Relations between Elements $r^{p^{l}}-r$ and $p \cdot 1$ for a Prime p

by

Andrzej PRÓSZYŃSKI

Presented by Andrzej SCHINZEL

Summary. For any positive power n of a prime p we find a complete set of generating relations between the elements $[r]=r^{n}-r$ and $p \cdot 1$ of a unitary commutative ring.

1. Introduction. Let R be a commutative ring with 1 . In [2], the author introduced the ideals $I_{n}(R)$ generated by all elements $r^{n}-r$ where $r \in R$. It follows from [2, Proposition 5.5] that $I_{n}(R)$ is precisely the intersection of all maximal ideals M of R such that $|R / M|-1$ divides $n-1$. The main result of [1] determines generating relations for the generators $r^{n}-r$ of $I_{n}(R)$, where n is a power of 2 or $n=3$ (Theorem 1).

In [3], the author introduced the ideals $I_{p}^{\prime}(R)=I_{p}(R)+p R$ for prime p. It follows from [3, Theorem 1.4.8] that $I_{p}^{\prime}(R)$ is precisely the intersection of all maximal ideals M of R such that $|R / M|=p$. In this paper, we consider the more general case of ideals $I_{n}^{\prime}(R)=I_{n}(R)+p R$, generated by all elements $r^{n}-r$ for $r \in R$ and the element $p \cdot 1 \in R$, where $n=p^{l}$ for $l=1,2, \ldots$ The purpose of this paper is to find a complete set of generating relations between these elements (Theorem 1), generalizing also (in Corollary 4) a part of [1, Theorem 1].
2. n-derivations. Recall some ideas of [1]. If f is a mapping between R-modules and $f(0)=0$ then we define

$$
\left(\Delta^{2} f\right)(x, y)=f(x+y)-f(x)-f(y)
$$

Let n be a fixed natural number. By an n-derivation over R we mean a function $f: R \longrightarrow M$, where M is an R-module, satisfying the following

Key words and phrases: ideals of commutative rings, generators and relations, higher degree mappings.
condition:
(D_{n})

$$
f(r s)=r^{n} f(s)+s f(r), \quad r, s \in R .
$$

For example, the function $f: R \rightarrow R, f(r)=r^{n}-r$, is an n-derivation. On the other hand, any (ordinary) derivation is a 1 -derivation.

The following lemma contains some new properties.
Lemma 1. If f is an n-derivation then for any $r, s \in R$ we have
(1) $\left(r^{n}-r\right) f(s)=\left(s^{n}-s\right) f(r)$,
(2) $f(0)=f(1)=0$,
(3) if s is invertible then $f\left(s^{-1}\right)=-s^{-n-1} f(s)$,
(4) $f\left(r^{k}\right)=\left(r^{n(k-1)}+r^{n(k-2)+1}+r^{n(k-3)+2}+\cdots+r^{n+(k-2)}+r^{k-1}\right) f(r)$,
(5) if n is a positive power of a prime p and p divides k then $f\left(r^{k}\right)=$ $a f(r)$ where $a \in I_{n}^{\prime}(R)$.

Proof. Relation (1) follows from the two symmetric versions of $\left(\mathrm{D}_{n}\right)$. The equalities $f(0)=f(1)=0$ follow from $\left(\mathrm{D}_{n}\right)$ for $r=s=0$ or 1 . Using (D_{n}) and (2) we obtain $0=f(1)=f\left(s \cdot s^{-1}\right)=s^{n} f\left(s^{-1}\right)+s^{-1} f(s)$, and this gives (3). Property (4) follows from (D_{n}) by induction.
(5) Since $r^{n} \equiv r \bmod I_{n}^{\prime}(R)$, the coefficient in (4) is congruent to $k r^{k-1}$. This belongs to $I_{n}^{\prime}(R)$ since $p \mid k$ and $p \cdot 1 \in I_{n}^{\prime}(R)$.

Let S be a multiplicatively closed set in R.
Proposition 1. For any n-derivation $f: R \rightarrow M$ there exists a unique n-derivation $f_{S}: R_{S} \rightarrow M_{S}$ satisfying the condition $f_{S}(i(r))=i(f(r))$ for $r \in R$. It is given by the formula

$$
f_{S}\left(\frac{r}{s}\right)=\frac{f(r)}{s}-\left(\frac{r}{s}\right)^{n} \frac{f(s)}{s}=\frac{s f(r)-r f(s)}{s^{n+1}} .
$$

Moreover,

$$
\left(\Delta^{2} f_{S}\right)\left(\begin{array}{l}
r \\
\bar{t}
\end{array}, \frac{s}{t}\right)=\frac{\left(\Delta^{2} f\right)(r, s)}{t^{n}}
$$

3. C^{\prime}-functions. Let p be a fixed prime and n a fixed natural number of the form $n=p^{l}, l=1,2, \ldots$. Let M be an R-module with a fixed element $m_{0} \in M$. We will call an n-derivation $f: R \rightarrow M$ semi-additive, and denote $f: R \rightarrow\left(M, m_{0}\right)$, if it satisfies the additional condition

$$
\begin{equation*}
f(r+s)=f(r)+f(s)+N(r, s) m_{0}, \quad r, s \in R, \tag{n}
\end{equation*}
$$

or equivalently
($\mathrm{C}_{n}^{\prime \prime}$)

$$
\left(\Delta^{2} f\right)(r, s)=N(r, s) m_{0}, \quad r, s \in R,
$$

where

$$
N(r, s)=\sum_{k=1}^{n-1} \frac{1}{p}\binom{n}{k} r^{n-k} s^{k}
$$

(note that $\frac{1}{p}\binom{n}{k} \in \mathbb{Z}$ for $k=1, \ldots, n-1$ because of the shape of n). Using the generalized Newton symbols

$$
\begin{aligned}
\left(i_{1}, \ldots, i_{k}\right) & =\frac{\left(i_{1}+\cdots+i_{k}\right)!}{i_{1}!\ldots i_{k}!} \\
& =\binom{i_{1}+\cdots+i_{k}}{i_{k}}\binom{i_{1}+\cdots+i_{k-1}}{i_{k-1}} \cdots\binom{i_{1}+i_{2}}{i_{2}} \\
& =\left(i_{1}+\cdots+i_{k-1}, i_{k}\right)\left(i_{1}, \ldots, i_{k-1}\right)
\end{aligned}
$$

we define the following generalization of $N(r, s)$:

$$
N\left(r_{1}, \ldots, r_{k}\right)=\sum \frac{1}{p}\left(i_{1}, \ldots, i_{k}\right) r_{1}^{i_{1}} \ldots r_{k}^{i_{k}}
$$

where the sum is over all systems of non-negative integers i_{1}, \ldots, i_{k} such that $i_{1}+\cdots+i_{k}=n$ and at least two i_{j} are non-zero (then all the coefficients in the sum are integers). In particular, for any integers m_{1}, \ldots, m_{k}, the generalized Newton formula shows that

$$
N\left(m_{1} \cdot 1, \ldots, m_{k} \cdot 1\right)=\frac{1}{p}\left(\left(m_{1}+\cdots+m_{k}\right)^{n}-m_{1}^{n}-\cdots-m_{k}^{n}\right) \cdot 1
$$

and for $m_{1}=\cdots=m_{k}=1$ we get $N(1, \ldots, 1)=\frac{1}{p}\left(k^{n}-k\right) \cdot 1$.
Lemma 2. For any $r_{1}, \ldots, r_{k}, r_{k+1} \in R$ we have
(1) $N\left(r_{1}, \ldots, r_{k}, r_{k+1}\right)=N\left(r_{1}+\cdots+r_{k}, r_{k+1}\right)+N\left(r_{1}, \ldots, r_{k}\right)$,
(2) $f\left(\sum_{i=1}^{k} r_{i}\right)=\sum_{i=1}^{k} f\left(r_{i}\right)+N\left(r_{1}, \ldots, r_{k}\right) m_{0}$
provided that f satisfies $\left(\mathrm{C}_{n}^{\prime}\right)$.
Proof. (1) The generalized Newton formula shows that

$$
\begin{aligned}
N\left(r_{1}+\cdots+r_{k}, r_{k+1}\right) & =\sum_{\substack{j_{1}+j_{2}=n \\
j_{1}, j_{2}>0}} \frac{1}{p}\left(j_{1}, j_{2}\right)\left(r_{1}+\cdots+r_{k}\right)^{j_{1}} r_{k+1}^{j_{2}} \\
& =\sum_{\substack{j_{1}+j_{2}=n \\
j_{1}, j_{2}>0}} \sum_{i_{1}+\cdots+i_{k}=j_{1}} \frac{1}{p}\left(j_{1}, j_{2}\right)\left(i_{1}, \ldots, i_{k}\right)\left(r_{1}^{i_{1}} \ldots r_{k}^{i_{k}}\right) r_{k+1}^{j_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\substack{i_{1}+\cdots+i_{k+1}=n \\
i_{1}+\cdots+i_{k}>0, i_{k+1}>0}} \frac{1}{p}\left(i_{1}+\cdots+i_{k}, i_{k+1}\right)\left(i_{1}, \ldots, i_{k}\right) r_{1}^{i_{1}} \ldots r_{k}^{i_{k}} r_{k+1}^{i_{k+1}} \\
& =\sum_{\substack{i_{1}+\cdots+i_{k+1}=n \\
i_{1}+\cdots+i_{k}>0, i_{k+1}>0}} \frac{1}{p}\left(i_{1}, \ldots, i_{k}, i_{k+1}\right) r_{1}^{i_{1}} \ldots r_{k+1}^{i_{k+1}} .
\end{aligned}
$$

Since $\left(i_{1}, \ldots, i_{k}, 0\right)=\left(i_{1}, \ldots, i_{k}\right)$, the above is equal to $N\left(r_{1}, \ldots, r_{k}, r_{k+1}\right)-$ $N\left(r_{1}, \ldots, r_{k}\right)$, as required.
(2) For $k=2$ see $\left(\mathrm{C}_{n}^{\prime}\right)$. If (2) holds for some $k \geq 2$ then, by $\left(\mathrm{C}_{n}^{\prime}\right)$ and (1),

$$
\begin{aligned}
f\left(\sum_{i=1}^{k+1} r_{i}\right) & =f\left(\sum_{i=1}^{k} r_{i}\right)+f\left(r_{k+1}\right)+N\left(\sum_{i=1}^{k} r_{i}, r_{k+1}\right) m_{0} \\
= & \sum_{i=1}^{k} f\left(r_{i}\right)+N\left(r_{1}, \ldots, r_{k}\right) m_{0}+f\left(r_{k+1}\right)+N\left(r_{1}+\cdots+r_{k}, r_{k+1}\right) m_{0} \\
= & \sum_{i=1}^{k+1} f\left(r_{i}\right)+N\left(r_{1}, \ldots, r_{k+1}\right) m_{0}
\end{aligned}
$$

Corollary 1. Let $f: R \rightarrow\left(M, m_{0}\right)$ be a semi-additive n-derivation. Then
(1) $f(p r)=p f(r)+\left(p^{n-1}-1\right) r^{n} m_{0}$,
(2) $f(p \cdot 1)=\left(p^{n-1}-1\right) m_{0}$.

If $p^{n-1}-1$ is invertible in R and $u=\left(p^{n-1}-1\right)^{-1} \in R$ then
(3) $m_{0}=u f(p \cdot 1)$,
(4) $p f(r)=\left(r^{n}-r\right) m_{0}$.

Proof. Setting $k=p$ and $r_{i}=r$ in Lemma 2(2) we obtain (1), since $N(1, \ldots, 1)=\frac{1}{p}\left(p^{n}-p\right) \cdot 1$. Then Lemma 1(2) gives (2) and (3). It follows from Lemma 1(1) and from (2) above that

$$
\left(p^{n}-p\right) f(r)=\left(r^{n}-r\right) f(p \cdot 1)=\left(r^{n}-r\right)\left(p^{n-1}-1\right) m_{0}
$$

Then multiplication by u gives (4).
By a C^{\prime}-function of degree n over R we will mean a semi-additive n derivation $f: R \rightarrow\left(M, m_{0}\right)$ satisfying condition (4) of the above lemma. In other words, it is assumed that the following conditions are fulfilled:

$\left(\mathrm{D}_{n}\right)$	$f(r s)=r^{n} f(s)+s f(r)$,	$r, s \in R$,
$\left(\mathrm{C}_{n}^{\prime}\right)$	$f(r+s)=f(r)+f(s)+N(r, s) m_{0}$,	$r, s \in R$,
$\left(\mathrm{E}_{n}\right)$	$p f(r)=\left(r^{n}-r\right) m_{0}$,	$r \in R$.

Example 1. The function $f: R \rightarrow(R, p \cdot 1), f(r)=r^{n}-r$, is a C^{\prime}-function of degree n. Indeed, it is an n-derivation, $\left(\mathrm{C}_{n}^{\prime}\right)$ is satisfied since

$$
\begin{array}{r}
(r+s)^{n}-(r+s)-\left(r^{n}-r\right)-\left(s^{n}-s\right)=\sum_{k=0}^{n}\binom{n}{k} r^{n-k} s^{k}-r^{n}-s^{n} \\
=p \sum_{k=1}^{n-1} \frac{1}{p}\binom{n}{k} r^{n-k} s^{k}=N(r, s)(p \cdot 1)
\end{array}
$$

by the Newton binomial formula, and $\left(\mathrm{E}_{n}\right)$ is obvious. Later, we prove that it is a universal C^{\prime}-function of degree n (Theorem (1).

Example 2. A C^{\prime}-function of degree 3 is a 3 -derivation $f: R \rightarrow\left(M, m_{0}\right)$ such that $3 f(r)=\left(r^{3}-r\right) m_{0}$ and $f(r+s)=f(r)+f(s)+\left(r^{2} s+r s^{2}\right) m_{0}$ for $r, s \in R$. Then $f(2)=2 m_{0}$ and it is easy to check that f satisfies conditions (C1)-(C3) of [1], showing that f is a so called C-function of degree 3 .

Example 3 . Let R be the polynomial ring $\mathbb{Z}_{2}[X], M=\mathbb{Z}_{2}=\mathbb{Z}_{2}[X] /(X)$ and $m_{0}=1+(X)$. Then for any $g=\sum_{i} g_{i} X^{i} \in \mathbb{Z}_{2}[X], m \in M$ and $k=1,2, \ldots$ we have $g^{k} m=g_{0}^{k} m=g_{0} m$. Define $f: \mathbb{Z}_{2}[X] \rightarrow M$ by $f(g)=$ $g_{1}+(X)$. Since

$$
f(g h)=g_{0} h_{1}+h_{0} g_{1}+(X)=g^{n} f(h)+h f(g)
$$

it follows that f is an n-derivation for any n. Let now n be a power of an odd prime p. Then $N(g, h) m_{0}=N\left(g_{0}, h_{0}\right) m_{0}=0$ for any $g, h \in \mathbb{Z}_{2}[X]$ since $N(1,1)=\frac{1}{p}\left(2^{n}-2\right)$ is even. Moreover, f is additive, and hence it is semi-additive (actually, it is the only semi-additive n-derivation $f: \mathbb{Z}_{2}[X] \rightarrow$ (M, m_{0}) satisfying $\left.f(X)=1+(X)\right)$. On the other hand, $\left(\mathrm{E}_{n}\right)$ is not fulfilled, since $p f(X)=1+(X) \neq 0$ and $\left(X^{n}-X\right) m_{0}=0$. Hence f is not a C^{\prime}-function of degree n.
4. The functors $C^{\prime}=C^{\prime(n)}$. Let $n=p^{l}, l=1,2, \ldots$ Denote by $C^{\prime}(R)=$ $C^{\prime(n)}(R)$ the R-module generated by elements denoted by $[r], r \in R$, and an extra element [*], with the following relations:

$$
\begin{array}{ll}
{[r s]=r^{n}[s]+s[r],} & r, s \in R, \\
{[r+s]=[r]+[s]+N(r, s)[*],} & r, s \in R, \\
p[r]=\left(r^{n}-r\right)[*], & r \in R .
\end{array}
$$

Any unitary ring homomorphism $i: R \rightarrow R^{\prime}$ induces a module homomorphism $C^{\prime}(i): C^{\prime}(R) \rightarrow C^{\prime}\left(R^{\prime}\right)$ over i such that $C^{\prime}(i)([r])=[i(r)]$ and $C^{\prime}(i)([*])$ $=[*]$. This shows that C^{\prime} is a functor to the category of modules (over all commutative rings) with fixed elements. Observe that $C^{\prime}(R)$ is a universal object with respect to C^{\prime}-functions of degree n over R, meaning that any C^{\prime}-function of degree n can be uniquely expressed as the composition
of the canonical C^{\prime}-function $c^{\prime}: R \rightarrow\left(C^{\prime}(R),[*]\right), c^{\prime}(r)=[r]$, and an R homomorphism defined on $C^{\prime}(R)$ and preserving the fixed elements.

In particular, the C^{\prime}-function $f: R \rightarrow(R, p \cdot 1), f(r)=r^{n}-r$, gives
Corollary 2. There exists an R-homomorphism $P: C^{\prime}(R) \rightarrow I_{n}^{\prime}(R)$ such that $P([r])=r^{n}-r$ for $r \in R$ and $P([*])=p \cdot 1$.

Our goal is to show that P is an isomorphism (Theorem 11). As a first step, we prove that C^{\prime} commutes with localizations. Let S be a multiplicatively closed set in R and let $i: R \rightarrow R_{S}$ and $i: M \rightarrow M_{S}$ be the canonical homomorphisms, $i(r)=\frac{r}{1}, i(m)=\frac{m}{1}$.

Proposition 2. If $f: R \rightarrow\left(M, m_{0}\right)$ is a C^{\prime}-function of degree n (or a semi-additive n-derivation) then so is the function

$$
f_{S}: R_{S} \rightarrow\left(M_{S}, \frac{m_{0}}{1}\right), \quad f_{S}(i(r))=i(f(r))
$$

defined in Proposition 1.
Proof. Using Proposition 11 we compute that
$\left(\mathrm{C}_{n}^{\prime \prime}\right)\left(\Delta^{2} f_{S}\right)\left(\frac{a}{s}, \frac{b}{s}\right)=\frac{\left(\Delta^{2} f\right)(a, b)}{s^{n}}=\frac{N(a, b) m_{0}}{s^{n}}=N\left(\frac{a}{s}, \frac{b}{s}\right) \frac{m_{0}}{1}$,
$\left(\mathrm{E}_{n}\right)$

$$
\begin{aligned}
p f_{S}\left(\frac{r}{s}\right) & =\frac{s(p(f(r))-r(p f(s))}{s^{n+1}} \\
& =\frac{s\left(r^{n}-r\right) m_{0}-r\left(s^{n}-s\right) m_{0}}{s^{n+1}}=\left(\left(\frac{r}{s}\right)^{n}-\frac{r}{s}\right) \frac{m_{0}}{1}
\end{aligned}
$$

Proposition 3. There exists an R_{S}-isomorphism $C^{\prime}(R)_{S} \approx C^{\prime}\left(R_{S}\right)$ such that

$$
\frac{[r]}{s} \leftrightarrow \frac{1}{s}\left[\frac{r}{1}\right], \quad \frac{[*]}{1} \leftrightarrow[*] .
$$

Proof. Proposition 2 applied to the canonical C^{\prime}-function $c^{\prime}: R \rightarrow$ $\left(C^{\prime}(R),[*]\right), c^{\prime}(r)=[r]$, gives an C^{\prime}-function $c_{S}^{\prime}: R_{S} \rightarrow\left(C^{\prime}(R)_{S}, \frac{[*]}{1}\right)$ over R_{S}, where

$$
c_{S}^{\prime}\left(\frac{r}{s}\right)=\frac{[r]}{s}-\left(\frac{r}{s}\right)^{n} \frac{[s]}{s}
$$

The universal property yields an R_{S}-homomorphism $g: C^{\prime}\left(R_{S}\right) \rightarrow C^{\prime}(R)_{S}$ such that

$$
g\left(\left[\begin{array}{c}
r \\
s
\end{array}\right]\right)=c_{S}^{\prime}\left(\frac{r}{s}\right)=\frac{[r]}{s}-\left(\frac{r}{s}\right)^{n} \frac{[s]}{s}, \quad g([*])=\frac{[*]}{1} .
$$

On the other hand, the homomorphism $C^{\prime}(i): C^{\prime}(R) \rightarrow C^{\prime}\left(R_{S}\right)$ over $i: R \rightarrow R_{S}$, defined by $C^{\prime}(i)([r])=\left[\frac{r}{1}\right], C^{\prime}(i)([*])=[*]$, gives an R_{S}-homomorphism

$$
h: C^{\prime}(R)_{S} \rightarrow C^{\prime}\left(R_{S}\right), \quad h\left(\frac{[r]}{s}\right)=\frac{1}{s}\left[\frac{r}{1}\right], \quad h\left(\frac{[*]}{1}\right)=[*] .
$$

Observe that $h=g^{-1}$. Indeed,

$$
g\left(h\left(\frac{[r]}{s}\right)\right)=\frac{1}{s} g\left(\left[\frac{r}{1}\right]\right)=\frac{1}{s}\left(\frac{[r]}{1}-\left(\frac{r}{1}\right)^{n} \frac{[1]}{1}\right)=\frac{[r]}{s}
$$

by Lemma $1(2)$. On the other hand, using Lemma $1(3)$ and (D) we compute that

$$
\begin{aligned}
h\left(g\left(\left[\frac{r}{s}\right]\right)\right) & =h\left(\frac{[r]}{s}-\left(\frac{r}{s}\right)^{n} \frac{[s]}{s}\right)=\frac{1}{s}\left[\frac{r}{1}\right]-\frac{r^{n}}{s^{n+1}}\left[\frac{s}{1}\right] \\
& =\frac{1}{s}\left[\frac{r}{1}\right]+\left(\frac{r}{1}\right)^{n}\left[\frac{1}{s}\right]=\left[\frac{r}{1} \frac{1}{s}\right]=\left[\frac{r}{s}\right] .
\end{aligned}
$$

Hence h is an isomorphism, as required.
5. The main lemmas. We consider the kernel of the R-epimorphism $P: C^{\prime}(R) \rightarrow I_{n}^{\prime}(R), P([r])=r^{n}-r$ for $r \in R$ and $P([*])=p \cdot 1$.

Lemma 3.
(1) $P(x) y=P(y) x$ for any $x, y \in C^{\prime}(R)$,
(2) $I_{n}^{\prime}(R) \operatorname{Ker}(P)=0$.

Proof. (1) For $x=[r], y=[s]$ apply Lemma 1(1), and for $x=[r], y=[*]$ apply (E).
(2) If $r \in I_{n}^{\prime}(R)$ and $y \in \operatorname{Ker}(P)$ then $r=P(x)$ and hence $r y=P(x) y=$ $P(y) x=0$ by (1).

Let now $p^{n-1}-1$ be invertible in R. Hence $[*]=u[p \cdot 1]$ (Corollary 2) and Lemma 2(2) gives the following formula:

$$
\begin{equation*}
\left[\sum_{i=1}^{k} r_{i}\right]=\sum_{i=1}^{k}\left[r_{i}\right]+N\left(r_{1}, \ldots, r_{k}\right)[*]=\sum_{i=1}^{k}\left[r_{i}\right]+N\left(r_{1}, \ldots, r_{k}\right) u[p \cdot 1] \tag{*}
\end{equation*}
$$

Moreover, any element of $C^{\prime}(R)$ is of the form $\sum_{i} a_{i}\left[r_{i}\right]$, where $a_{i}, r_{i} \in R$.
LEMMA 4. Let $p^{n-1}-1$ be invertible in R and $x=\sum_{i=1}^{k} a_{i}\left[r_{i}\right] \in \operatorname{Ker}(P)$, where one of the r_{i} is $p \cdot 1$. If all a_{i} belong to $I_{n}^{\prime}(R)^{m}$ for some $m \geq 0$ then $x=\sum_{i=1}^{k} b_{i}\left[r_{i}\right]$ where all b_{i} belong to $I_{n}^{\prime}(R)^{n m+1}$.

Proof. By the assumption $\sum_{i=1}^{k} a_{i} r_{i}^{n}=\sum_{i=1}^{k} a_{i} r_{i}$. Using (*) we obtain

$$
\begin{aligned}
& {\left[\sum_{i=1}^{k} a_{i} r_{i}\right]=\sum_{i=1}^{k}\left[a_{i} r_{i}\right]+N_{1} u[p \cdot 1]=\sum_{i=1}^{k} a_{i}\left[r_{i}\right]+\sum_{i=1}^{k} r_{i}^{n}\left[a_{i}\right]+N_{1} u[p \cdot 1],} \\
& {\left[\sum_{i=1}^{k} a_{i} r_{i}^{n}\right]=\sum_{i=1}^{k}\left[a_{i} r_{i}^{n}\right]+N_{2} u[p \cdot 1]=\sum_{i=1}^{k} a_{i}^{n}\left[r_{i}^{n}\right]+\sum_{i=1}^{k} r_{i}^{n}\left[a_{i}\right]+N_{2} u[p \cdot 1],}
\end{aligned}
$$

where

$$
\begin{aligned}
& N_{1}=N\left(a_{1} r_{1}, \ldots, a_{k} r_{k}\right)=\sum \frac{1}{p}\left(i_{1}, \ldots, i_{k}\right) a_{1}^{i_{1}} \ldots a_{k}^{i_{k}} r_{1}^{i_{1}} \ldots r_{k}^{i_{k}}, \\
& N_{2}=N\left(a_{1} r_{1}^{n}, \ldots, a_{k} r_{k}^{n}\right)=\sum \frac{1}{p}\left(i_{1}, \ldots, i_{k}\right) a_{1}^{i_{1}} \ldots a_{k}^{i_{k}}\left(r_{1}^{i_{1}} \ldots r_{k}^{i_{k}}\right)^{n},
\end{aligned}
$$

and the sums are over all systems of non-negative integers i_{1}, \ldots, i_{k} such that $i_{1}+\cdots+i_{k}=n$ and at least two i_{j} are non-zero. Since

$$
\sum_{i=1}^{k} a_{i}\left[r_{i}\right]+\sum_{i=1}^{k} r_{i}^{n}\left[a_{i}\right]+N_{1} u[p \cdot 1]=\sum_{i=1}^{k} a_{i}^{n}\left[r_{i}^{n}\right]+\sum_{i=1}^{k} r_{i}^{n}\left[a_{i}\right]+N_{2} u[p \cdot 1]
$$

we obtain

$$
\begin{aligned}
x & =\sum_{i=1}^{k} a_{i}\left[r_{i}\right]=\sum_{i}^{k} a_{i}^{n}\left[r_{i}^{n}\right]+\left(N_{2}-N_{1}\right) u[p \cdot 1] \\
& =\sum_{i=1}^{k} a_{i}^{n} a\left[r_{i}\right]+\left(N_{2}-N_{1}\right) u[p \cdot 1]
\end{aligned}
$$

where $a \in I_{n}^{\prime}(R)$ by Lemma 1(5). Since $a_{i} \in I_{n}^{\prime}(R)^{m}$ it follows that $a_{i}^{n} a \in$ $I_{n}^{\prime}(R)^{n m+1}$.

Moreover, $a_{1}^{i_{1}} \ldots a_{k}^{i_{k}} \in I_{n}^{\prime}(R)^{n m}$ since $a_{i} \in I_{n}^{\prime}(R)^{m}$ and $i_{1}+\cdots+i_{k}=n$, and $\left(r_{1}^{i_{1}} \ldots r_{k}^{i_{k}}\right)^{n}-r_{1}^{i_{1}} \ldots r_{k}^{i_{k}} \in I_{n}^{\prime}(R)$. Hence
$N_{2}-N_{1}=\sum \frac{1}{p}\left(i_{1}, \ldots, i_{k}\right) a_{1}^{i_{1}} \ldots a_{k}^{i_{k}}\left(\left(r_{1}^{i_{1}} \ldots r_{k}^{i_{k}}\right)^{n}-r_{1}^{i_{1}} \ldots r_{k}^{i_{k}}\right) \in I_{n}^{\prime}(R)^{n m+1}$.
This completes the proof.
The above lemma immediately gives
Corollary 3. Let $p^{n-1}-1$ be invertible in R and $x=\sum_{i=1}^{k} a_{i}\left[r_{i}\right]$ be an arbitrary element of $\operatorname{Ker}(P)$. Let M denote the submodule of $C^{\prime}(R)$ generated by $\left[r_{1}\right], \ldots,\left[r_{k}\right]$ and $[p \cdot 1]$ (or $[*]$). Then

$$
x \in \bigcap_{m=0}^{\infty} I_{n}(R)^{m} M .
$$

6. The main theorem. The purpose of this paper is to prove the following.

Theorem 1. Let $C^{\prime}(R)=C^{\prime(n)}(R)$ where $n=p^{l}, l=1,2, \ldots$. Then $P: C^{\prime}(R) \rightarrow I_{n}^{\prime}(R), P([r])=r^{n}-r$ for $r \in R$ and $P([*])=p \cdot 1$, is an R-isomorphism. In other words, if $n=p^{l}, l=1,2, \ldots$, then the following are generating relations between the generators $[r]=r^{n}-r$ and $[*]=p \cdot 1$ of $I_{n}^{\prime}(R)$:

$$
\begin{array}{ll}
{[r s]=r^{n}[s]+s[r],} & r, s \in R, \\
{[r+s]=[r]+[s]+N(r, s)[*],} & r, s \in R,
\end{array}
$$

where $N(r, s)=\sum_{k=1}^{n-1} \frac{1}{p}\binom{n}{k} r^{n-k} s^{k}$, and

$$
\begin{equation*}
p[r]=\left(r^{n}-r\right)[*], \quad r \in R . \tag{E}
\end{equation*}
$$

Proof. Our goal is to prove that $\operatorname{Ker}(P)=0$.
Noetherian case. Assume that R is noetherian. By Proposition 3 we can assume that R is local and noetherian with quotient field K. Then $I_{n}(R)$ is the maximal ideal if $|K|-1$ divides $n-1$, and $I_{n}(R)=R$ otherwise (see Introduction). Hence $I_{n}^{\prime}(R)$ is the maximal ideal if $|K|-1$ divides $n-1$ and $\operatorname{char}(K)=p$, and $I_{n}^{\prime}(R)=R$ otherwise. If $I_{n}^{\prime}(R)=R$ then Lemma 3 shows that $\operatorname{Ker}(P)=0$, as desired. So let $I_{n}^{\prime}(R)$ be the maximal ideal of R.

Since $p \in I_{n}^{\prime}(R), p^{n-1}-1$ is invertible in R. Let $x \in \operatorname{Ker}(P)$. Define the submodule M as in Corollary 3 and observe that it is finitely generated over a local noetherian ring. Then the intersection in the corollary is zero by the Krull intersection theorem, and hence $x=0$. This proves that $\operatorname{Ker}(P)=0$.

General case. Let $x=\sum_{i} a_{i}\left[r_{i}\right]+a_{0}[*] \in \operatorname{Ker}(P)$. Define S to be the subring of R generated by all a_{i} and r_{i}. Since S is a finitely generated ring, and hence noetherian, the previous part of the proof shows that $P: C^{\prime}(S) \rightarrow$ S is injective. Let $i: S \rightarrow R$ denote the injection. Then $x=\left(C^{\prime}(i)\right)(y)$, where $y=\sum_{i} a_{i}\left[r_{i}\right]+a_{0}[*] \in C^{\prime}(S)$. Since $P(y)=P(x)=0$ we conclude that $y=0$ and consequently $x=0$. This completes the proof.

For $p=2$ we obtain a part of [1, Theorem 1]:
Corollary 4. If $n=2^{l}, l=1,2, \ldots$ then the following are generating relations between the generators $[r]=r^{n}-r$ of $I_{n}(R)$:

$$
\begin{array}{ll}
{[r s]=r^{n}[s]+s[r],} & r, s \in R, \\
{[r+s]=[r]+[s]+N(r, s)[-1],} & r, s \in R .
\end{array}
$$

Proof. Since $2=(-1)^{n}-(-1) \in I_{n}(R)$, we obtain $I_{n}(R)=I_{n}^{\prime}(R)$. On the other hand, $[0]=[1]+[-1]+N(1,-1)[*]$ in $C_{n}^{\prime}(R)$, and this shows that $[-1]=-N(1,-1)[*]$ by Lemma $1(2)$. It is easy to see that $N(1,-1)=-1$, and hence $[-1]=[*]$. Therefore $\left(\mathrm{C}^{\prime}\right)=(\mathrm{C})$ and finally (E) follows from (D) by Lemma 1 (1).

References

[1] M. Maciejewski and A. Prószyński, On n-derivations and relations between elements $r^{n}-r$ for some n, Bull. Polish Acad. Sci. Math. 62 (2014), 29-42.
[2] A. Prószyński, Forms and mappings. I: Generalities, Fund. Math. 122 (1984), 219235.
[3] A. Prószyński, Mappings of Higher Degrees, WSP, Bydgoszcz, 1987 (in Polish).
Andrzej Prószyński
Kazimierz Wielki University
85-072 Bydgoszcz, Poland
E-mail: apmat@ukw.edu.pl

Received July 23, 2014;
received in final form September 30, 2014

