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Summary. We study the existence and long-time behavior of weak solutions to Newton–
Boussinesq equations in two-dimensional domains satisfying the Poincaré inequality. We
prove the existence of a unique minimal finite-dimensional pullback Dσ-attractor for the
process associated to the problem with respect to a large class of non-autonomous forcing
terms.

1. Introduction. Let Ω be an arbitrary (bounded or unbounded) do-
main in R2 with boundary ∂Ω. In this paper we study the long-time behavior
of solutions to the following non-autonomous Newton–Boussinesq equations
in Ω:

(1.1)


∂tω + u∂x1ω + v∂x2ω = ∆ω − Ra

Pr
∂x1θ + f(x1, x2, t),

∆Ψ = ω, u = Ψx2 , v = −Ψx1 ,
∂tθ + u∂x1θ + v∂x2θ =

1

Pr
∆θ + g(x1, x2, t),

where ~u = (u, v) is the unknown velocity vector, θ is the flow temperature of
the fluid at the point (x1, x2) ∈ Ω and at time t ≥ τ , Ψ is the flow function,
ω is the vortex; the positive constants Pr and Ra are the Prandtl number
and the Rayleigh number, respectively; f(x1, x2, t) is the external body force,
and g(x1, x2, t) is the external heat source.
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Notice that system (1.1) can be written as follows: for every x = (x1, x2)
∈ Ω and t > τ ,

(1.2)


∂ω

∂t
−∆ω + J(Ψ, ω) +

Ra
Pr

∂θ

∂x1
= f(x, t),

∆Ψ = ω,
∂θ

∂t
− 1

Pr
∆θ + J(Ψ, θ) = g(x, t),

where the function J is given by

J(u, v) = ux2vx1 − ux1vx2 .
We consider system (1.2) with the following boundary conditions:

(1.3)


ω(x, t) = 0, ∀(x, t) ∈ ∂Ω × (τ,∞),
θ(x, t) = 0, ∀(x, t) ∈ ∂Ω × (τ,∞),
Ψ(x, t) = 0, ∀(x, t) ∈ ∂Ω × (τ,∞),

and the initial conditions

(1.4)
{
ω(x, τ) = ω0(x), x ∈ Ω,
θ(x, τ) = θ0(x), x ∈ Ω.

The Newton–Boussinesq equations describe many physical phenomena
such as Bénard flow (see [4, 6]). If the domain under consideration is bounded,
the existence, uniqueness and the long-time behavior of solutions to system
(1.1) have been studied by several authors, in both the autonomous case
[5, 8, 9, 10, 11] and the non-autonomous case [16]. Note that in these works,
the compactness of the Sobolev embeddings, due to the boundedness of the
domain, plays an essential role. However, as fas as we know, there are no
results for problem (1.1) in unbounded domains, a more complicated case
due to the lack of compactness of the Sobolev embeddings.

The aim of this paper is to continue the study of the long-time behavior of
weak solutions to problem (1.1) in a two-dimensional channel-like domain Ω.
More precisely, Ω can be an arbitrary (bounded and unbounded) open set
in R2 without any regularity assumption on its boundary. The only assump-
tion is that the Poincaré inequality holds on it, i.e., there exists λ1 > 0 such
that

(1.5)
�

Ω

|φ|2dx ≤ 1

λ1

�

Ω

|∇φ|2 dx, ∀φ ∈ H1
0 (Ω).

Because the external forces f(x, t) and g(x, t) are time-dependent, to
study the long-time behavior of solutions we will use the theory of pullback
attractors. This is a natural generalization of the theory of global attractors
for autonomous dynamical systems and allows considering a number of dif-
ferent problems for non-autonomous dynamical systems with a large class of
non-autonomous forcing terms (see the recent monograph [3]). Note that the
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unboundedness of Ω introduces a major difficulty for proving the existence
of a pullback attractor because the Sobolev embeddings are no longer com-
pact, and hence the pulback asymptotic compactness of the process cannot
be obtained by a standard method as in [16]. To overcome this difficulty,
we exploit the energy equation method introduced by Ball [1] to prove the
pullback asymptotic compactness of the process, and as a result, the exis-
tence of a pullback attractor. Such an approach has been used to prove the
existence of pullback attractors for non-autonomous 2D Navier–Stokes equa-
tions in some unbounded domains [2]. Finally, following the general lines of
the approach in [13], we show that the pullback attractor has a finite fractal
dimension under some additional conditions. The results obtained, in par-
ticular, improve and extend all known results about attractors for the 2D
Newton–Boussinesq equations. Notice that in the autonomous case, to over-
come the difficulty due to the unboundedness of the domain, the authors
of [7] used another approach based on the tail estimates method introduced
by Wang [18]. It is worth noticing that the estimate of fractal dimension of
the attractor obtained here is new even in the autonomous case.

The paper is organized as follows. In Section 2, for the convenience of
the reader, we recall the mathematical framework which is necessary to set
up the problem, and abstract results on the existence and fractal dimen-
sion of pullback attractors. In Section 3, we give the proof of existence and
uniqueness of weak solutions. In Section 4, we prove the existence of a pull-
back Dσ-attractor for the associated process by using the energy equation
method. In the last section, we estimate the fractal dimension of the pullback
Dσ-attractor.

2. Preliminary results

2.1. Function spaces and operators. We now recall several function
spaces and operators necessary to write the problem (1.1) in its variational
formulation. Let

V := H1
0 (Ω)×H1

0 (Ω), H = L2(Ω)× L2(Ω).

Due to (1.5), the inner product and norm in H1
0 (Ω) are given by

((ω, ω̃)) =
�

Ω

∇ω · ∇ω̃ dx, ∀ω, ω̃ ∈ H1
0 (Ω),

‖ω‖ = ((ω, ω))1/2, ∀ω ∈ H1
0 (Ω).

Abusing notation for simplicity, we define the inner product and norm in V
by

((z, z̃)) = ((ω, ω̃)) + γ((θ, θ̃)), ∀z = (ω, θ), z̃ = (ω̃, θ̃) ∈ V,
‖z‖ = ((z, z))1/2, ∀z ∈ V,
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where

(2.1) γ ≥ R2
a

Prλ1
.

This constant γ is chosen so that an operator to be defined later (related to
the linear part of the system) is coercive under the norm defined. Moreover,
the choice of γ makes the two terms in the definition of the inner product in
V dimensionally consistent in physical units.

We define the inner product and norm in H by

(z, z̃) = (ω, ω̃) + γ(θ, θ̃), ∀z = (ω, θ), z̃ = (ω̃, θ̃) ∈ H,
|z| = (z, z)1/2, ∀z ∈ H.

It follows from (1.5) that for all ω, θ ∈ H1
0 we have

(2.2) |ω|2 ≤ 1

λ1
‖ω‖2, |θ|2 ≤ 1

λ1
‖θ‖2.

Applying Riesz’s representation theorem, we can identify the dual space H ′
with H, obtaining V ⊂ H = H ′ ⊂ V ′, where the injections are continuous
and each space is dense in the following ones.

Let us define a bilinear form a : V ×V → R, and the corresponding linear
operator A : V → V ′, by

a(z, z̃) = 〈Az, z̃〉V ′,V =
�

Ω

∇ω · ∇ω̃ dx+ γ
1

Pr

�

Ω

∇θ · ∇θ̃ dx.

The operator A is clearly linear from V into V ′, and the bilinear form a is
coercive since

(2.3) min

(
1,

1

Pr

)
‖z‖2 ≤ a(z, z) = 〈Az, z〉V ′,V ≤ max

(
1,

1

Pr

)
‖z‖2.

Let us define b : (H2 ∩ H1
0 ) × V × V → R, and B(z) = B(Ψ z, z), the

associated bilinear operator B : (H2 ∩H1
0 )× V → V ′, by

b(Ψ z, z, z̃) = 〈B(Ψ z, z), z̃〉 =
�

Ω

J(Ψ z, ω)ω̃ dx+ γ
�

Ω

J(Ψ z, θ)θ̃ dx,

where ∆Ψ z = ω. It is easy to check that if Ψ z ∈ H2 ∩H1
0 , z, z̃ ∈ V , then

(2.4) b(Ψ z, z, z̃) = −b(Ψ z, z̃, z).
Hence

(2.5) b(Ψ z, z, z) = 0.

The following result is well-known.

Lemma 2.1 (Ladyzhenskaya’s inequality). For any open set Ω ⊂ R2, we
have

(2.6) ‖φ‖L4(Ω) ≤
1

21/4
‖φ‖1/2

L2(Ω)
‖∇φ‖1/2

L2(Ω)
, ∀φ ∈ H1

0 (Ω).
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Using Lemma 2.1 and the Poincaré inequality (1.5), we deduce from (2.6)
that

(2.7) ‖φ‖L4(Ω) ≤
(

1

2λ1

)1/4

‖∇φ‖L2(Ω), ∀φ ∈ H1
0 (Ω).

Lemma 2.2. For any open set Ω ⊂ R2 and Ψ z ∈ H2 ∩H1
0 , z, z̃ ∈ V we

have
|b(Ψ z, z, z̃)| ≤ C|z| ‖z‖ ‖z̃‖,

where C is a positive constant.

Proof. It is obvious that

(2.8)
1√
2

(‖ω̃‖+ γ1/2‖θ̃‖) ≤
√
‖ω̃‖2 + γ‖θ̃‖2 = ‖z̃‖.

By using the Hölder inequality and (2.7) we obtain∣∣∣ �
Ω

Ψ zyωxω̃ dx
∣∣∣ ≤ ‖Ψ zy ‖L4‖ωx‖L2‖ω̃‖L4

≤ C‖∆Ψ z‖L2‖ω‖ ‖ω̃‖ ≤ C|ω| ‖ω‖ ‖ω̃‖.

Thus ∣∣∣ �
Ω

J(Ψ z, ω)ω̃ dx
∣∣∣ ≤ 1√

2
C|z| ‖z‖ ‖ω̃‖.

Similarly,∣∣∣ �
Ω

J(Ψ z, θ)θ̃ dx
∣∣∣ ≤ 1√

2
C‖Ψ z‖H2‖θ‖ ‖θ̃‖ ≤

1√
2
Cγ−1/2|∆Ψ z| ‖z‖ ‖θ̃‖

≤ 1√
2
Cγ−1/2|ω| ‖z‖ ‖θ̃‖ ≤ 1√

2
Cγ−1/2|z| ‖z‖ ‖θ̃‖.

Hence

|b(Ψ z, z, z̃)| ≤ 1√
2
C|z| ‖z‖(‖ω̃‖+ γ1/2‖θ̃‖).

Using (2.8) we get the desired result.

Applying (2.5) and Lemma 2.2 we see that

〈B(Ψ z, z), z〉V ′,V = 0,(2.9)
‖B(z)‖V ′ ≤ C|z| ‖z‖, ∀z ∈ V.(2.10)

2.2. Pullback attractors. Let (X, d) be a metric space. For A,B ⊂ X,
we define the Hausdorff semidistance between A and B by

dist(A,B) := sup
a∈A

inf
b∈B

d(a, b).
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A process on X is a two-parameter family {Z(t, τ)} of mappings in X
with the following properties:

Z(t, r)Z(r, τ) = Z(t, τ) for all t ≥ r ≥ τ,
Z(τ, τ) = Id for all τ ∈ R.

Suppose that B(X) is the family of all non-empty bounded subsets of X,
and D is a non-empty class of parameterized sets D̂ = {D(t) : t ∈ R} ⊂
B(X).

Definition 2.1. The process {Z(t, τ)} is said to be pullback D-asymp-
totically compact if for any t ∈ R, any D̂ ∈ D, any sequence τn → −∞, and
any sequence xn ∈ D(τn), the sequence {Z(t, τn)xn}n is relatively compact
in X.

Definition 2.2. A family B̂ = {B(t) : t ∈ R} ∈ D of bounded sets
is called pullback D-absorbing for the process Z(t, τ) if for any t ∈ R and
D̂ ∈ D, there exists τ0 = τ0(D̂, t) ≤ t such that⋃

τ≤τ0

Z(t, τ)D(τ) ⊂ B(t).

Definition 2.3. A family Â = {A(t) : t ∈ R} ⊂ B(X) is said to be a
pullback D-attractor for {Z(t, τ)} if:

(i) A(t) is compact for all t ∈ R;
(ii) Â is invariant, i.e., Z(t, τ)A(τ) = A(t) for all t ≥ τ ;
(iii) Â is pullback D-attracting, i.e.,

lim
τ→−∞

dist(Z(t, τ)D(τ), A(t)) = 0 for all D̂ ∈ D and t ∈ R;

(iv) if {C(t) : t ∈ R} is another family of closed attracting sets then
A(t) ⊂ C(t) for all t ∈ R.

Theorem 2.1 ([2]). Let {Z(t, τ)} be a continuous process such that
{Z(t, τ)} is pullback D-asymptotically compact. If there exists a pullback D-
absorbing family B̂ = {B(t) : t ∈ R} ∈ D, then {Z(t, τ)} has a unique
pullback D-attractor Â = {A(t) : t ∈ R} and

A(t) =
⋂
s≤t

⋃
τ≤s

Z(s, τ)B(τ).

We now recall from [13] some estimates of the fractal dimension of pull-
back attractors.

Let H be a separable real Hilbert space. Given a compact set K ⊂ H,
and ε > 0, we denote by Nε(K) the minimum number of open balls in H
with radius ε that are necessary to cover K.
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Definition 2.4. For any non-empty compact set K ⊂ H, the fractal
dimension of K is the number

dF(K) = lim sup
ε↓0

log(Nε(K))

log(1/ε)
.

Consider a separable real Hilbert space V ⊂ H such that the injection of
V inH is continuous, and V is dense inH. We identifyH with its topological
dual H ′, and we consider V as a subspace of H ′, identifying η ∈ V with the
element fη ∈ H ′ defined by

fη(h) = (η, h), h ∈ H.
Let F : V ×R→ V ′ be a given family of non-linear operators such that,

for all τ ∈ R and any z0 ∈ H, there exists a unique function z(t) = z(t; τ, z0)
satisfying

(2.11)


z ∈ L2(τ, T ;V ) ∩ C([τ, T ];H),

F (z(·), ·) ∈ L1(τ, T ;V ′) for all T > τ,
dz

dt
= F (z(t), t), t > τ,

z(τ) = z0.

Let us define
Z(t, τ)z0 = z(t; τ, z0), τ ≤ t, z0 ∈ H.

Fix T ∗ ∈ R. We assume that there exists a family {A(t) : t ≤ T ∗} of
non-empty compact subsets of H with the invariance property

Z(t, τ)A(τ) = A(t) for all τ ≤ t ≤ T ∗,
and such that, for all τ ≤ t ≤ T ∗ and any z0 ∈ A(τ), there exists a continuous
linear operator L(t; τ, z0) ∈ L(H) such that
(2.12) |Z(t, τ)z̄0−Z(t, τ)z0−L(t; τ, z0)(z̄0−z0)| ≤ χ(t−τ, |z̄0−z0|)|z̄0−z0|
for all z̄0 ∈ A(τ), where χ : R+ ×R+ → R+ is a function such that χ(s, ·) is
non-decreasing for all s ≥ 0, and
(2.13) lim

r→0
χ(s, r) = 0 for any s ≥ 0.

We assume that, for all t ≤ T ∗, the mapping F (·, t) is Gateaux differ-
entiable in V , i.e., for any z ∈ V there exists a continuous linear operator
F ′(z, t) ∈ L(V ;V ′) such that

lim
ε→0

1

ε
[F (z + εη, t)− F (z, t)− εF ′(z, t)η] = 0 in V ′.

Moreover, we suppose that the mapping
F ′ : V × (−∞, T ∗] 3 (z, t) 7→ F ′(z, t) ∈ L(V ;V ′)

is continuous (thus, in particular, for each t ≤ T ∗, the mapping F (·, t) is
continuously Fréchet differentiable in V ).
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Then, for all τ ≤ T ∗ and z0, η0 ∈ H, there exists a unique η(t) =
η(t; τ, z0, η0) which is a solution of

η ∈ L2(τ, T ;V ) ∩ C([τ, T ];H) for all τ < T ≤ T ∗,
dη

dt
= F ′(Z(t, τ)z0, t)η, τ < t < T ∗,

η(τ) = η0.

We make the assumption that

(2.14) η(t; τ, z0, η0) = L(t; τ, z0)η0 for all τ ≤ t ≤ T ∗, z0, η0 ∈ A(τ).

Let us write, for m = 1, 2, . . . ,

q̃m = lim sup
T→∞

sup
z0∈A(τ−T )

1

T

τ�

τ−T
Trm

(
F ′(Z(s, τ − T )z0, s)

)
ds,

where

Trm
(
F ′(Z(s, τ − T )z0, s)

)
= sup

ηi0∈H, |ηi0|≤1, i≤m

m∑
i=1

〈F ′(Z(s, τ − T )z0, s)ϕi, ϕi〉,

{ϕi}i=1,...,m being an orthonormal basis of the subspace in H spanned by

η(s; τ, z0, η
1
0), . . . , η(s; τ, z0, η

m
0 ).

Theorem 2.2 ([13, Theorem 2.2]). Under the assumptions above, sup-
pose that ⋃

τ≤T ∗
A(τ) is relatively compact in H,

and there exist qm, m = 1, 2, . . . , such that

q̃m ≤ qm for any m ≥ 1,

qn0 ≥ 0, qn0+1 < 0 for some n0 ≥ 1,

qm ≤ qn0 + (qn0 − qn0+1)(n0 −m) for all m = 1, 2, . . . .

Then
dF(A(τ)) ≤ d0 := n0 +

qn0

qn0 − qn0+1
for all τ ≤ T ∗.

3. Existence and uniqueness of weak solutions. We define r :
V × V → R and the associated linear operator R : V → V ′ by

r(z, z̃) = 〈Rz, z̃〉 =
Ra
Pr

(θx1 , ω̃).

By (2.1), and the Hölder and Poincaré inequalities, we have∣∣∣∣RaPr (θx1 , ω̃)

∣∣∣∣ ≤ Ra
Pr
|θx1 | |ω̃| ≤

Ra√
λ1 Pr

‖θ‖ ‖ω̃‖ ≤ 1√
Pr
‖z‖ ‖z̃‖.
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Hence we obtain

(3.1) |r(z, z̃)| ≤ 1√
Pr
‖z‖ ‖z̃‖ and ‖Rz‖V ′ ≤

1√
Pr
‖z‖.

We assume that f ∈ L2
loc(R;H−1(Ω)) and g ∈ L2

loc(R;H−1(Ω)). Then it
is easy to see that Φ = (f, g) ∈ L2

loc(R;V ′), and

(3.2) 〈Φ, z〉V ′,V = 〈f, ω〉H−1,H1
0

+ γ〈g, θ〉H−1,H1
0

for a.e. t ∈ R.

We define e : V → R by e(z) = 〈Φ, z〉V ′,V . It is obvious that
|e(z)| = |〈Φ, z〉| ≤ ‖Φ‖V ′‖z‖.

We now consider the following weak formulation of problem (1.2)–(1.4).

Problem. For z0 ∈ H given, find z = (ω, θ) such that

(3.3)


z ∈ L2(τ, T ;V ) ∩ L∞(τ, T ;H),
d

dt
(z, z̃) + a(z, z̃) + r(z, z̃) + b(Ψ z, z, z̃) = e(z̃),

∀z̃ ∈ V, for a.e. t,
z(τ) = z0.

Equation (3.3) is equivalent to the functional equation in V ′,

(3.4)


z ∈ L2(τ, T ;V ) ∩ L∞(τ, T ;H),

z′ + (A+R)z +B(z) = Φ in V ′, for a.e. t,
z(τ) = z0,

where z′ = (dω/dt, dθ/dt).
In order to prove the existence of global solutions, we first show that

A+R is V -elliptic. More precisely, we will prove that there exists δ > 0 such
that

(3.5) 〈(A+R)z, z〉 ≥ δ
(
‖ω‖2 + γ

1

Pr
‖θ‖2

)
.

This implies that there exists δ′ > 0 such that

〈(A+R)z, z〉 ≥ δ′‖z‖2.

Lemma 3.1. The operator A+R satisfies (3.5) with some positive num-
ber δ.

Proof. From (2.1),Ra/(
√
λ1 Pr)≤(γP−1

r )1/2. Using this and the Poincaré
inequality (1.5) we obtain∣∣∣∣RaPr (θx1 , ω)

∣∣∣∣ ≤ Ra
Pr
|θx1 | |ω| ≤

Ra√
λ1 Pr

‖θ‖ ‖ω‖

≤ ‖ω‖
2 + γP−1

r ‖θ‖2

2
.
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From the definition of R and the inequality above we have

|〈Rz, z〉| = |r(z, z)| ≤ 1

2

(
‖ω‖2 +

γ

Pr
‖θ‖2

)
.

Using the definition of A, the definition of ‖z‖ and the inequality above we
obtain

〈(A+R)z, z〉 ≥ ‖ω‖2 +
γ

Pr
‖θ‖2 − |〈Rz, z〉| ≥ 1

2

(
‖ω‖2 +

γ

Pr
‖θ‖2

)
.

Hence we can choose, for instance, δ = 1/2.

We are now ready to prove the existence of a weak solution to problem
(3.3).

Theorem 3.1. Let f ∈ L2
loc(R;H−1(Ω)) and g ∈ L2

loc(R;H−1(Ω)).
Then for any z0 ∈ H, τ ∈ R, and T > τ , there exists a unique solution
z ∈ L2(τ, T ;V ) ∩ L∞(τ, T ;H) of problem (3.4). Moreover, z ∈ C([τ, T ];H)
and

(3.6) |z(t)|2 ≤ e−σ(t−τ)|z0|2 +
e−σt

ζ

t�

−∞
eσs‖Φ(s)‖2V ′ ds,

where σ = ζλ1 and ζ = δmin(1, 1/Pr).

Proof. (i) Existence. From (3.5) we see that A + R is V -elliptic. The
existence of a weak solution on (τ, T ) is based on Galerkin approximations,
a priori estimates, and the compactness method. As it is standard and similar
to the case of the Navier–Stokes equations [17], we only provide some basic
a priori estimates used frequently later.

Now we determine an energy equation for the solution. We define a sym-
metric bilinear form [·, ·] : V × V → R by

(3.7) [z, z̃] = 〈(A+R)z, z̃〉 − ζλ1

2
(z, z̃), ∀z, z̃ ∈ V,

where ζ is defined as

(3.8) ζ = δmin

(
1,

1

Pr

)
,

and where δ is given by (3.5), the V -ellipticity condition.
From (3.1) and the definition of A we have

[z, z] +
ζλ1

2
|z|2 = 〈(A+R)z, z〉 ≤

(
max

(
1,

1

Pr

)
+

1√
Pr

)
‖z‖2.

Thus,

(3.9) [z]2 ≡ [z, z] ≤
(

max

(
1,

1

Pr

)
+

1√
Pr

)
‖z‖2.
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Let z = (ω, θ). From the definition of |z| and (2.2) we have
ζλ1

2
|z|2 =

ζλ1

2
(|ω|2 + γ|θ|2) ≤ ζ

2
(‖ω‖2 + γ‖θ‖2) =

ζ

2
‖z‖2.

Using this, (3.5) and (3.8) we obtain

(3.10) [z]2 ≥ ζ‖z‖2 − ζλ1

2
|z|2 ≥ ζ

2
‖z‖2.

Putting together (3.9) and (3.10) we obtain

(3.11)
ζ

2
‖z‖2 ≤ [z]2 ≤

(
max

(
1,

1

Pr

)
+

1√
Pr

)
‖z‖2, ∀z ∈ V.

Thus, [·, ·] defines an inner product in V with norm [·] = [·, ·]1/2 equivalent
to ‖ · ‖.

Now let z(t) = (ω(t), θ(t)) be a solution given by Theorem 3.1. Since
z = (ω, θ) ∈ L2(τ, T ;V ) and z′ = (ω′, θ′) ∈ L2(τ, T ;V ′), we have

1

2

d

dt
|ω|2 = 〈ω′, ω〉H−1,H1

0
and

1

2

d

dt
|θ|2 = 〈θ′, θ〉H−1,H1

0
.

Using (3.2) we have
1

2

d

dt
|z|2 =

1

2

d

dt
(|ω|2 + γ|θ|2) = 〈ω′, ω〉H−1,H1

0
+ γ〈θ′, θ〉H−1,H1

0
= 〈z′, z〉V ′,V .

So from (3.4) and (2.9) we obtain
1

2

d

dt
|z|2 + 〈(A+R)z, z〉 = 〈Φ, z〉.

From the definition of the norm [·] given by (3.7) we deduce that

(3.12)
d

dt
|z|2 + ζλ1|z|2 + 2[z]2 = 2〈Φ, z〉.

Using the equivalence of norms given by (3.11) and the Cauchy inequality,
we obtain

d

dt
|z|2 + ζλ1|z|2 + ζ‖z‖2 ≤ 2

ζ
‖Φ‖2V ′ +

ζ

2
‖z‖2,

and hence
d

dt
|z|2 +

ζ

2
‖z‖2 ≤ 2

ζ
‖Φ‖2V ′ .

Let T > τ be arbitrary. Integrating both sides of the above inequality
from τ to T , we get

|z(T )|2 +
ζ

2

T�

τ

‖z(s)‖2 ds ≤ |z0|2 +
2

ζ
‖Φ‖2L2(τ,T ;V ′).

This inequality implies estimates of z in the function space L2(τ, T ;V ) ∩
L∞(τ, T ;H).
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Since z ∈ L2(τ, T ;V ), (3.4) implies that z′ ∈ L2(τ, T ;V ′). Hence, z ∈
C([τ, T ];H).

(ii) Uniqueness and continuous dependence. Assume that z1 and z2 are
two weak solutions of (3.3) with initial data z1

0 , z
2
0 . Set w = z1 − z2 and

Ψw = Ψ z
1 −Ψ z2 , where ∆Ψ z1 = ω1 and ∆Ψ z2 = ω2. Then w ∈ L2(τ, T ;V )∩

L∞(τ, T ;H), and w satisfies
d

dt
w + (A+R)w = B(Ψ z

2
, z2)−B(Ψ z

1
, z1),

w(τ) = z1
0 − z2

0 .

We deduce that
d

dt
|w|2 + 2[w]2 = −ζλ1|w|2 + 2b(Ψ z

2
, z2, w)− 2b(Ψ z

1
, z1, w)

= −ζλ1|w|2 − 2b(Ψw, z1, w).

By Lemma 2.2, we have

|−2b(Ψw, z1, w)| ≤ 2C|w| ‖z1‖ ‖w‖ ≤ ζ‖w‖2 +
C2

ζ
|w|2‖z1‖2.

Hence
d

dt
|w|2 ≤

(
ζλ1 +

C2

ζ
‖z1‖2

)
|w|2.

Applying the Gronwall inequality, we obtain

|w(t)|2 ≤ |w(τ)|2 exp

(t�
τ

(
ζλ1 +

C2

ζ
‖z1(s)‖2

)
ds

)
.

The last estimate implies the uniqueness (if z1
0 = z2

0) and the continuous
dependence of solutions on the intial data.

(iii) The a priori estimate (3.6). Applying the Cauchy inequality in (3.12)
we get

d

dt
|z|2 + ζλ1|z|2 + ζ‖z‖2 ≤ 1

ζ
‖Φ‖2V ′ + ζ‖z‖2.

By the Gronwall inequality, we obtain (3.6). Hence it follows that the solution
z can be extended to [τ,∞).

4. Existence of a pullback Dσ-attractor. Thanks to Theorem 3.1,
we can define a continuous process Z(t, τ) in H by

Z(t, τ)z0 = z(t; τ, z0), τ ≤ t, z0 ∈ H,
where z(t) = z(t; τ, z0) is the unique weak solution to problem (3.4) with the
initial datum z(τ) = z0.

The following lemma shows the weak continuity of the process Z(t, τ).
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Lemma 4.1. Let {z0n}n be a sequence in H converging weakly in H to
an element z0 ∈ H. Then

Z(t, τ)z0n ⇀ Z(t, τ)z0 weakly in H for all t ≥ τ,(4.1)

Z(·, τ)z0n ⇀ Z(·, τ)z0 weakly in L2(τ, T ;V ) for all T > τ.(4.2)

Proof. The proof is similar to that of Lemma 2.1 in [15], so it is omitted
here.

Let Rσ be the set of all functions r : R→ (0,∞) such that

lim
t→−∞

eσtr2(t) = 0,

and denote by Dσ the class of all families D̂ = {D(t) : t ∈ R} ⊂ B(H) such
that D(t) ⊂ B(0, r̂(t)) for some r̂(t) ∈ Rσ, where B(0, r) denotes the closed
ball in H, centered at zero with radius r.

Now, in order to prove the existence of a pullback Dσ-attractor for the
process {Z(t, τ)} we assume that Φ = (f, g) ∈ L2

loc(R;V ′) and

(4.3)
t�

−∞
eσs‖Φ(s)‖2V ′ ds <∞ for all t ∈ R,

where σ = ζλ1 and ζ = δmin(1, 1/Pr).

Theorem 4.1. Under the conditions of Theorem 3.1 and (4.3), there
exists a unique pullback Dσ-attractor Â = {A(t) : t ∈ R} for the process
{Z(t, τ)} associated to problem (3.4).

Proof. Let τ ∈ R and z0 ∈ H be fixed, and denote

z(t) = z(t; τ, z0) = Z(t, τ)z0 for all t ≥ τ.
In order to apply Theorem 2.1, we will check the conditions in the abstract
theorem.

(i) The process Z(t, τ) has a pullback Dσ-absorbing family of sets. Let
D̂ ∈ Dσ. From (3.6) we have

(4.4) |Z(t, τ)z0|2 ≤ e−σ(t−τ)r̂2(τ) +
e−σt

ζ

t�

−∞
eσs‖Φ(s)‖2V ′ ds

for all z0 ∈ D(τ) and all t ≥ τ . Define Rσ(t) ∈ Rσ by

(4.5) R2
σ(t) =

2e−σt

ζ

t�

−∞
eσs‖Φ(s)‖2V ′ ds,

and consider the family B̂σ of closed balls inH defined byBσ(t)=B(0, Rσ(t)).
It is straightforward to check that B̂σ ∈ Dσ, and moreover, by (4.4) and (4.5),
the family B̂σ is pullback Dσ-absorbing for the process Z(t, τ).
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(ii) Z(t, τ) is pullback Dσ-asymptotically compact. Fix D̂ ∈ Dσ, a se-
quence τn → −∞, a sequence z0n ∈ D(τn) and t ∈ R. We must prove
that from the sequence {Z(t, τn)z0n}n we can extract a subsequence that
converges in H.

As the family B̂σ is pullback Dσ-absorbing, for each integer k ≥ 0, there
exists a τD̂(k) ≤ t− k such that

(4.6) Z(t− k, τ)D(τ) ⊂ Bσ(t− k) for all τ ≤ τD̂(k),

so that for τn ≤ τD̂(k),

Z(t− k, τn)z0n ⊂ Bσ(t− k).

Thus, {Z(t− k, τn)z0n}n is weakly precompact in H and since Bσ(t− k) is
closed and convex, there exists a subsequence {τn′ , z0n′}n′ ⊂ {τn, z0n}n and
a sequence {wk : k ≥ 0} ⊂ H such that for all k ≥ 0, wk ∈ Bσ(t− k), and

(4.7) Z(t− k, τn′)z0n′ ⇀ wk weakly in H.

Note that from the weak continuity of Z(t, τ) established in Lemma 4.1,
we get

w0 = limHw

n′→∞
Z(t, τn′)z0n′ = limHw

n′→∞
Z(t, t− k)Z(t− k, τn′)z0n′

= Z(t, t− k) limHw

n′→∞
Z(t− k, τn′)z0n′ = Z(t, t− k)wk,

where limHw denotes the limit taken in the weak topology of H. Thus,

(4.8) Z(t, t− k)wk = w0 for all k ≥ 0.

Now, from (4.7), by the lower semicontinuity of the norm, we have

|w0| ≤ lim inf
n′→∞

|Z(t, τn′)z0n′ |.

If we now prove that also

(4.9) lim sup
n′→∞

|Z(t, τn′)z0n′ | ≤ |w0|,

then we will have
lim
n′→∞

|Z(t, τn′)z0n′ | = |w0|,

and this, together with the weak convergence, will imply the strong conver-
gence in H of Z(t, τn′)z0n′ to w0.

Now, from (3.12) we get

|z(t)|2 ≤ e−σ(t−τ)|z0|2 + 2

t�

τ

e−σ(t−s)(〈Φ(s), z(s)〉 − [z(s)]2
)
ds,

which can be written as
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(4.10) |Z(t, τ)z0|2 ≤ eσ(τ−t)|z0|2 + 2

t�

τ

eσ(s−t)(〈Φ(s), z(s)〉 − [z(s)]2
)
ds

for all τ ≤ t and all z0 ∈ H. Thus, for all k ≥ 0 and all τn′ ≤ t− k,

(4.11) |Z(t, τn′)z0n′ |
2 = |Z(t, t− k)Z(t− k, τn′)z0n′ |

2

≤ e−σk|Z(t− k, τn′)z0n′ |
2

+ 2

t�

t−k
eσ(s−t)〈Φ(s), Z(s, t− k)Z(t− k, τn′)z0n′ 〉 ds

− 2

t�

t−k
eσ(s−t)[Z(s, t− k)Z(t− k, τn′)z0n′ ]

2 ds.

We now estimate each of the three terms above.
By (4.6), Z(t− k, τn′)z0n′ ∈ Bσ(t− k) for all τn′ ≤ τD̂(k), k ≥ 0, and we

have

(4.12) lim sup
n′→∞

e−σk|Z(t, τn′)z0n′ |
2 ≤ e−σkR2

σ(t− k), k ≥ 0.

This takes care of the first term in (4.11).
As Z(t− k, τn′)z0n′ ⇀ wk weakly in H, from Lemma 4.1 we obtain

(4.13) Z(·, t− k)Z(t− k, τn′)z0n′ ⇀ Z(·, t− k)wk weakly in L2(t− k, t;V ).

Taking into account that, in particular, eσ(s−t)Φ(s) ∈ L2(t − k, t;V ′), from
(4.13) we get

(4.14) lim
n′→∞

t�

t−k
eσ(s−t)〈Φ(s), Z(s, t− k)Z(t− k, τn′)z0n′ 〉 ds

=

t�

t−k
eσ(s−t)〈Φ(s), Z(s, t− k)wk〉 ds.

This takes care of the second term in (4.11).
From (3.11) the norm [·] is equivalent to ‖ · ‖ in V . Also

0 < e−σk ≤ eσ(s−t) ≤ 1, ∀s ∈ [t− k, t],

and therefore ( t�

t−k
e−σ(t−s)[·]2 ds

)1/2

is a norm in L2(t− k, t;V ) equivalent to the usual norm. Hence from (4.13)
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we deduce that
t�

t−k
eσ(s−t)[Z(s, t− k)wk]

2 ds

≤ lim inf
n′→∞

t�

t−k
eσ(s−t)[Z(s, t− k)Z(t− k, τn′)z0n′ ]

2 ds.

Hence

(4.15) lim sup
n′→∞

−2

t�

t−k
eσ(s−t)[Z(s, t− k)Z(t− k, τn′)z0n′ ]

2 ds

= − lim inf
n′→∞

2

t�

t−k
eσ(s−t)[Z(s, t− k)Z(t− k, τn′)z0n′ ]

2 ds

≤ −2

t�

t−k
eσ(s−t)[Z(s, t− k)wk]

2 ds.

This takes care of the last term in (4.11).
We can now pass to the lim sup as n′ → ∞ in (4.11), and take (4.12),

(4.14) and (4.15) into account to obtain

(4.16) lim sup
n′→∞

|Z(t, τn′)z0n′ |
2 ≤ e−σkR2

σ(t− k)

+ 2

t�

t−k
eσ(s−t)(〈Φ(s), Z(s, t− k)wk〉 − [Z(s, t− k)wk]

2
)
ds.

On the other hand, from (4.10) applied to (4.8) we find that

|w0| = |Z(t, t− k)wk|2

= |wk|2e−σk + 2

t�

t−k
eσ(s−t)(〈Φ(s), Z(s, t− k)wk〉 − [Z(s, t− k)wk]

2
)
ds.

From (4.15) and (4.16), we have

lim sup
n′→∞

|Z(t, τn′)z0n′ |
2 ≤ e−σkR2

σ(t− k) + |w0|2 − |wk|2e−σk

≤ e−σkR2
σ(t− k) + |w0|2,

and thus, taking into account that

e−σkR2
σ(t− k) =

2e−σt

ζ

t−k�

−∞
eσs‖Φ(s)‖2V ′ ds→ 0 as k →∞,

we easily obtain (4.9) from the last inequality.
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5. Fractal dimension estimates of the pullback Dσ-attractor. Ob-
serve that problem (3.4) can be written in the form (2.11) by taking

F (z, t) = −Az(t)−Rz(t)−Bz(t) + Φ(t).

Then it follows immediately that for all t ∈ R, the mapping F (·, t) is Gateaux
differentiable in V with

F ′(z, t)η = −Aη −Rη −B(Ψ z, η)−B(Ψη, z), z, η ∈ V,
and the mapping F ′ : V × R 3 (z, t) 7→ F ′(z, t) ∈ L(V ;V ′) is continuous.

Evidently, for any τ ∈ R and z0, η0 ∈ H, there exists a unique solution
η(t) = η(t; τ, z0, η0) of the problem

(5.1)


η ∈ L2(τ, T ;V ) ∩ L∞(τ ;T ;H),
dη

dt
= −(A+R)η −B(Ψ z, η)−B(Ψη, z), τ < t,

η(τ) = η0.

From now on, besides Φ = (f, g) ∈ L2
loc(R;V ′), we suppose that

(5.2) f, g ∈ L∞(−∞, T ∗;H−1(Ω)) for some T ∗ ∈ R.
Thus, Φ ∈ L2

loc(R;V ′) ∩ L∞(−∞, T ∗;V ′).
Lemma 5.1. Under the conditions of Theorem 3.1 and (5.2), the pullback

Dσ-attractor Â = {A(t) : t ∈ R} obtained in Theorem 4.1 satisfies:

(5.3)
⋃
τ≤T ∗

A(τ) is relatively compact in H.

Proof. Denoting M = ‖Φ‖2L∞(−∞,T ∗;V ′), from (4.5) we have

R2
σ(t) ≤ 2Me−σt

ζ

t�

−∞
eσs ds =

2M

σζ
,

and consequently

B∗ :=
⋃
τ≤T ∗

Bσ(τ) is bounded in H,

where Bσ(τ) = B(0, Rσ(τ)).
Denote by M the set of all y ∈ H such that there exists a sequence

{tn, τn}n ⊂ R2 satisfying

τn ≤ tn ≤ T ∗, n ≥ 1, lim
n→∞

(tn − τn) =∞,

and a sequence {z0n}n ⊂ B∗ such that limn→∞ |Z(t, τn)z0n − y| = 0.
It is easy to see that A(t) ⊂ M for all t ≤ T ∗. If we prove that M is

relatively compact in H, then (5.3) follows immediately.
Let {yk}k ⊂M. For each k ≥ 1, we can take (tk, τk) ∈ R2 and an element

z0k ∈ B∗ such that tk ≤ T ∗, tk − τk ≥ k and |Z(tk, τk)z0k − yk| ≤ 1/k. Using
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(5.2), by arguments as in [13, Proposition 3.4], we can extract from {yk}k
a subsequence that converges in H.

Lemma 5.2. Under the conditions of Theorem 3.1 and (5.2), the process
Z(t, τ) associated to problem (3.4) has the quasidifferentiability properties
(2.12)–(2.14), with η(t) = η(t; τ, z0, η0) defined by (5.1).

Proof. By (5.2) and Lemma 5.1 there exists a constant C > 1 such that

(5.4) ‖Φ‖2L∞(−∞,T ∗;V ′) ≤
Cζ

2
, |z0|2 ≤ C for all z0 ∈

⋃
τ≤T ∗

A(τ).

Fix τ ≤ T ∗ and z0, z̄0 ∈ A(τ), denote z(t) = Z(t, τ)z0 and z̄(t) =
Z(t, τ)z̄0, and let η(t) be the solution of (5.1) with η0 = z̄0 − z0.

From (3.12) we easily find that

(5.5) |z(t)|2 +
ζ

2

t�

τ

‖z(s)‖2 ds ≤ |z0|2 +
2

ζ

t�

τ

‖Φ(s)‖2V ′ ds.

Taking into account (5.4), we easily deduce from (5.5) that

(5.6)
t�

τ

‖z(s)‖2 ds ≤ 2C

ζ
(1 + t− τ) for all τ ≤ t ≤ T ∗.

Denoting
w(t) = z̄(t)− z(t), τ ≤ t,

we have
d

dt
|w|2 + 2[w]2 = −ζλ1|w|2 + 2b(Ψ z, z, w)− 2b(Ψ z̄, z̄, w)

= −ζλ1|w|2 − 2b(Ψw, z, w).

By Lemma 2.2, we have

|−2b(Ψw, z, w)| ≤ 2C|w| ‖z‖ ‖w‖ ≤ ζ

2
‖w‖2 +

2C2

ζ
|w|2‖z‖2.

Hence

(5.7)
d

dt
|w|2 +

ζ

2
‖w‖2 ≤

(
ζλ1 +

2C2

ζ
‖z‖2

)
|w|2.

In particular

|w(t)|2 ≤ |w(τ)|2 exp

(t�
τ

(
ζλ1 +

2C2

ζ
‖z(s)‖2

)
ds

)
.

Thus, by using (5.6),

(5.8) |w(t)|2 ≤ |w(τ)|2 exp(K(1 + t− τ)) for all τ ≤ t ≤ T ∗,
where K = max(4C3/ζ2 + ζλ1, 1).
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Now from (5.7) and (5.8) we have

ζ

2

t�

τ

‖w(s)‖2 ds ≤ |w(τ)|2 +

t�

τ

(
ζλ1 +

2C2

ζ
‖z(s)‖2

)
|w(s)|2 ds

≤ |w(τ)|2 +

t�

τ

(
ζλ1 +

2C2

ζ
‖z(s)‖2

)
|w(τ)|2 exp[K(1 + s− τ)] ds

≤ |w(τ)|2
[
1 + exp[K(1 + t− τ)]

t�

τ

(
ζλ1 +

2C2

ζ
‖z(s)‖2

)
ds

]
.

Hence

ζ

2

t�

τ

‖w(s)‖2 ds ≤ |w(τ)|2
[
1 +K(1 + t− τ) exp[K(1 + t− τ)]

]
(5.9)

≤ |w(τ)|2[1 +K(1 + t− τ))] exp[K(1 + t− τ)]

≤ |w(τ)|2 exp[2K(1 + t− τ)].

Let α(t) be defined by

α(t) = z̄(t)− z(t)− η(t) = w(t)− η(t), t ≥ τ.

Evidently, α(t) satisfies
α ∈ L2(τ, T ;V ) ∩ C([τ, T ];H) for all T > τ,
dα

dt
= −(A+R)α−B(Ψ z̄, z̄) +B(Ψ z, z) +B(Ψ z, η) +B(Ψη, z), t > τ,

α(τ) = 0.

It is easy to see that

−B(Ψ z̄, z̄) +B(Ψ z, z) +B(Ψ z, η) +B(Ψη, z)

= −B(Ψ z, α)−B(Ψα, z)−B(Ψw, w),

and consequently, for all t > τ ,

d

dt
|α|2 + ζ‖α‖2 = −ζλ1|α|2 − 2b(Ψα, z, α)− 2b(Ψw, w, α)

≤ ζλ1|α|2 + 2C‖Ψα‖H2‖z‖ ‖α‖+ 2C‖Ψw‖H2‖w‖ ‖α‖

≤ ζλ1|α|2 + 2C|α| ‖z‖ ‖α‖+ 2C|w| ‖w‖ ‖α‖

≤ ζλ1|α|2 +
ζ

2
‖α‖2 +

2C2

ζ
|α|2‖z‖2 +

ζ

2
‖α‖2 +

2C2

ζ
|w|2‖w‖2

≤ ζ‖α‖2 +

(
ζλ1 +

2C2

ζ
‖z‖2

)
|α|2 +

2C2

ζ
|w|2‖w‖2.
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Using the Gronwall inequality, we have

|α(t)|2 ≤ exp

[t�
τ

(
ζλ1 +

2C2

ζ
‖z(s)‖2

)
ds

] t�
τ

2C2

ζ
|w(s)|2‖w(s)‖2 ds.

From (5.8) we obtain

|α(t)|2 ≤ 2C2

ζ
|w(τ)|2 exp[2K(1 + t− τ)]

t�

τ

‖w(s)‖2 ds.

Plugging (5.9) into the last estimate, we get

|α(t)|2 ≤ 4C2

ζ2
|w(τ)|4 exp[4K(1 + t− τ)],

i.e., (2.12)–(2.14) hold with

χ(s, r) =
2Cr

ζ
exp[2K(1 + s)],

where K > 1.

We now prove the main result in this section.

Theorem 5.1. Assume the conditions of Theorem 3.1 and (5.2) hold.
Then the pullback Dσ-attractor Â = {A(t) : t ∈ R} of the process Z(t, τ)
associated to problem (3.4) satisfies

dF(A(τ)) ≤ max

{
1,

8ΛPr
δλ1(1 + Pr)

}
,

where Λ is given in (5.20) below.

Proof. In order to estimate the number q̃m, let z0 ∈ Â and ξ1, . . . , ξm
∈ H. Set z(t) = Z(t, τ)z0 and ηi(t) = L(t; τ, z0)ξi, t ≥ τ . Let {ζ̃i}i=1,...,m be
orthonormal in L2(Ω), with ∆ζ̃i = φ̃i. Let {(φ̃i(t)/λi, ψ̃i(t))}i=1,...,m, t ≥ τ ,
be a basis for span{η1(t), . . . , ηm(t)} and {φ̃i(t)/λi}i=1,...,m (λi, i = 1, . . . ,m,

are the first m eigenvalues of the operator A) and {ψ̃i(t)}i=1,...,m are or-
thonormal in L2(Ω). Let us define

ϕi = (φi, ψi) =

(
φ̃i

λi
√

2
,
ψ̃i√
2γ

)
.

An easy computation shows that {ϕi}i=1,...,m is orthonormal in H. Since
ηi(t) ∈ V for a.e. t ≥ τ , we can assume that ϕi(t) ∈ V for a.e. t ≥ τ (by the
Gram–Schmidt orthogonalization process).
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From (5.1), (2.5) and (3.5), we have

(5.10) Trm(F ′(Z(s, τ)z0, s)) =
m∑
i=1

〈F ′(Z(s, τ)z0, s)ϕi, ϕi〉V ′,V

=
m∑
i=1

〈−(A+R)ϕi −B(Ψ z, ϕi)−B(Ψϕi , z), ϕi〉V ′,V

≤
m∑
i=1

−δ
(
‖φi‖2 +

γ

Pr
‖ψi‖2

)
+ |b(Ψϕi , z, ϕi)|

for a.e. s ≥ τ . Now let

ρ(x) =
m∑
i=1

(
|φi(x)|2 +

γ√
Pr
|ψi(x)|2

)
.

From the definition of φ̃i and ψ̃i we observe that

ρ(x) =
1

2

m∑
i=1

(
|φ̃i(x)|2

λ2
i

+
1√
Pr
|ψ̃i(x)|2

)
.

The generalized Lieb–Thirring inequality (see [12, Corollary 2.1]) can be
applied to the finite orthonormal families {φ̃i/λi}i and {ψ̃i}i. This guarantees
the existence of a constant µ independent of the number m of functions (but
depending on the shape of Ω) such that

|ρ|2L2 ≤
1

2

(∣∣∣∣ m∑
i=1

(
φ̃i
λi

)2∣∣∣∣2
L2

+
1

Pr

∣∣∣ m∑
i=1

(ψ̃i)
2
∣∣∣2
L2

)
(5.11)

≤ µ

2

m∑
i=1

(
1

λ2
i

‖φ̃i‖2 +
1

Pr
‖ψ̃i‖2

)
= µ

m∑
i=1

(
‖φi‖2 +

γ

Pr
‖ψi‖2

)
.

Moreover, setting q(x) :=
∑m

i=1 |∇Ψϕi |2, we can also apply the general-
ized Lieb–Thirring inequality to the orthonormal family {λiΨϕi}i, to ob-
tain

(5.12)
�

Ω

q2(x) dx ≤ µ
m∑
i=1

�

Ω

|∆ζ̃i(x)|2

λ4
i

dx =
µ

λ2
1

m∑
i=1

|φi|2 ≤
µ

λ3
1

m∑
i=1

‖φi‖2.

We have

(5.13)
m∑
i=1

|b(Ψϕi , z, ϕi)|

=
m∑
i=1

∣∣∣ �
Ω

J(Ψϕi , ω)φi dx dy + γ
�

Ω

J(Ψϕi , θ)ψi dx dy
∣∣∣.
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We now estimate the first term on the right hand side of (5.13). By using
the Cauchy–Schwarz, Hölder and Cauchy inequalities, (5.12) and (5.13), we
obtain

(5.14)
m∑
i=1

∣∣∣ �
Ω

J(Ψϕi , ω)φi dx
∣∣∣ ≤ m∑

i=1

�

Ω

|∇Ψϕi | |∇ω| |φi| dx

≤
�

Ω

|∇ω|q1/2(x)ρ1/2(x) dx ≤ |∇ω|L2

( �
Ω

q(x)ρ(x) dx
)1/2

≤ |∇ω|L2√
2

( �
Ω

q2(x) dx+
�

Ω

ρ2(x) dx
)1/2

≤ µ1/2

√
2
|∇ω|L2

(
(λ−3

1 + 1)
m∑
i=1

‖φi‖2 +
γ

Pr

m∑
i=1

‖ψi‖2
)1/2

≤ 1

2
µδ−1(λ−3

1 + 2)‖ω‖2 +
δ

4

m∑
i=1

(
‖φi‖2 +

γ

Pr
‖ψi‖2

)
.

Similarly for the second term on the right hand side of (5.13) we have

(5.15) γ
∣∣∣ m∑
i=1

�

Ω

J(Ψϕi , θ)ψi dx
∣∣∣ ≤ γ m∑

i=1

�

Ω

|∇Ψϕi | |∇θ| |ψi| dx

≤ γ1/2P 1/4
r

�

Ω

|∇θ|q1/2(x)ρ1/2(x) dx ≤ γ1/2P 1/4
r |∇θ|L2

( �
Ω

q(x)ρ(x) dx
)1/2

≤ |∇θ|L2√
2

γ1/2P 1/4
r

( �
Ω

q2(x) dx+
�

Ω

ρ2(x) dx
)1/2

≤ (γµ)1/2

√
2

P 1/4
r |∇θ|L2

(
(λ−3

1 + 1)

m∑
i=1

‖φi‖2 +
γ

Pr

m∑
i=1

‖ψi‖2
)1/2

≤ 1

2
µγP 1/2

r δ−1(λ−3
1 + 2)‖θ‖2 +

δ

4

m∑
i=1

(
‖φi‖2 +

γ

Pr
‖ψi‖2

)
.

It follows from (5.14) and (5.15) that
m∑
i=1

|b(Ψϕi , z, ϕi)| ≤
1

2
µδ−1(λ−3

1 + 2)(‖ω‖2 + γP 1/2
r ‖θ‖2)(5.16)

+
δ

2

m∑
i=1

(
‖φi‖2 +

γ

Pr
‖ψi‖2

)
.

We recall that the dependence on s has been omitted and in fact z =
z(s, x), ρ = ρ(s, x), etc. Using this inequality in (5.10) we obtain
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Trm
(
F ′(Z(s, τ)z0, s)

)
≤ 1

2
µδ−1(λ−3

1 + 2)(‖ω‖2 + γP 1/2
r ‖θ‖2)(5.17)

− δ

2

m∑
i=1

(
‖φi‖2 +

γ

Pr
‖ψi‖2

)
.

Since {ϕi}i=1,...,m is orthonormal in H, |φi|2 = γ|ψi|2 = 1/2. Using this and
the Poincaré inequality (1.5) in (5.17) we have

Trm
(
F ′(Z(s, τ)z0, s)

)
≤ 1

2
µδ−1(λ−3

1 +2)(‖ω‖2+γP 1/2
r ‖θ‖2)−mδλ1

4

(
1+

1

Pr

)
.

Hence

q̃m = lim sup
T→∞

sup
z0∈A(τ−T )

1

T

τ�

τ−T
Trm

(
F ′(Z(s, τ − T )z0, s)

)
ds

≤ µδ−1

2
(λ−3

1 + 2) lim sup
T→∞

sup
z0∈A(τ−T )

1

T

τ�

τ−T
(‖ω‖2 +

√
Pr γ‖θ‖2) ds

−mδλ1

4Pr
(1 + Pr),

for all m ∈ N.
Let us now estimate the last term of the inequality above. From (1.2)

and using (2.5), we obtain the energy estimates

d

dt
|ω|2 +

1

2
‖ω‖2 ≤

(
Ra
Pr

)2 1

λ1
‖θ‖2 + 2‖f‖2H−1 ,(5.18)

d

dt
|θ|2 +

3

2Pr
‖θ‖2 ≤ 2Pr‖g‖2H−1 .(5.19)

Multiplying (5.19) by γ, adding to (5.18) and using (2.1), we obtain

d

dt
|z|2 +

1

2
‖ω‖2 +

γ

2Pr
‖θ‖2 ≤ 2(‖f‖2H−1 + Prγ‖g‖2H−1).

Then

lim sup
T→∞

sup
z0∈A(τ−T )

1

T

τ�

τ−T
‖ω‖2 ds ≤ δ1,

lim sup
T→∞

sup
z0∈A(τ−T )

γ

T

τ�

τ−T
‖θ‖2 ds ≤ Prδ1,

where
δ1 := 4(‖f‖2L∞(−∞,T ∗;H−1) + Prγ‖g‖2L∞(−∞,T ∗;H−1)).

Therefore,
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lim sup
T→∞

sup
z0∈A(τ−T )

1

T

τ�

τ−T
(‖ω‖2 + γ

√
Pr ‖θ‖2) ds ≤ (1 + P 3/2

r )δ1.

Since γ satisfies (2.1) and we want to minimize the last term, we set hence-
forth γ = R2

a/(Prλ1). Then

lim sup
T→∞

sup
z0∈A(τ−T )

1

T

τ�

τ−T
(‖ω‖2 + γ

√
Pr ‖θ‖2) ds

≤ 4(1 + P 3/2
r )

(
‖f‖2L∞(−∞,T ∗;H−1) +

R2
a

λ1
‖g‖2L∞(−∞,T ∗;H−1)

)
.

Hence

q̃m ≤ −m
δλ1

4

(
1 +

1

Pr

)
+ 2Λ,

where
(5.20)

Λ := µδ−1(λ−3
1 + 2)(1 +P 3/2

r )

(
‖f‖2L∞(−∞,T ∗;H−1) +

R2
a

λ1
‖g‖2L∞(−∞,T ∗;H−1)

)
.

We now consider two cases:

Case 1: If Λ < (δλ1/8)(1 + 1/Pr), then taking

qm = −δλ1

4

(
1 +

1

Pr

)
(m− 1), m = 1, 2, . . . ,

and n0 = 1, we can apply Theorem 2.2 to obtain

dF(A(τ)) ≤ 1 for all τ ≤ T ∗.
Case 2: If Λ ≥ (δλ1/8)(1 + 1/Pr), then taking

qm = −mδλ1

4

(
1 +

1

Pr

)
+ 2Λ, m = 1, 2, . . . ,

and

n0 = 1 +

[
8ΛPr

δλ1(1 + Pr)
− 1

]
,

where [r] denotes the integer part of the real number r, we obtain

dF(A(τ)) ≤ 8ΛPr
δλ1(1 + Pr)

for all τ ≤ T ∗.

Finally, since Z(t, τ) is Lipschitz in A(τ), it follows from [14, Proposition
13.9] that dF(A(t)) is bounded for every t ≥ τ with the same bound.
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