ci. By the theory of quadratic congruences, the number
Nn(Q, c) of solutions of c21y

2
1 + · · ·+ c24y

2
4 ≡ n mod Q with 1 ≤ yi ≤ Q equals

c1c2c3c4Wn(c, Q), so that we now have

(22) Mn(Q) =
∑
dij |Q

1≤i<j≤4

µ(d)

c1c2c3c4
Nn(Q, c).

Further, by orthogonality,

QNn(Q, c) =

Q∑
A=1

S(Q,Ac21)S(Q,Ac22)S(Q,Ac23)S(Q,Ac24)e

(
−An
Q

)
.

This sum is rearranged according to the value of (A,Q) = Q/q for q |Q.
Since q−1S(q, a) is a function of a/q, this produces

Nn(Q, c)

Q3
=
∑
q|Q

1

q4

Q∑
A=1

(A,Q)=Q/q

S(q, ac21)S(q, ac22)S(q, ac23)S(q, ac24)e

(
−an
q

)

where a is defined by A/Q = a/q. By (10), we infer that

Q−3Nn(Q, c) =
∑
q|Q

A(q, c, n),

and Lemma 7 follows from (22).

We are ready to embark on the main argument. First we take t = 1 in
Lemma 7 which then asserts that for any prime p one has

p−3hMn(ph) =
∑
dij |p

1≤i<j≤4

µ(d)

c1c2c3c4

h∑
l=0

A(pl, c, n).

By (11), it follows that the limit

(23) E4(p, n) = lim
h→∞

p−3hMn(ph)
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exists. We now apply Lemma 7 again, this time with p1, . . . , pt the complete
list of primes not exceeding a parameter P . In Lemma 6 we take Q =
(p1 . . . pt)

h to see that the right hand side of (21) equals

(24) Q−3Mn(Q) =
∏
p≤P

p−3hMn(ph).

Moreover, by (12) and (14), the sum on the left hand side of (21) is a portion
of the absolutely convergent series (14). By unique factorisation, the nested
limit h→∞ followed by P →∞ of the expression on the left hand side of
(21) equals E4(n). Now we take h → ∞ in (24), apply (23) and then take
P →∞ to infer the desired identity

(25) E4(n) =
∏
p

E4(p, n).

The deduction of a lower bound for E4(n) depends on a precise evaluation
of Mn(p) for odd primes p. Let Hs(p, n) denote the number of incongruent
solutions of x21 + · · ·+ x2s ≡ n mod p with p - xj (1 ≤ j ≤ s). By symmetry
and an inspection of (20), one then finds that Mn(p) = H4(p, n)+4H3(p, n).
Further, by (9) and orthogonality,

pHs(p, n) =

p∑
a=1

(S(p, a)− 1)se

(
−an
p

)
.

Here we single out the term with a = p and use the trivial identity

(X − 1)4 + 4(X − 1)3 = X4 − 6X2 + 8X − 3

twice to infer that

(26) pMn(p) = p4 − 6p2 + 8p− 3 + Γ,

where

Γ =

p−1∑
a=1

(
S(p, a)4 − 6S(p, a)2 + 8S(p, a)− 3

)
e

(
−an
p

)
.

We now recall some identities from the elementary theory of Gauß sums.
When p is an odd prime and p - a, then

(27)

S(p, a) =

(
a

p

)
S(p, 1), S(p, a)2 =

(
−1

p

)
p, S(p, 1) =

p−1∑
a=1

(
a

p

)
e

(
a

p

)
(see Rose [5, Theorems 2.2 and 2.3 and formula (∗) on p. 108]). In particular,
it follows that

(28) Γ =

(
p2 − 6

(
−1

p

)
p− 3

) p−1∑
a=1

e

(
−an
p

)
+ 8

p−1∑
a=1

S(p, a)e

(
−an
p

)
.
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When p - n, one finds from (27) that

p−1∑
a=1

S(p, a)e

(
−an
p

)
= S(p, 1)

p−1∑
a=1

(
a

p

)
e

(
−an
p

)
=

(
n

p

)
|S(p, 1)|2 =

(
n

p

)
p,

and by (26) and (28), we deduce an explicit formula for Mn(p) that implies
the inequality

(29) |Mn(p)− p3 + 7p| ≤ 22.

When p |n, orthogonality and (9) produce

p−1∑
a=1

S(p, a)e

(
−an
p

)
=

p−1∑
a=1

S(p, a) = 0,

so that

Γ = (p− 1)

(
p2 − 6

(
−1

p

)
p− 3

)
.

By (26), we see that Mn(5) ≥ 1. Also, it follows that Γ ≥ 3 for p ≥ 7, and
by (26) this shows that Mn(p) ≥ p3 − 6p + 8. In combination with (29) we
may now deduce the following.

Lemma 8. Let p ≥ 7 be a prime, and let n be a natural number. Then
Mn(p) ≥ p3−7p−22. Further, Mn(5) ≥ 1. If n 6≡ 2 mod 3, then Mn(3) ≥ 1.
If n is in one of the residue classes 3, 4 or 7 modulo 8, then Mn(8) ≥ 1.

Proof. The claims for p ≥ 5 have already been established, and the
claims concernings Mn(3) and Mn(8) can be checked by hand.

A lower bound for E4(n) is now easily available. For odd primes p, the ar-
gument of proof for Lemma 2.13 of Vaughan [9] yields Mn(ph) ≥ p3h−3Mn(p)
for h ≥ 1, and similarlyMn(2h) ≥ 23h−9Mn(8) for h ≥ 3. Hence, by Lemma 8
and (23), we find that for p ≥ 7 one has E4(p, n) ≥ 1 − 6p−2 − 22p−3, and
also that E4(5, n) ≥ 5−3. Further, if n satisfies the congruence conditions
in Lemma 8, then E4(3, n) ≥ 1/27 and E4(2, n) ≥ 1/512. By the Chinese
remainder theorem and (25), it follows that E4(n)� 1 uniformly in n ∈ A.
The case s = 4 of Theorem 1 now follows from Theorem 2.

6. Sums of three squares. Our approach to R4(n) easily extends to
sums of more than four squares. The problem with three squares, however,
is more difficult. The arithmetic of ternary quadratic forms is more involved,
and the singular series associated with a ternary form no longer converges
absolutely. Thus, the manipulations of certain multiple series that we per-
formed in Sections 4 and 5 are harder to verify in the new context, if at
all possible. Instead, we turn to an alternative method where the desired
conclusion is inferred from the representation of the singular series as an
Euler product.
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We begin by recalling some basic facts from the analytic theory of pos-
itive definite ternary quadratic forms. Throughout, let c1, c2, c3 ∈ N with
µ(c)2 = 1. For a prime p and n ∈ N, the limit

(30) χp(c, n) = lim
h→∞

p−2h #{1 ≤ xj ≤ ph : c21x
2
1+c22x

2
2+c23x

2
3 ≡ n mod ph}

exists, and whenever p - 2c1c2c3n, one has

(31) χp(c, n) = 1 +

(
−n
p

)
1

p

(see Siegel [8], in particular Hilfssatz 12). Elementary prime number theory
shows that the limit

(32) S(c, n) = lim
P→∞

∏
p≤P

χp(c, n)

also exists. Let e = (1, 1, 1) and write S(n) = S(e, n). Then (31) computes
χp(e, n) for all p - 2n, and for odd primes p with p |n, Hilfssatz 16 of Siegel
[8] yields

(33) 1− 1

p
≤ χp(e, n) ≤ 1 +

1

p
.

Further, whenever n + 1 ∈ A, then n is in one of the classes 2, 3 or 6
modulo 8, so that x21 + x22 + x23 ≡ n mod 8 has a solution with x1 = 1. An
argument similar to that in the ultimate paragraph in Section 5 now shows
that χ2(e, n) > 1/512. For n + 1 ∈ A this gives χp(e, n) > 0 for all p, and
for these n we may now define

(34) ω(c, n) =
∏

p|c1c2c3

χp(c, n)

χp(e, n)
.

For p - c1c2c3, the substitution yi = cixi in (30) shows that χp(c, n) =
χp(e, n). Hence, by (32) and (34), we have

(35) S(c, n) = S(n)ω(c, n).

Finally, by (31)–(33), the singular product S(n) factors into a Dirichlet
L-function to a quadratic character modulo 4n at 1 and a product over
primes p | 2n of factors satisfying (33) when p is odd. Hence, for n+ 1 ∈ A,
Siegel’s theorem [7] yields

(36) S(n)� n−ε.

Lemma 9. Let n + 1 ∈ A, and let c1, c2, c3 ∈ N with µ(c)2 = 1 and
c1c2c3 ∈ U . Then, whenever c1c2c3 ≤ n1/8, one has

rc(n) =
πn1/2

4c1c2c3
S(c, n) +O

(
n13/28+ε(c1c2c3)

5/2
)
.
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Proof. This is similar to [2, Lemma 2.2]. First suppose that c1c2c3 is
even. Then, by hypotheses, at least two of the cj are even. By symmetry,
we may suppose that c1 and c2 are even. Further, n + 1 ∈ A implies that
n is in one of the congruence classes 2, 3 or 6 modulo 8. It follows that
c21x

2
1 + c22x

2
2 + c23x

2
3 ≡ n mod 4 has no solution x ∈ Z3, and consequently

rc(n) = χ2(c, n) = 0. By (32), this confirms the claim in the lemma.

Next suppose that c1c2c3 is odd. Then, since µ(c)2 = 1, it follows from [4,
(102:10)] that the spinor genus of c21x

2
1 + c22x

2
2 + c23x

2
3 coincides with the

genus of this form. According to Siegel [8], the average of representations in
a genus is the product of local densities. Also 4 - n, so that Blomer [1, (2.8)]
is applicable. On combining this with the aforementioned result of Siegel,
we find that the estimate

(37)

#{x ∈ Z3 : c21x
2
1+c22x

2
2+c23x

2
3 = n}=

2πn1/2

c1c2c3
S(c, n)+O

(
n13/28+ε(c1c2c3)

5/2
)

holds uniformly for all c with µ(c)2 = 1 and c1c2c3 ≤ n1/8. The left hand side
of (37) differs from 8rc(n) by the number of solutions of c21x

2
1+c

2
2x

2
2+c

2
3x

2
3 = n

with at least one of x1, x2, x3 equal to 0, and by Lemma 1 the latter is
bounded by O(nε), uniformly in c. This establishes the lemma.

We are ready to proceed to an asymptotic formula for R3(n). The pro-
cedure is similar to that used in Section 4. We take s = 3 and θ = 1/600
in (8), and apply Lemma 9 to replace rc(n). This is possible because by
Lemma 3 we see that c1c2c3 ≤ n6θ for all c that occur on the right hand
side of (8). It follows that whenever n+ 1 ∈ A, then

R3(n) =
∑
|d|≤nθ

µ(d)

(
πn1/2

4c1c2c3
S(c, n)+O

(
n13/28+ε(c1c2c3)

5/2
))

+O(n1−θ+ε).

We use the bound c1c2c3 ≤ n6θ again and apply (34) to simplify this to

(38) R3(n) =
π

4
S(n)n1/2

∑
|d|≤nθ

µ(d)ω(c, n)

c1c2c3
+O(n1−θ+ε).

Lemma 10. For natural numbers n with n+ 1 ∈ A the multiple series

W (n) =
∑
d∈N3

µ(d)2|d|1/2 ω(c, n)

c1c2c3

converges, and W (n)� nε.

With this lemma in hand, we deduce that the series

(39) T(n) =
∑
d∈N3

µ(d)
ω(c, n)

c1c2c3
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converges absolutely, and that it differs from the sum on the right hand side
of (38) by an amount not exceeding O(n−θ/3). From (38) we now deduce
the following.

Theorem 3. Let n+ 1 ∈ A. Then

R3(n) =
π

4
S(n)T(n)n1/2 +O(n999/2000).

The proof of Lemma 10 depends on estimates for ω(c, n) that we now
derive. Suppose that n + 1 ∈ A and µ(c)2 = 1. Let e1(p) = (p, 1, 1), e2 =
(p, p, 1) and e3(p) = (p, p, p). Then, as on p. 510 of [2], one infers from (30)
and (34) that

(40) ω(c, n) =
∏

pν |c1c2c3

χp(eν(p), n)

χp(e, n)
.

Whenever c is the image of some d, then c1c2c3 ∈ U (by Lemma 3), so that
it suffices to consider χp(eν(p), n) for ν = 2 and ν = 3.

When ν = 3 and p2 - n, it follows from (30) that χp(e3(p), n) = 0. When
p2 |n, an appropriate rearrangement of (30) gives χp(e3(p), n) = p2χp(e, n),
and (33) then shows that χp(e3(p), n) ≤ 2p2. Now let ν = 2 and p - n.
Then (30) shows that χp(e2(p), n) = 0 unless

(
n
p

)
= 1. In this last case,

the congruence p2x21 + p2x22 + x23 ≡ n mod p has exactly 2p2 solutions with
1 ≤ xj ≤ p (1 ≤ j ≤ 3), and an application of Hensel’s lemma gives
χp(e2(p), n) = 2. Finally, consider the case ν = 2 and p |n. Then, by (30),
we have χp(e2(p), n) = 0 unless the congruence p2x21+p2x22+x23 ≡ n mod ph

is soluble for any fixed h. This last condition implies p |x3, and further that
p2 |n. Another obvious rearrangement in (30) now shows that χp(e2(p), n) =
pχp(e, n/p

2). In particular, the bounds in (33) now suffice to conclude that
there is a constant C ≥ 1 with the property that

(41) 0 ≤ ω(c, n) ≤
∏

pν‖c1c2c3

ων(p, n)

where ω2(2, n) = ω3(2, n) = C and, for odd primes p,

ω2(p, n) =

{
2(1− 1/p)−2,

p(1− 1/p)−2,
ω3(p, n) =

{
0 for p2 -n,
Cp2 for p2 |n.

We are ready to complete the proof of Lemma 10. As in the proof of
Lemma 5, we note that (7) yields |d| ≤ (c1c2c3)

1/2, and that at most
(c1c2c3)

ε triplets d ∈ N3 with µ(d)2 = 1 produce the same c. Hence, by
the argument leading to (17),

W (n)�
∑

c1c2c3∈U

µ(c)
ω(c, n)

(c1c2c3)3/4−ε
.
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We now combine (41) with the bounds obtained for ω(c, n) to infer that

W (n)�
∑
u∈U

u−5/7g(u)

where g is the multiplicative function defined on U by g(pν) = ων(p, n)
whenever p is a prime. The required estimate now follows from

W (n)�
∏
p

(
1 + p−10/7g(p2) + p−15/7g(p3)

)
�
∏
p2|n

(1 + 4p−3/7 + Cp−1/7).

7. The correcting factor. In this section, we bound T(n) from below,
thereby establishing the case s = 3 of Theorem 1. The first step is to convert
T(n) into an Euler product. We continue to import notation from Section 3,
but set s = 3. Thus, when d = (d12, d13, d23) ∈ N3 with µ(d)2 = 1, we let
c = (c1, c2, c3) be the vector defined by (7). For q ∈ N, let

(42) D(q) = {d ∈ N3 : µ(d)2 = 1, c1c2c3 = q}.
By (7), we have dij | q so that D(q) is a finite set. When n+ 1 ∈ A, let

(43) h(q, n) =
∑

d∈D(q)

µ(d)ω(c, n).

On rearranging the absolutely convergent series (39) according to the value
of c1c2c3 we infer from (43) that

T(n) =
∞∑
q=1

q−1h(q, n).

Lemma 11. For any n + 1 ∈ A, the function h(q, n) is multiplicative
in q. For ν = 1 and for ν ≥ 4 one has h(pν , n) = 0.

From this lemma, we now conclude that

(44) T(n) =
∏
p

(
1 +

h(p2, n)

p2
+
h(p3, n)

p3

)
.

We now establish Lemma 11. At the same time, we will determine
h(p2, n) and h(p3, n). First observe that the vectors c coming from some
d via (7) have squarefree coordinates with c1c2c3 squareful. Hence D(q) = ∅
unless q is squareful and free of fourth powers. Next, we demonstrate that
whenever q = pνq′ with p - q′, then

(45) h(q, n) = h(pν , n)h(q′, n).

By induction on the number of prime factors, this suffices to confirm that
h(q, n) is multiplicative in q. Since D(q) = ∅ implies h(q, n) = 0, we see
that (45) reduces to the trivial identity 0 = 0 unless q is squareful and free
from fourth powers. In this remaining case, we have ν = 2 or ν = 3, and
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we proceed to compute D(p2) and D(p3) explicitly. When c1c2c3 = p2 with
all cj squarefree, then there are i, j with 1 ≤ i < j ≤ 3 and ci = cj = p, and
the remaining cl is 1. By (7), we see that we must have dij = p, and that
the remaining coordinates of d must be 1. Hence

(46) D(p2) = {(p, 1, 1), (1, p, 1), (1, 1, p)}.

An analogous reasoning shows that c1c2c3 = p3 implies c = (p, p, p), and
that this is possible only when at least two components of d equal p, the
remaining one being p or 1. Hence

(47) D(p2) = {(p, p, 1), (p, 1, p), (1, p, p), (p, p, p)}.

Now suppose that q = p2q′ with p - q′. If c1c2c3 = p2q′ with µ(c)2 = 1,
then there is exactly one pair i, j with 1 ≤ i < j ≤ 3 and p | ci, p | cj but
p - cl where {i, j, l} = {1, 2, 3}. Write c′i = ci/p, c

′
j = cj/p, c

′
l = cl. Then

c′1c
′
2c
′
3 = q′. Also, (7) shows that p - dij , but p does not divide any other

coordinate of d. We may define d′ as the vector obtained from d by replacing
dij with dij/p. Then, by construction, d′ ∈ D(q′), and unique factorisation
implies that this defines a bijection

D(q)→ D(q′)×D(p2), d 7→ (d′, e′),

where e′ ∈ D(p2) is the vector that has i, j coordinate p. Since µ(d′) =
−µ(d) and µ(e′) = −1, it follows from (43) that

h(q, n) =
∑

d′∈D(q′)

∑
e′∈D(p2)

µ(d′)µ(e′)ω(c, n).

By (40) we also see that ω(c, n) = ω(c′, n)ω((p, p, 1), n). The identity (45)
now follows immediately when ν = 2. The case where ν = 3 is very similar,
and we may omit the details. This concludes the proof of Lemma 11.

To complete the discussion of T(n), we note that it follows from (43),
(46), (47) and (40) that

h(p2, n) = −3ω((p, p, 1), n), h(p3, n) = 2ω((p, p, p), n).

By (43), this implies that

T(n) =
∏
p

Ep(n)

where

Ep(n) = 1− 3
ω(e2(p), n)

p2
+ 2

ω(e3(p), n)

p3
.

We proceed to establish lower bounds for Ep(n). First suppose that p ≥ 5
and p2 - n. Then, by (41), we have ω(e3(p), n) ≥ 0 and ω(e2(p), n) ≤
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2p/(p− 1) so that

Ep(n) ≥ 1− 6

p(p− 1)
.

For p ≥ 5 with p2 |n the same reasoning produces

Ep(n) ≥ 1− 3

(p− 1)
,

and consequently

(48) T(n)� E2(n)E3(n)(log n)−3.

Now consider E3(n). Since n + 1 ∈ A, we have n ≡ 0 or 2 mod 3. If
n ≡ 2 mod 3, then the argument preceding (41) shows that χ3(e2(3), n) = 2.
Also, by (31), we have χ3(e, n) = 4/3. It follows that ω(e2(3), n) = 3/2 and
E3(n) ≥ 1/2. This leaves the case where 3 |n. If 3 ‖ n then it is immediate
that χ3(e2(3), n) = χ3(e3(3), n) = 0, and this shows that E3(n) = 1. Finally,
when 9 |n, it is also immediate from (30) that χ3(e3(3), n) = 9χ3(e, n/9).
From (40) we then see that

E3(n) = 1− χ3(e, n/9)

χ3(e, n)
.

By Lemma 16 of Siegel [8] we know that both χ3(e, n/9) and χ3(e, n) are in
the interval [2/3, 4/3] so that E3(n) ≥ 2/3. It has now been demonstrated
for all n with n+1 ∈ A one has E3(n) ≥ 1/2. The reader may check that for
these n, a similar argument gives E2(n) ≥ 2−7. We now deduce from (48)
and (36) that S(n)T(n)� n−ε for all n with n+ 1 ∈ A. The conclusion in
Theorem 1 concerning R3(n) now follows from Theorem 3.
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