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Summary. We prove the uniqueness of meromorphic functions sharing some three sets
with finite weights.

1. Introduction, definitions and results. In the paper we will denote
by C the set of all complex numbers, by N the set of all positive integers
and write C := C∪{∞}, N := N∪{0,∞}. Throughout the paper the letters
n, m are reserved for elements of N, while k, l, p ∈ N, z, w ∈ C. Also it is
tacitly assumed that all meromorphic functions considered are defined on C
and that they are non-constant.

For such a function f and a ∈ C, each z with f(z) = a will be called
an a-point of f . For a meromorphic function f and a set S ⊂ C we define
Ef (S) (resp. Ef (S)) as the set of all a-points of f , when a ∈ S, together with
their multiplicity (resp. without their multiplicity). If Ef (S) = Eg(S) (resp.
Ef (S) = Eg(S)) then we simply say f , g share S Counting Multiplicities or
CM (resp. Ignoring Multiplicities or IM).

More formally we define

Definition 1.1. If f is a meromorphic function and S ⊂ C then if
z0 ∈ f−1(S), the value of Ef (S) at the point z0 is denoted by Ef (S)(z0) :
f−1(S) → N and is equal to the multiplicity of zero of the function f(z) −
f(z0) at z0, i.e. the order of the pole of the function (f(z)− f(z0))−1 at z0
if f(z0) ∈ C (resp. of the function f(z) if z0 is a pole for f).
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The following notion of weighted sharing of values and sets was intro-
duced by Lahiri [8, 9]. It expedited new directions of research in value dis-
tribution theory.

Definition 1.2. For k ∈ N and z0 ∈ f−1(S) we put Ef (S, k)(z0) =
min{Ef (S)(z0), k + 1}. Given S ⊂ C, we say that meromorphic functions
f and g share the set S up to multiplicity k (or share S with weight k, or
simply share (S, k)) if f−1(S) = g−1(S) and for each z0 ∈ f−1(S) we have
Ef (S, k)(z0) = Eg(S, k)(z0), which is represented by the notation Ef (S, k) =
Eg(S, k).

The subject of the paper is closely related to a problem posed by H. X. Yi
[13]. The problem was to find three, possibly small, finite subsets S1, S2, S3 of
C such that for any two meromorphic functions f , g which share each of the
three sets Si, i = 1, 2, 3 CM, we have f ≡ g. The problem has drawn attention
of many mathematicians. It was solved by W. C. Lin and H. X. Yi [10] who
proved that the sets S1 = {0}, S2 = {z ∈ C : azn−n(n−1)z2+2n(n−2)bw =
(n− 1)(n− 2)b2} and S3 = {∞} have the above property, for n ≥ 5, where
a and b are complex numbers satisfying abn−2 6= 2,0. Later the result was
strengthened by H. Y. Xu, H. X. Zhang and C. F. Yi [11] and the first author
of the present paper [2]–[3].

In this paper we modify the sets S1, S2 so that S1 = {0, 1}, and the
number of elements in the new set S2 is decreased by 1 in the optimal case.
Moreover the conditions on the sharing sets Si, i = 1, 2, 3, are relaxed to the
conditions of sharing (Si, ki), i = 1, 2, 3, where k1, k2, k3 are relatively small.

The main result of the paper is the following.

Theorem 1.1. Let S1 = {0, 1},

S2 =

{
z :

(n− 1)(n− 2)

2
zn − n(n− 2)zn−1 +

n(n− 1)

2
zn−2 − c = 0

}
,

where n ≥ 4, c ∈ C, c 6= 0, 1, 1/2, and S3 = {∞}. If two meromorphic
functions f and g share (S1, p), (S2,m) and (S3, k), where p ≤ 1, 2 ≤ m <∞
and

0 <
9− 4p/3− 2m

m+ 1
< 2− 4− 2p/3

k + 2
,

then f ≡ g.
Corollary 1.1. If (p,m, k) is one of the triplets (0, 2, 11), (0, 3, 2),

(0, 4, 1), (1, 2, 3), (1, 3, 1) then the conclusion of Theorem 1.1 holds.

2. Auxiliary definitions and lemmas. The proofs of the main theo-
rems depend heavily on the value distribution of meromorphic functions, as
in [6]. We will use standard definitions and notations from this theory. In
particular N(r, a; f) (resp. N(r, a; f)) denotes the counting function (resp.
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reduced counting function) of a-points of a meromorphic function f , T (r, f)
is the Nevanlinna characteristic function of f , and S(r, f) is used to denote
each function which is of smaller order than T (r, f) when r →∞. Moreover
we will need the following notation.

Definition 2.1 ([7]). For a ∈ C we denote by N(r, a; f | = 1) the count-
ing function of simple a-points of f . For a positive integer m we denote by
N(r, a; f | ≥ m) the counting function of those a-points of f whose multiplic-
ities are not less than m, where each a-point is counted according to its mul-
tiplicity. We denote by N(r, a; f | ≥ m) the reduced form of N(r, a; f | ≥ m).

Definition 2.2 ([14]). Let f and g be meromorphic functions sharing
(a, 0) where a ∈ C ∪ {∞}. We denote by NL(r, a; f > g) the reduced count-
ing function of those a-points of f whose multiplicity corresponding to f is
greater than that corresponding to g.

Definition 2.3 ([8, 9]). Let f , g share (a, 0). We denote

N∗(r, a; f, g) = N∗(r, a; g, f) = NL(r, a; f > g) +NL(r, a; g > f).

For fixed n ≥ 3 and c ∈ C \ {0, 1, 1/2} we set

Q(z) :=
(n− 1)(n− 2)

2
z2−n(n−2)z+

n(n− 1)

2
and P (z) := zn−2Q(z).

To meromorphic functions f , g we associate F , G by

(2.1) F =
P (f)

c
, G =

P (g)

c
,

and to F , G we associate H by the formula

(2.2) H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
.

Lemma 2.1 ([9, Lemma 1]). Let F , G be meromorphic functions sharing
(1, 1) and let H be given by (2.2). If H 6≡ 0, then

N(r, 1;F | = 1) = N(r, 1;G | = 1) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 2.2. Let F , G, H be as in (2.1), (2.2) and let Si i = 1, 2, 3, be as
defined in Theorem 1.1. If H 6≡ 0 and f , g share (S1, p), (S2, 0) and (S3, 0),
where p <∞, then

N(r,H) ≤ N(r, 0; f | ≥ p+ 1) +N(r, 1; f | ≥ p+ 1) +N∗(r, 1;F,G)

+N∗(r,∞; f, g) +N0(r, 0; f
′) +N0(r, 0; g

′),

where N0(r, 0; f
′) is the reduced counting function for the points {z ∈ C :

f ′(z) = 0, f(z) 6= 0, 1; F (z) 6= 1}, and N0(r, 0; g
′) is defined similarly.
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Proof. Since

F − 1 =
P (f)− c

c
, G− 1 =

P (g)− c
c

and Ef (S2, 0) = Eg(S2, 0) we see that F and G share (1, 0). It is easy to
check that

H =
2f ′

f − 1
− 2g′

g − 1
+

(n− 3)f ′

f
− (n− 3)g′

g
+
f ′′

f ′
− g

′′

g′
−
(

2F ′

F − 1
− 2G′

G− 1

)
.

Since Ef (S1, p) = Eg(S1, p) we deduce that z ∈ f−1({0, 1}) if and only if
z ∈ g−1({0, 1}). Hence

N(r, 0; f | ≥ p+ 1) +N(r, 1; f | ≥ p+ 1)

= N(r, 0; g | ≥ p+ 1) +N(r, 1; g | ≥ p+ 1).

It can also be easily verified that possible poles of H occur at (i) zeros (or
1-points) of f and g with multiplicity greater than p, (ii) poles of f and g with
different multiplicities, (iii) 1-points of F and G with different multiplicities,
(iv) zeros of f ′ which are not zeros of f(f − 1) and F − 1, (v) zeros of g
which are not zeros of g(g − 1) and G− 1.

Since H has only simple poles, clearly the lemma follows from the above
explanations.

Lemma 2.3 ([12]). If f is a meromorphic function and R a polynomial
of degree n then

T (r,R(f)) = nT (r, f) +O(1).

Lemma 2.4 ([4, Lemma 2.10]). If meromorphic functions f , g share
(1,m), then

N(r, 1; f) +N(r, 1; g)−N(r, 1; f | = 1) +

(
m− 1

2

)
N∗(r, 1; f, g)

≤ 1

2
[N(r, 1; f) +N(r, 1; g)].

Lemma 2.5. If meromorphic functions f , g share ({0, 1}, 0) and (∞, 0)
then P (f)P (g) is not a constant.

Proof. On the contrary, assume that

(2.3) (n− 1)2(n− 2)2fn−2(f − γ)(f − δ)gn−2(g − γ)(g − δ) ≡ 4c2,

where γ and δ are the roots of the equation Q(z) = 0.
If f has a pole then g will also have a pole, which is impossible by (2.3).

So f and g have no poles. Similarly f (resp. g) cannot have any zero, γ-points
or δ-points as they can only be neutralized by poles of g (resp. f). So f and
g omit 0, ∞ as well as γ, δ, which is impossible.
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Lemma 2.6 ([5, p. 192]). Let

R(z) = (n− 1)2(zn − 1)(zn−2 − 1)− n(n− 2)(zn−1 − 1)2.

Then R(z) = (z− 1)4W (z) and all the 2n− 6 roots of the polynomial W are
distinct and different from 0, 1.

Lemma 2.7. If n ≥ 4 and meromorphic functions f , g share ({0, 1}, 0)
and P (f) ≡ P (g) then f ≡ g.

Proof. From the assumption we can write

fn−2(f − γ)(f − δ) ≡ gn−2(g − γ)(g − δ).(2.4)

Clearly (2.4) implies that f and g share (∞,∞). Since Ef ({0, 1}, 0) =
Eg({0, 1}, 0) it follows that if z0 is a zero of f (resp. g) then it cannot be a
1-point of g (resp. f) as none of γ and δ is zero. So f and g share (0,∞) and
(1,∞). Suppose h = f/g. Clearly h has no zero and no pole. Substituting
f = hg in (2.4) we get

(2.5)
(n− 1)(n− 2)

2
(hn − 1)g2 − n(n− 2)(hn−1 − 1)g

+
n(n− 1)

2
(hn−2 − 1) ≡ 0.

Suppose h is not a constant. Then by a simple calculation we deduce from
(2.5) that

{(n− 1)(n− 2)(hn − 1)g − n(n− 2)(hn−1 − 1)}2 ≡ −n(n− 2)R(h),(2.6)

where R(z) is as in Lemma 2.6. So using Lemma 2.6 we have

(2.7) {(n− 1)(n− 2)(hn − 1)g − n(n− 2)(hn−1 − 1)}2

≡ −n(n− 2)(h− 1)4(h− β1) . . . (h− β2n−6),

where βj ∈ C − {0, 1} (j = 1, . . . , 2n − 6) are distinct. From (2.7) we see
that h − βj (j = 1, . . . , 2n − 6) each have multiplicity at least 2. So by the
Second Fundamental Theorem we get

(2n− 6)T (r, h) ≤ N(r,∞;h) +N(r, 0;h) +
2n−6∑
j=1

N(r, βj ;h) + S(r, h)

≤ 1

2

2n−6∑
j=1

N(r, βj ;h) + S(r, h)

≤ (n− 3)T (r, h) + S(r, h),

which is a contradiction for n ≥ 4. So h is a constant. From (2.5) we have
hn − 1 = 0, hn−1 − 1 = 0. It follows that h ≡ 1 and so f ≡ g.
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Lemma 2.8. Let n ≥ 3 and Si, i = 1, 2, 3, be as in Theorem 1.1. Also let
meromorphic functions f and g share (S1, p), (S2,m), (S3, k), where p <∞.
If F , G are given by (2.1) and

Φ :=
F ′

F − 1
− G′

G− 1
6≡ 0,

then

min{(n− 2)p+ (n− 3), 3p+ 2}{N(r, 0; f | ≥ p+ 1) +N(r, 1; f | ≥ p+ 1)}
≤ N∗(r, 1;F,G) +N∗(r,∞; f, g) + S(r, f) + S(r, g).

Proof. By the assumptions, F and G share (1,m). Also we see that

Φ =
n(n− 1)(n− 2)fn−3(f − 1)2f ′

2c(F − 1)
− n(n− 1)(n− 2)gn−3(g − 1)2g′

2c(G− 1)
.

Let z0 be a zero or a 1-point of f with multiplicity r. Since Ef (S1, p) =
Eg(S1, p), z0 is a zero of Φ of multiplicity

min{(n− 3)r + r − 1, 2r + r − 1} = min{(n− 2)r − 1, 3r − 1},

if r ≤ p, and of multiplicity at least

min{(n− 3)(p+ 1) + p, 2(p+ 1) + p} = min{(n− 2)p+ (n− 3), 3p+ 2}

if r > p. So by a simple calculation we can write

min{(n− 2)p+ (n− 3), 3p+ 2}{N(r, 0; f | ≥ p+ 1) +N(r, 1; f | ≥ p+ 1)}
≤ N(r, 0;Φ) ≤ T (r, Φ)
≤ N(r,∞;Φ) + S(r, F ) + S(r,G)

≤ N∗(r, 1;F,G) +N∗(r,∞; f, g) + S(r, f) + S(r, g).

Lemma 2.9. Let Si, i = 1, 2, 3, be as in Theorem 1.1 and F , G, H be
given by (2.1) and (2.2). If meromorphic functions f and g share (S1, p),
(S2,m) and (S3, k), where p <∞, 2 ≤ m <∞ and H 6≡ 0, then

(n+ 1){T (r, f) + T (r, g)}
≤ 2{N(r, 0; f) +N(r, 1; f)}+N(r, 0; f | ≥ p+ 1) +N(r, 1; f | ≥ p+ 1)

+N(r,∞; f) +N(r,∞; g) +N∗(r,∞; f, g)

+
1

2
[N(r, 1;F ) +N(r, 1;G)]

−
(
m− 3

2

)
N∗(r, 1;F,G) + S(r, f) + S(r, g).
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Proof. By the Second Fundamental Theorem we get

(2.8) (n+ 1){T (r, f) + T (r, g)}
≤ N(r, 1;F ) +N(r, 0; f) +N(r, 1; f) +N(r,∞; f) +N(r, 1;G) +N(r, 0; g)

+N(r, 1; g) +N(r,∞; g)−N0(r, 0; f
′)−N0(r, 0; g

′) + S(r, f) + S(r, g).

Using Lemmas 2.1–2.4 we see that

(2.9) N(r, 1;F ) +N(r, 1;G)

≤ 1

2
[N(r, 1;F ) +N(r, 1;G)] +N(r, 1;F | = 1)−

(
m− 1

2

)
N∗(r, 1;F,G)

≤ 1

2
[N(r, 1;F ) +N(r, 1;G)] +N(r, 0; f | ≥ p+ 1) +N(r, 1; f | ≥ p+ 1)

+N∗(r,∞; f, g)−
(
m− 3

2

)
N∗(r, 1;F,G) +N0(r, 0; f

′) +N0(r, 0; g
′)

+ S(r, f) + S(r, g).

Applying (2.9) in (2.8) and noting that

N(r, 0; f) +N(r, 1; f) = N(r, 0; g) +N(r, 1; g),

the lemma follows.

Lemma 2.10 ([14, Lemma 6]). If H ≡ 0, then F , G share (1,∞). If
further F , G share (∞, 0) then they share (∞,∞).

Lemma 2.11. Let F , G be given by (2.1) and suppose they share (1,m).
Also let α1, . . . , αn be the distinct elements of the set{

z :
(n− 1)(n− 2)

2
zn − n(n− 2)zn−1 +

n(n− 1)

2
zn−2 − c = 0

}
,

where c 6= 0, 1, 1/2 is a complex number and n ≥ 3. Then

NL(r, 1;F > G) ≤ 1

m+ 1
[N(r, 0; f) +N(r,∞; f)−N⊗(r, 0; f ′)] + S(r, f),

where N⊗(r, 0; f ′) is the counting function of those 0-points of f ′ which are
not in f−1({0, α1, . . . , αn}).

Proof. The proof can be carried out along the lines of the proof of
[1, Lemma 2.14].

3. Proof of the theorem

Proof of Theorem 1.1. Let F , G be given by (2.1) and (2.2). Then F ,
G share (1,m) and f , g share (∞, k) . We consider two cases, each of them
split into several subcases.

Case 1. Suppose that Φ 6≡ 0.
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Subcase 1.1. Let H 6≡ 0. First suppose p = 0.
In view of Definition 2.3 we observe that

N∗(r,∞; f, g) = NL(r,∞; f) +NL(r,∞; g)

≤ N(r,∞; f | ≥ k + 2) +N(r,∞; g | ≥ k + 2)

≤ 1

k + 2
{N(r,∞; f) +N(r,∞; g)}.

Then using Lemma 2.3, Lemma 2.8 with p = 0 and Lemma 2.11 we deduce
that

(3.1) (n+ 1) {T (r, f) + T (r, g)}

≤ 3{N(r, 0; f) +N(r, 1; f)}+
{
1 +

1

k + 2

}
{N(r,∞; f) +N(r,∞; g)}

+
1

2
[N(r, 1;F ) +N(r, 1;G)]−

(
m− 3

2

)
N∗(r, 1;F,G)

+ S(r, f) + S(r, g)

≤ 3N∗(r,∞; f, g) +

{
1 +

1

k + 2

}
{N(r,∞; f) +N(r,∞; g)}

+
n

2
{T (r, f) + T (r, g)}

−
(
m− 9

2

)
N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤
{
n

2
+ 1 +

4

k + 2

}
{T (r, f) + T (r, g)}

− 2m− 9

2(m+ 1)
{N(r, 0; f) +N(r,∞; f) +N(r, 0; g) +N(r,∞; g)}

+ S(r, f) + S(r, g)

≤
{
n

2
+ 1 +

4

k + 2
+

9− 2m

m+ 1

}
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

Since 2− 4
k+2 >

9−2m
m+1 > 0, (3.1) gives a contradiction for n ≥ 4.

Next suppose p = 1.
Using Lemma 2.3, Lemma 2.8 for p = 0 and again for p = 1, and Lemma

2.11, we get

(3.2) (n+ 1){T (r, f) + T (r, g)}

≤ 7

3
{N∗(r,∞; f, g) +N∗(r, 1;F,G)}

+

{
1 +

1

k + 2

}
{N(r,∞; f) +N(r,∞; g)}
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+
1

2
[N(r, 1;F ) +N(r, 1;G)]

−
(
m− 3

2

)
N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤
{
1 +

10

3(k + 2)

}
{N(r,∞; f) +N(r,∞; g)}+ n

2
{T (r, f) + T (r, g)}

−
(
m− 23

6

)
N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤
{
n

2
+ 1 +

10

3(k + 2)

}
{T (r, f) + T (r, g)} − 6m− 23

6(m+ 1)
{2T (r, f) + 2T (r, g)}

+ S(r, f) + S(r, g)

≤
{
n

2
+ 1 +

10

3(k + 2)
+

23− 6m

3(m+ 1)

}
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

Since the assumption for p = 1 implies 2− 10
3(k+2) >

23−6m
3(m+1) > 0, (3.8) gives

a contradiction for n ≥ 4.

Subcase 1.2. Suppose H ≡ 0. Then

(3.3) F ≡ AG+B

CG+D
,

where A, B, C, D are constants such that AD − BC 6= 0. Also T (r, F ) =
T (r,G) +O(1), i.e.,

(3.4) T (r, f) = T (r, g) +O(1).

In view of Lemma 2.10 it follows that F and G share (1,∞) and (∞,∞), that
is, f and g share (∞,∞). So in view of Lemma 2.8, N(r, 0; f)+N(r, 1; f) =
S(r, f) + S(r, g). Since P (1) = 1, by a simple computation it can be easily
seen that 1 is a zero with multiplicity 3 of F − 1

c = P (f)−1
c and hence

F − 1

c
= (f − 1)3Qn−3(f),

where Qn−3(f) is a polynomial in f of degree n− 3 and thus

N

(
r,
1

c
;F

)
≤ N(r, 1; f) +N(r, 0;Qn−3(f))

≤ N(r, 1; f) + (n− 3)T (r, f) + S(r, f).

We now consider the following cases.

Subcase 1.2.1. Let AC 6= 0. From (3.3) we get

(3.5) N(r,∞;G) = N

(
r,
A

C
;F

)
.
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Since F and G share (1,∞), it follows that A/C 6= 1. Suppose A/C 6= 1/c.
Then in view of Lemma 2.3 and (3.4), by the Second Fundamental Theorem
we get

(n+ 1)T (r, f) ≤ N(r, 0; f) +N(r, 1; f) +N(r,∞; f)

+N

(
r,
A

C
;F

)
+ S(r, f) + S(r, g)

= N(r,∞; f) +N(r,∞; g) + S(r, f)

≤ 2T (r, f) + S(r, f),

which gives a contradiction for n ≥ 4.
Next suppose A/C = 1/c. Then

F − A

C
≡ BC −AD
C(CG+D)

i.e., (f − 1)3Qn−3(f) ≡
BC −AD
C(CG+D)

.

Suppose

Qn−3(f) = (f − α′1) . . . (f − α′n−3),

where α′i’s, i = 1, . . . , n− 3 are distinct. Then the above expression implies
that any α′i-point of f of order p (say) will be a pole of order q (say) of g.
Consequently, we have

p = nq ≥ n.

Noting that N(r, 0; f) + N(r, 1; f) = S(r, f) + S(r, g), in view of (3.4) the
Second Fundamental Theorem yields

(n− 2)T (r, f)

≤ N(r, 0; f) +N(r, 1; f) +N(r,∞; f) +

n−3∑
i=1

N(r, α′i; f) + S(r, f)

≤ N(r,∞; f) +
n− 3

n
T (r, f) + S(r, f)

≤
(
1 +

n− 3

n

)
T (r, f) + S(r, f),

which is a contradiction for n ≥ 4.

Subcase 1.2.2. Let A 6= 0 and C = 0. Then F ≡ α0G + β0, where
α0 = A/D and β0 = B/D.

We note that 1 cannot be a Picard exceptional value (P.e.v.) of F (or G).
For, if it happens, then f (resp. g) omits n ≥ 4 values, which is a contradic-
tion.

So F and G have some 1-points. Then α0 + β0 = 1 and so

(3.6) F ≡ α0G+ 1− α0.
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Suppose α0 6= 1. If 1 − α0 6= 1/c then using Lemma 2.3, (3.4) and the
Second Fundamental Theorem we get

2nT (r, f)

≤ N(r, 0;F ) +N(r, 1− α0;F ) +N

(
r,
1

c
;F

)
+N(r,∞;F ) + S(r, F )

≤ N(r, 0; f) + 2T (r, f) +N(r, 0;G) +N(r, 1; f)

+ (n− 3)T (r, f) +N(r,∞; f) + S(r, f)

≤ (n− 1)T (r, f) + 3T (r, g) +N(r,∞; f) + S(r, f) + S(r, g)

≤ (n+ 3)T (r, f) + S(r, f),

which implies a contradiction since n ≥ 4.
If 1− α0 = 1/c, then from (3.6) we have cF ≡ (c− 1)G+ 1.
Noting that c 6= 1/2 and N(r, 0; f) +N(r, 1; f) = N(r, 0; g) +N(r, 1; g),

using Lemma 2.3, (3.4) and (3.6) we obtain, by the Second Fundamental
Theorem,

2nT (r, g)

≤ N(r, 0;G) +N

(
r,
1

c
;G

)
+N

(
r,

1

1− c
;G

)
+N(r,∞;G) + S(r,G)

≤ 2T (r, g) +N(r, 0; g) + (n− 3)T (r, g) +N(r, 1; g) + 2T (r, f) +N(r, 0; f)

+N(r,∞; g) + S(r, g)

≤ 3T (r, f) + nT (r, g) + S(r, f) + S(r, g)

≤ (n+ 3)T (r, g) + S(r, g),

which implies a contradiction as n ≥ 4. Therefore α0 = 1 and hence F ≡ G.
This implies Φ ≡ 0, a contradiction to the initial assumption.

Subcase 1.2.3. Let A = 0 and C 6= 0. Then

F ≡ 1

γ0G+ δ0
,

where γ0 = C/B and δ0 = D/B.
Clearly 1 cannot be a P.e.v. of F and so of G. Since F and G have some

1-points we have γ0 + δ0 = 1 and so

(3.7) F ≡ 1

γ0G+ 1− γ0
.

Suppose γ0 6= 1. If γ0 6= 1− c, then noting that

N(r, 0;G) = N

(
r,

1

1− γ0
;F

)
6= N

(
r,
1

c
;F

)
,

by the Second Fundamental Theorem, using Lemma 2.3 we can again deduce
a contradiction as above when n ≥ 4.
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If γ0 = 1− c, from (3.7) we have

F ≡ 1

(1− c)G+ c
.

If possible suppose that 1
c 6=

c
c−1 . Now in the same way as above using

(3.4), Lemma 2.3, and the Second Fundamental Theorem yields

2nT (r, g)

≤ N(r, 0;G) +N

(
r,
1

c
;G

)
+N

(
r,

c

c− 1
;G

)
+N(r,∞;G) + S(r,G)

≤ N(r, 0; g) +N(r, 1; g) + 2T (r, g) + (n− 3)T (r, g) +N(r,∞;F )

+N(r,∞;G) + S(r, f) + S(r, g)

≤ nT (r, g) +N(r,∞; f) + S(r, f) + S(r, g),

which implies a contradiction for n ≥ 4.
Next suppose 1

c = c
c−1 . Then

F ≡ 1

−c2(G− 1
c )
, i.e., F

(
G− 1

c

)
≡ 1

−c2
.

Since F , G share (∞,∞), it follows that 0 is a P.e.v. of F , which implies f
omits three distinct complex numbers, which is impossible. So we must have
γ0 = 1, i.e., FG ≡ 1, which is impossible by Lemma 2.5.

Case 2. Suppose that Φ ≡ 0. On integration we get F − 1 ≡ A(G− 1)
for some non-zero constant A. So in view of Lemma 2.3, (3.4) is satisfied.
Since by the assumption of the theorem Ef (S1, 0) = Eg(S1, 0), we consider
the following cases.

Subcase 2.1. First assume f and g share (0, 0) and (1, 0). If none of 0
and 1 is a P.e.v. of f and g, then we have A = 1. Similarly if one of 0 or 1 is
a P.e.v. of f and g, then we get A = 1 and so in both cases we have F ≡ G,
which in view of Lemma 2.7 implies f ≡ g. If both 0 and 1 are P.e.v. of f as
well as of g then noting that here F ≡ AG+(1−A) which is similar to (3.6),
we can handle the situation as in Subcase 1.2.2. So we omit the details.

Subcase 2.2. Next suppose that f , g do not share (0, 0), (1, 0). Here
we have to consider the following subcases.

Subcase 2.2.1. Suppose there exist z0, z1 such that

f(z0) = 0, g(z0) = 1, f(z1) = 1, g(z1) = 0.

i.e., none of 0 and 1 is a P.e.v. of f and g. We note that from F − 1 ≡
A(G − 1) we get P (f) − c(1 − A) ≡ AP (g). If A 6= 1, then c(1 − A) 6= 0.
If c(1 − A) = 1, then A = c−1

c . So F − 1
c ≡

c−1
c G. We have F (z0) = 0 and

G(z0) = 1/c. Putting these values we obtain −1c = c−1
c2

, which implies c = 1
2 ,

a contradiction. So c(1−A) 6= 0, 1. Hence P (f)− c(1−A) has simple zeros
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and so

(f − ω1) . . . (f − ωn) ≡ A
(n− 1)(n− 2)

2
gn−2(g − γ)(g − δ),

where ωi (i = 1, . . . , n) are the distinct zeros of P (f)− c(1−A). Since f , g
share the set S1, from the above we see that 0 is a P.e.v. of g, a contradiction.

Subcase 2.2.2. If no such z0 exists, i.e., if 0 is a P.e.v. of f and 1 is a
P.e.v. of g, then again as above from Φ ≡ 0 we get

(3.8) F ≡ AG+ 1−A,
i.e.,

(3.9)
P (f)

A
≡ P (g)− c(A− 1)

A
.

Clearly, c(A−1)
A 6= 0 as c 6= 0 and A 6= 1. Now if c(A−1)

A = 1 then A = c
c−1 .

Since any 1-point of f is 0-point of g, from (3.8) we have 1
c = 1 − A, i.e.,

A = c−1
c . Therefore

c− 1

c
=

c

c− 1
,

which implies c = 1
2 , a contradiction. This implies c(A−1)

A 6= 1 and so P (g)−
c(A−1)

A has n distinct zeros β′j , say (j = 1, . . . , n). Hence from (3.9) we have

(n− 1)(n− 2)

2A
fn−2(f − γ)(f − δ) ≡ (g − β′1) . . . (g − β′n).

Now by the Second Fundamental Theorem and (3.4) we get

nT (r, g) ≤ N(r, 0; g) +N(r, 1; g) +

n∑
j=1

N(r, β′j ; g) + S(r, g)

≤ N(r, 0; g) +N(r, γ; f) +N(r, δ; f) + S(r, g)

≤ 3T (r, g) + S(r, g),

which is a contradiction for n ≥ 4.

Subcase 2.2.3. If no such z0, z1 exist at all, i.e., 0 and 1 are both Picard
exceptional values of f and g then again we can obtain either (3.9) or

(3.10) P (f)− c(1−A) ≡ AP (g).
We prove that either the right hand side of (3.9) or the left hand side of
(3.10) will have n distinct factors. Now if c(A−1)

A = 1, i.e., the right hand
side of (3.9) does not have n distinct factors, then A = c

c−1 and hence
c(1−A) = −A = c

1−c 6= 1 as c 6= 1
2 . So P (f)− c(1−A) has simple zeros and

consequently we have (f −ω1) . . . (f −ωn) ≡ A (n−1)(n−2)
2 gn−2(g− γ)(g− δ).

Therefore by the Second Fundamental Theorem and (3.4),
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nT (r, f) ≤
n∑

i=1

N(r, ωi; f) +N(r, 0; f) +N(r, 1; f) + S(r, f)

≤ N(r, γ; g) +N(r, δ; g) + S(r, f),

which is a contradiction for n ≥ 3.
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