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Summary. A simple proof of the existence of solutions for the two-dimensional Keller-
Segel model with measures with all the atoms less than 8π as the initial data is given. This
result was obtained by Senba and Suzuki (2002) and Bedrossian and Masmoudi (2014)
using different arguments. Moreover, we show a uniform bound for the existence time of
solutions as well as an optimal hypercontractivity estimate.

1. Introduction. We consider the classical parabolic-elliptic Keller–
Segel model of chemotaxis in two space dimensions,

ut −∆u+∇ · (u∇v) = 0,(1.1)
∆v + u = 0,(1.2)

supplemented with a nonnegative initial condition

(1.3) u(x, 0) = u0(x) ≥ 0.

Here for (x, t) ∈ R2× [0, T ), the function u = u(x, t) ≥ 0 denotes the density
of the population of microorganisms, and v = v(x, t) the density of the
chemical altractant secreted by them that makes them aggregate. System
(1.1)–(1.2) is also used in modelling the gravitational attraction of particles
in the mean field astrophysical models (see [2]).

As is well known (cf. e.g. [7]), the total mass of the initial condition

(1.4) M =
�
u0(x) dx

is the critical quantity for the global-in-time existence of nonnegative so-
lutions. Namely, if M ≤ 8π, then solutions of (1.1)–(1.3) (with u0 a finite
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nonnegative measure) exist for all t ≥ 0. For local-in-time existence, it should
be assumed that all the atoms of the measure u0 are of mass less than 8π
(see [1, Th. 2]). WhenM > 8π, nonnegative solutions blow up in finite time,
and for radially symmetric solutions, mass equal to 8π concentrates at the
origin at the blowup time (see e.g. [6]).

Our goal in this note is to give an alternative proof of the local-in-time
existence of solutions to (1.1)–(1.3) when u0 ∈ M(R2) is a nonnegative fi-
nite measure with all its atoms of mass less than 8π. We believe that this
approach is conceptually simpler than that in the recent paper [1] (which
used elaborate arguments for interactions of solutions emanating from local-
ized pieces of initial data), and those in previous papers [10], [11]. The latter
approaches used heavily the free energy functional for system (1.1)–(1.2)
considered in bounded domains. Moreover, our condition (1.5) seems to be
clearer and shows that measures with small atoms which are not well sepa-
rated (as was assumed in [1]) are also admissible as initial data for (1.1)–(1.2).
Compared to [1], however, we obtain neither the uniqueness of solutions nor
the Lipschitz property of the solution map.

The main result of this paper is

Theorem 1.1. Let 0 ≤ u0 ∈ L1(R2)∩L∞(R2) be a smooth initial density
for (1.1)–(1.2) such that

(1.5) ‖u0 ∗ 1B(1)‖∞ ≤ 8π − ε0
for some fixed ε0 > 0 and the unit ball B(1) centered at the origin of R2.
Then there exists a solution of problem (1.1)–(1.3) on the interval [0, t0] with
t0 = t0(ε0,M) such that
(1.6) sup

0<t≤t0
t1−1/p‖u(t)‖p ≤ B,

where the constant B depends onM and ε0 (in particular, B does not depend
on ‖u0‖∞).

Note that condition (1.5) reads�

B(x,1)

u0(y) dy =
�

B(1)

u0(x− y) dy ≤ 8π − ε0

for all balls B(x, 1) of radius 1 centered at arbitrary x ∈ R2, and this in
particular means that if, more generally, u0 were a nonnegative measure then
its atoms would be strictly less than 8π. The key property of our estimate
of t0 is that it depends only on M and ε0 for all u0 satisfying (1.5) with a
given M in (1.4).

We recall that for each λ > 0 and each solution u of (1.1)–(1.2) of mass
M the function
(1.7) uλ(x, t) = λ2u(λx, λ2t)

is also a solution, with mass again equal to M .
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Of course, by a suitable scaling (1.7) of initial data we may satisfy the
assumptions of the local existence result in Theorem 1.1 for any nonnegative
u0 ∈M(R2) with atoms strictly less than 8π. Thus we arrive at the following
corollary (cf. [1, Theorem 2]).

Corollary 1.2. System (1.1)–(1.2) has a local-in-time solution for each
initial nonnegative finite measure u0 with all atoms strictly less than 8π.

Indeed, it is sufficient to approximate u0 (in the sense of weak conver-
gence of measures) by a sequence of initial data satisfying (after the rescaling
(1.7) with a single λ > 0) all the assumptions of Theorem 1.1. This approx-
imation is possible by taking, e.g., eδn∆u0 for any sequence δn ↘ 0. Then
the existence time t0 is bounded from below by a positive quantity (since t0
depends on M and λ only). Next, we infer from the hypercontractivity esti-
mate (1.6) and from the standard regularity theory for parabolic equations
that for every multiindex α,

‖Dαu(t)‖p ≤ CαB t1/p−1−|α|/2,

which permits us to pass to the limit with (a subsequence of) the approxi-
mating solutions which are, in fact, smooth on R2× (0, t0). We thus obtain a
solution to (1.1)–(1.2) with the measure u0, and this solution is also smooth
on R2 × (0, t0).

The proof of Theorem 1.1 will be a consequence of a well-known estimate
[2, 3] of the existence time by the mass of the initial condition only (see (2.7)),
by using a rather delicate localization argument repeatedly.

The existence results are proved (e.g. in [2]) for the integral formulation
of system (1.1)–(1.3),

(1.8) u(t) = et∆u0 +B(u, u)(t),

whose solutions are called mild solutions of the original Cauchy problem.
Here, the bilinear term B is defined as

(1.9) B(u, z)(t) = −
t�

0

(∇e(t−s)∆) · (u(s)∇(−∆)−1z(s)) ds.

It is well known that the heat semigroup et∆ satisfies the Lq-Lp estimates

(1.10) ‖et∆z‖p ≤ Ct1/p−1/q‖z‖q
and

(1.11) ‖∇et∆z‖p ≤ Ct−1/2+1/p−1/q‖z‖q
for all 1 ≤ q ≤ p ≤ ∞. Moreover, for each p > 1 and z ∈ L1(R2),

(1.12) lim
t→0

t1−1/p‖et∆z‖p = 0.
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This is (for example) a consequence of a much more general inequality valid
for every finite measure µ ∈M(R2) and every p > 1,

(1.13) lim sup
t→0

t1−1/p‖et∆µ‖p ≤ Cp‖µat‖M(R2) ≡ Cp
∑

{x:µ({x}) 6=0}

|µ({x})|,

where µat denotes the purely atomic part of the measure µ. The proof of
(1.13) is contained in [9, Lemma 4.4]. This fact together with the condition
(1.5) rescaled to other balls of a fixed radius (see (1.14) below) is crucial in
the analysis of applicability of the Banach contraction argument to (1.8).

We recall that the formulation of our existence results in [2] used in fact
condition (1.13) in the definition of the function space where the solutions
were looked for:{

u : (0, T )→ Lp(R2) : |||u||| ≡ sup
0<t<T

t1−1/p‖u(t)‖p <∞
}
,

and then a smallness condition was assumed on the quantity |||et∆u0|||.
The heuristics behind the argument leading to the proof of Theorem 1.1

is the following: the initial data diffuse into a domain whose size grows as
t1/2 in time, as in Corollary 2.8. Thus, we need to find a time τ ≥ 0 when a
counterpart of (1.5),

(1.14) ‖u(τ) ∗ 1B(%)‖ ≤ m0,

holds with a sufficiently small m0 given in (2.10) and % > 0 suitably small
in order to apply the local existence result of Theorem 2.7.

Remark. When (1.2) is replaced by the nonhomogeneous heat equa-
tion τvt = ∆v + u (and thus we consider the parabolic-parabolic version of
the Keller–Segel model), the situation seems to be more complicated. For in-
stance, if τ � 1, then there exist global-in-time solutions withM > 8π which
emanate from Mδ0 as (purely atomic) initial data. These are self-similar so-
lutions which are regular and nonunique for sufficiently large M (cf. e.g. [4]
and comments in [5]).

In the proof of Theorem 1.1 we will apply simple (but subtle) techniques
of weight functions and scalings. The core of our analysis is in the uniform
(with respect to the initial distributions) estimates on the maximal existence
time, expressed in terms of dispersion of the initial data.

Notation. Integrals with no integration limits are taken over the whole
space R2:

	
=

	
R2 . The letter C denotes various constants which may vary

from line to line but they are independent of solutions. The norm in Lp(R2)
is denoted by ‖ ·‖p. The kernel of the heat semigroup on R2, denoted by et∆,
is given by G(x, t) = (4πt)−1 exp(−|x|2/(4t)).
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2. Proof of Theorem 1.1. The proof is split into several lemmata.
For any fixed x0 ∈ R2 we define the local moment of a solution u by

(2.1) Λ(t) ≡
�
ψ(x− x0)u(x, t) dx.

Here the weight function
(2.2)
ψ(x) = (1−|x|2)2+ with ∇ψ(x) = −4x(1−|x|2)+, ∆ψ(x) = 16|x|2−8 ≥ −8,
is a fixed radial, piecewise C2, nonnegative function ψ, supported on the unit
ball such that ψ(0) = 1. Our particular choice of ψ is not critical.

Lemma 2.1. Suppose that w = w(x) is a nonnegative function locally in
L1 ∩ L∞,

	
B(1)w(x) dx ≤ m, and %, δ ∈ (0, 1). Then:

(i) There exists H0 ∈ (0, 1) such that�

B(%)

w(x) dx ≤ (1− δ)m ⇒
�
ψ(x)w(x) dx ≤ (1−H0)m.

(ii) Similarly, there exists H1 ∈ (0, 1) such that if�

B(1)

w(x) dx ≤ m and
�
ψ(x)w(x) dx ≥ (1−H1)m

⇒
�

B(%)

w(x) dx ≥ (1− δ/2)m.

(iii) Suppose that�
ψ(x)w(x) dx ≤ (1−H)m with some H ∈ (0, 1).

Then �

B(β)

w(x) dx ≤ (1−H/2)m for β2 ≤ H/4 ≤ 1/4.

Proof. Properties (i)–(iii) are simple consequences of (2.2). Indeed,�
ψ(x)w(x) dx ≤

�

B(%)

w(x) dx+ sup
B(1)\B(%)

ψ(x) ·
�

B(1)\B(%)

w(x) dx

≤
�

B(%)

w(x) dx+ (1− %2)2
�

B(1)\B(%)

w(x) dx

= (1− %2)2
�

B(1)

w(x) dx+ (1− (1− %2)2)
�

B(%)

w(x) dx

≤ (1− %2)2m+ (1− (1− %2)2)(1− δ)m
= (1−H0)m,

where 1−H0 = (1− %2)2 + (1− (1− %2)2)(1− δ) = 1− δ(1− (1− %2)2).
(ii) is equivalent to (i) with δ replaced by 1

2δ.
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(iii) For |x| ≤ β, β2 ≤ H/4 and H ≤ 1 we have

ψ(x) ≥ 1−H
1−H/2

.

Next, we establish a result on the dispersion of the initial data evolving
according to (1.1)–(1.2).

Lemma 2.2. Let u be a solution to (1.1)–(1.2) such that for t ∈ [0, A],

(2.3) ‖u0 ∗ 1B(R0)‖∞ ≤ m
for some A > 0, R0 = 6 · 128πM/ε0 > 0 and m0 ≤ m ≤ 8π− ε0. Then there
exist numbers A1 = A1(M, ε0), δ = δ(M, ε0,m0) and % = %(M, ε0,m0) such
that if �

|y−x0|≤%

u(y, t) dy ≥ (1− δ)m for some t ∈ [0, A],

then
Λ′(t) ≤ −ϑ with some ϑ = ϑ(M, ε0,m0) > 0.

Proof. First we give a uniform estimate of the time derivative of the
moment Λ(t):

|Λ′(t)| ≤ CM .
Let us compute the time derivative of Λ using (1.1)–(1.2) and (2.2). Sym-
metrizing the bilinear integral

	
u(x, t)∇v(x, t) · ∇ψ(x) dx with the solution

v of (1.2) given by

v(x, t) = − 1

2π

�
u(y, t) log |x− y| dy

we obtain

Λ′(t) =
�
u(x, t)∆ψ(x) dx(2.4)

+
1

4π

� � ∇ψ(x)−∇ψ(y)
|x− y|2

· (x− y)u(x, t)u(y, t) dx dy.

From (2.4) and (2.2) we immediately get Λ′(t) ≤ 8M + 4M2.
Using (2.2), the bound |∇ψ(x)−∇ψ(y)| ≤ 4 and the relation

�

B(%)

u(x, t) dx ≤ 8π with % ≤ 1 < 2 ≤ R0 and
1

R0 − %
≤ 2

R0
,

we arrive at

(2.5)∣∣∣∣ �

|x|<%

�

2≤R0<|y|

4x(1− |x|2)+ − 4y(1− |y|2)+
|x− y|2

· (x− y)u(x, t)u(y, t) dx dy
∣∣∣∣

≤ 16πM

R0
· 4.
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Next, in the annulus % < |y| ≤ R0 we have

(2.6)
∣∣∣∣ �

|x|<%

�

%<|y|≤R0

∇ψ(x)−∇ψ(y)
|x− y|2

· (x− y)u(x, t)u(y, t) dx dy
∣∣∣∣ ≤ B · 8πδ,

where we have applied the bound

(2.7) |∇ψ(x)−∇ψ(y)| ≤ B|x− y|
for some constant B, as well as

	
%<|y|≤R0

u(y, t) dy ≤ δm < δ · 8π.
Finally, by (2.4) we have simply∣∣∣ �u(x, t)∆ψ(x) dx+ 8

�

B(%)

u(x, t) dx
∣∣∣ ≤ 64πδ + 16%2 8π.

Now, the crucial estimate for the bilinear integral in (2.4) is

(2.8)
∣∣∣∣ �

|x|<%

�

|y|<%

4x(1− |x|2)+ − 4y(1− |y|2)+
|x− y|2

· (x− y)u(x, t)u(y, t) dx dy

− 4
( �

B(%)

u(x, t) dx
)2∣∣∣∣ ≤ BδM2.

Here we have used the following properties of the weight function ψ:

|ψ(x)−1| =
∣∣(1−|x|2)2+−1∣∣ = ∣∣2|x|2−|x|4∣∣+ ≤ 2|x|2, |∆ψ(x)+8| ≤ 16|x|2,

and an improvement of (2.7):

|∇ψ(x)−∇ψ(y) + 4(x− y)| ≤ B%|x− y|,
valid for all |x|, |y| ≤ %. Therefore, we get

Λ′(t) ≤ −8
�

B(%)

u(x, t) dx+
1

π

( �

B(%)

u(x, t) dx
)2

+
128πM

R0

+ 16πBδ + 64πδ + 16%28π.

Since
1

π

�

B(%)

u(x, t) dx
(
−8π +

�

B(%)

u(x, t) dx
)
≤ −ε0,

it suffices to choose

R0 =
6C0

ε0
, δ ≤ ε0

6C1
, %2 ≤ ε0

6C2
,

therefore R0 = 6 · 128πM/ε0.

Note that a variant of Lemma 2.3 below has been obtained in [11] by
a (rather elaborate) radial rearrangement argument of [8]. The proof we
present uses only weight functions and localized moments defined by them.
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Lemma 2.3. Suppose that u = u(x, t) is a solution of (1.1)–(1.2) satisfy-
ing all the assumptions of Lemma 2.2. Then for all t ≥ A0 = A0(M,m0, ε0)
and H1 = H1(M,m0, ε0) we have

�

B(%)

u(x, t) dx ≤ (1−H1)m.

Proof. Let τ0 = 0. If
	
B(%) u(x, τ0) dx ≤ (1 − δ)m, then set τ1 = τ0.

Otherwise, let

τ1 = inf
{
τ < A :

�

B(%)

u(x, τ) dx = (1− δ)m
}
.

In order to obtain necessary estimates for τ1, observe that by Lemma 2.2,
d

dt
Λ(t) ≤ −ϑ for all t ∈ [τ0, τ1].

Since Λ(0) ≤ m and Λ(t) ≥ 0, we have τ1 − τ0 ≤ m/ϑ. By Lemma 2.1(i) we
arrive at Λ(τ1) ≤ (1−H0)m. Next, we define

τ2 = inf{τ1 < τ < A : Λ(τ) = (1−H1)m}

if this exists, otherwise τ2 = A. Then for every t ∈ [τ1, τ2] we obtain Λ ≤
(1−H1)m. If τ2 = A, we are done. If not, by Lemma 2.1(ii) we infer that

�

B(%)

u(x, τ2) dx ≥ (1− δ/2)m > (1− δ)m.

Therefore, Λ(τ2) ≤ −ϑ implies that Λ(τ2− h) > (1−H1)m for a sufficiently
small h > 0, contrary to the definition of τ2. Thus we get Λ(t) ≤ (1−H1)m
for t ∈ [τ1, A]. Consequently, by Lemma 2.1, we have

�

B(β%)

u(x, t) dx ≤ (1−H1/2)m for t ≥ m

ϑ
≡ A0(M, ε0) and β <

1

2
H1/2

as in Lemma 2.1(iii). In what follows we denote β% again by %.

Corollary 2.4. If u solves system (1.1)–(1.2) on the time interval
[0, AT ] with A ≥ A0, and satisfies the estimate

(2.9)
�

B(T 1/2)

u(x, t) dx ≤ m < 8π − ε0,

then �

B(%T 1/2)

u(x, t) dx ≤ (1−H1)m for t ∈ [A0T,AT ].

Proof. This follows from Lemma 2.3 applied to the rescaled function
uT (x, t) = Tu(T 1/2x, T t), which, evidently, is also a solution of (1.1)–(1.2).
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Corollary 2.5. If a solution u of (1.1)–(1.2) exists on the time interval
[0, A] then for all t ∈ [A0(1 + %1 + · · ·+ %j−11 ), A) with %1 = %/R0,�

B(%j1)

u(x, t) dx ≤ (1−H1)
jm as long as (1−H1)

jm ≥ m0.

Proof. It suffices to apply Corollary 2.4 to the functions u(x, t), u(x,A0+t),
u(x,A0 + %1A0 + t), . . . , rescaled with T0 = 1, T1 = %21, T3 = %41, T3 = %61,
. . . , consecutively.

Corollary 2.6. Suppose that a solution u of (1.1)–(1.2) exists for t ∈
[0, A] and satisfies

‖u(t) ∗ 1B(1)‖∞ ≤ 8π − ε0.
Then

‖u(t) ∗ 1B(sr)‖∞ ≤ m0 with r = %
[|log 8π/log(1−H1)|]+1
1

for any s ∈ [0, 1] and t ∈
[

s2

1−%1A0, A
]
.

Proof. Apply Corollary 2.5 to the rescaled solution.

Now we recall the existence result of [2, 3].

Theorem 2.7. There exists a (small) m0 > 0 such that the condition

(2.10) ‖u0 ∗ 1B(1)‖∞ ≤ 2m0

guarantees the existence of a local-in-time solution (on a time interval [0, T ]
with T = T (M)) satisfying ‖u(t)‖p ≤ Ct1/p−1 for p = 4/3.

In fact, we will use the following immediate consequence of Theorem 2.7
which takes into account the scale invariance (1.7).

Corollary 2.8. For each σ > 0 there exists α > 0 such that the condi-
tion

‖u0 ∗ 1B(στ1/2)‖∞ ≤ 2m0

implies the existence of a solution of (1.1)–(1.3) on the time interval [0, ατ ].
Here τ > 0 is any small positive number and α can be chosen as α = α0σ

2

for some α0 > 0.

Theorem 2.7 has been proved (even for sign-changing measures) in [2,
Theorem 2] (cf. also [3, proof of Theorem 2.2]) using a standard contraction
argument applied to the formulation (1.8).

Lemma 2.9. Suppose that u0 ∈ L1(R2)∩L∞(R2) is a smooth nonnegative
function satisfying the condition

‖u0 ∗ ψ‖∞ ≤ 8π − ε0.
Then the solution u with the initial condition (1.3) exists at least on the time
interval [0, ε0/(2CM )].
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Proof. The inequality Λ′(t) ≤ CM implies that Λ(t) ≤ 8π − ε0/2 for
t ≤ τ1 ≡ min{ε0/(2CM ), τ}, where τ is the maximal existence time of u. By
Lemma 2.1(iii) we obtain the bound

‖u(t) ∗ 1B(%1)‖∞ ≤ 8π − ε0/4 for all t ≤ τ1.

From Corollary 2.6 we infer that there exists σ0 = ητ
1/2
1 such that

‖u(τ2) ∗ 1B(σ0)‖∞ ≤ m0 for τ1/2 < τ2 < τ1.

By Theorem 2.7 the solution with u0 = u(x, τ2) as the initial condition exists
for t ∈ [0, ατ2] with some α > 0 independent of τ2. Therefore, by Theorem
2.7, this solution can be continued onto the interval [0, τ1+ατ2]. This solution
satisfies

‖u(τ1 + ατ2)‖p ≤ Cτ1/p−12 for each p ∈ [4/3, 2].

Finally, a recurrence argument permits us to obtain a classical solution u =
u(x, t) on the whole interval [0, T0] with T0 = T0(ε0,M), and applying once
more Corollaries 2.5 and 2.8 gives the hypercontractive estimate

‖u(t)‖p ≤ Ct1/p−1 for p ∈ [4/3, 2].

The extrapolation of that estimate to the whole range of p ∈ (1,∞) is
standard (see e.g. [3]).
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