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Summary. Let α ∈ [0, 1] be a fixed parameter. We show that for any nonnegative sub-
martingale X and any semimartingale Y which is α-subordinate to X, we have the sharp
estimate

‖Y ‖W ≤
2(α+ 1)2

2α+ 1
‖X‖L∞ .

HereW is the weak-L∞ space introduced by Bennett, DeVore and Sharpley. The inequality
is already sharp in the context of α-subordinate Itô processes.

1. Introduction. Our goal is to provide a sharp weak-type estimate for
a certain class of Itô processes and, more generally, for the class of semi-
martingales satisfying the so-called α-subordination relation. Let (Ω,F ,P)
be a complete probability space, filtered by a nondecreasing right-continuous
family (Ft)t≥0 of sub-σ-fields of F . As usual, we assume that the filtration is
also complete, i.e., F0 contains all the sets A satisfying P(A) = 0. Suppose
that B = (Bt)t≥0 is an adapted Brownian motion starting from 0, and let
X = (Xt)t≥0, Y = (Yt)t≥0 be Itô processes with respect to B (cf. Ikeda and
Watanabe [9]): for t ≥ 0,

(1.1) Xt = X0 +

t�

0+

φs dBs +

t�

0+

ψs ds, Yt = Y0 +

t�

0+

ζs dBs +

t�

0+

ξs ds.
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Here (φt)t≥0, (ψt)t≥0, (ζt)t≥0, (ξt)t≥0 are predictable processes such that

P
( t�

0+

|φs|2 ds <∞ and
t�

0+

|ψs| ds <∞ for all t > 0
)

= 1,

P
( t�

0+

|ζs|2 ds <∞ and
t�

0+

|ξs| ds <∞ for all t > 0
)

= 1.

The problem of comparing the sizes of X and Y under some structural
assumptions on φ, ψ, ζ and ξ has been investigated quite intensively in the
literature; e.g. the whole class of so-called comparison theorems falls within
the scope of this subject: see Yamada [15], Ikeda and Watanabe [8], [9], Le
Gall [10] and references therein. Our result is closely related to the problem
which was studied for the first time in Burkholder’s paper [3]. He showed that
if X is a nonnegative submartingale and we have the domination X0 ≥ |Y0|,
|φs| ≥ |ζs| and ψs ≥ |ξs| for all s, then

λP
(

sup
t≥0
|Yt| ≥ λ

)
≤ 3‖X‖1, λ > 0,

and
‖Y ‖p ≤ max{(p− 1)−1, 2p− 1}‖X‖p, 1 < p <∞.

Here we have used the notation ‖X‖p = supt ‖Xt‖p for the pth moment
of X, p ≥ 1. Furthermore, Burkholder proved that both inequalities above
are sharp. These results were generalized by C. S. Choi [5], [6], who showed
that if α ∈ [0, 1] is a fixed number, X is a nonnegative submartingale and,
in addition,

(1.2) X0 ≥ |Y0| and |φs| ≥ |ζs|, αψs ≥ |ξs| for all s,

then we have the weak-type bound

(1.3) λP
(

sup
t≥0
|Yt| ≥ λ

)
≤ (α+ 2)‖X‖1, λ > 0,

and the moment estimate

(1.4) ‖Y ‖p ≤ max{(p− 1)−1, (α+ 1)p− 1}‖X‖p, 1 < p <∞.
Again, the constants α+ 2 and max{(p− 1)−1, (α+ 1)p− 1} are optimal.

In fact, one can study the above results in a much wider setting. For
any real-valued semimartingales X and Y , we say that Y is differentially
subordinate to X if the process ([X,X]t − [Y, Y ]t)t≥0 is nondecreasing and
nonnegative as a function of t (see Bañuelos andWang [1] or Wang [14]). Here
[X,X] denotes the quadratic variance process of X (see e.g. Dellacherie and
Meyer [7]). This type of domination implies many interesting inequalities ifX
and Y are martingales or local martingales (see [14]). In the semimartingale
setting, one strengthens the domination and imposes some control on the
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finite variation parts. In what follows, we will work under the assumption
of α-strong differential subordination (α-subordination for short), which was
introduced by Wang [14] in the case α = 1, and generalized by the author
[11] to other values of α. Let us recall the definition.

Suppose that X is an adapted submartingale, Y is an adapted semi-
martingale and write Doob–Meyer decompositions

(1.5) X = X0 +M +A, Y = Y0 +N +B,

where M , N are local martingale parts, and A, B are finite variation pro-
cesses (M , N , A and B are assumed to vanish at 0). In general, the decom-
positions may not be unique; however, we assume that A is predictable and
this determines the first of them. Let α be a fixed nonnegative number. We
say that Y is α-subordinate to X if Y is differentially subordinate to X and
there is a decomposition (1.5) for Y such that the process (αAt − |B|t)t≥0
is nondecreasing as a function of t. Here |B|t denotes the total variation of
B on the interval [0, t]. In the setting of Itô processes described in (1.1), if
|φs| ≥ |ζs| and αψs ≥ |ξs| for all s, then obviously Y is α-subordinate to X,
so the setup introduced above is indeed more general.

Let us turn our attention to the results studied in this paper. The inequal-
ity (1.3) can be regarded as an endpoint version of (1.4) as p→ 1. There is
a natural question about the weak-type substitute for (1.4) for p→∞, and
our purpose is to provide an appropriate counterpart. To state the result, we
need more notation. For a given random variable ξ defined on a nonatomic
probability space, we define ξ∗, the decreasing rearrangement of ξ, by

ξ∗(t) = inf{λ ≥ 0 : P(|ξ| > λ) ≤ t}.
Then ξ∗∗ : (0, 1]→ [0,∞), the maximal function of ξ∗, is given by

ξ∗∗(t) =
1

t

t�

0

ξ∗(s) ds, t ∈ (0, 1].

One easily verifies that ξ∗∗ can alternatively be defined by the formula

ξ∗∗(t) =
1

t
sup
{ �
E

|ξ| dP : E ∈ F , P(E) = t
}
.

Now, following Bennett, DeVore and Sharpley [2], we let

‖ξ‖W (Ω) = sup
t∈(0,1]

(ξ∗∗(t)− ξ∗(t))

and define
W (Ω) = {ξ : ‖ξ‖W (Ω) <∞}.

To describe the motivation behind this definition, note that for each
1 ≤ p <∞, the usual weak space Lp,∞ properly contains Lp; on the contrary,
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for p = ∞, the two spaces coincide. Thus, there is no Marcinkiewicz inter-
polation theorem between L1 and L∞ for operators which are unbounded
on L∞. The space W was invented to fill this gap. It contains L∞, can be
understood as an appropriate limit of Lp,∞ as p → ∞, and has the appro-
priate interpolation property: if an operator T is bounded from L1 to L1,∞

and from L∞ to W , then it can be extended to a bounded operator on all
Lp spaces, 1 < p <∞. See [2] for details.

In analogy to the previous notation, the weak-L∞ norm of a process
X is given by ‖X‖W (Ω) = supt≥0 ‖Xt‖W (Ω). We will prove the follow-
ing.

Theorem 1.1. Let α ∈ [0, 1] be fixed. Suppose that X is a nonnegative
submartingale and Y is α-subordinate to X. Then

(1.6) ‖Y ‖W ≤
2(α+ 1)2

2α+ 1
‖X‖L∞

and the constant 2(α+ 1)2/(2α+ 1) is the best possible. It is already the best
in the context of Itô processes (1.1).

A few words about the organization of the paper are in order. In the
next section we provide the proof of the inequality (1.6). We will rewrite the
estimate in a slightly different form and study it with the use of Burkholder’s
technique: the inequality will be extracted from the existence of a certain
special function. Section 3 is devoted to the sharpness of (1.6): we will con-
struct appropriate examples.

2. Proof of Theorem 1.1. The bound (1.6) will be deduced from the
following auxiliary fact.

Theorem 2.1. Let α ∈ [0, 1]. Suppose that X is a nonnegative sub-
martingale satisfying ‖X‖∞ ≤ 1, and let Y be a semimartingale which is
α-subordinate to X. Then for any λ ≥ 0 and t ≥ 0,

(2.1) E
(
|Yt| − λ−

2(α+ 1)2

2α+ 1

)
1(λ,∞)(|Yt|) ≤ 0.

The proof of this inequality will use Burkholder’s method. Let S denote
the strip [0, 1]× R, and consider the following four subsets:

D1 = {(x, y) ∈ S : x+ |y| ≤ 1},

D2 = {(x, y) ∈ S : x+ (2α+ 1)−1 ≥ |y| > −x+ 1},

D3 = {(x, y) ∈ S : x+ |y| ≤ 1, x ≤ α(2α+ 1)−1},
D4 = S \ (D1 ∪D2 ∪D3).
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Introduce the function U : S → R by the following formulas. If (x, y) ∈ D1,
set U(x, y) = 0. If (x, y) ∈ D2, let

U(x, y) = x+ |y| − 1− 2(α+ 1)2

2α+ 1
· x+ |y| − 1

−x+ |y|+ 1
.

On the sets D3 and D4, the definition is a little more complicated. For
(x, y) ∈ D3, we let U(x, y) be

|y| − αx− 3α+ 2

2α+ 1
+ (α+ 1) exp

[
−2α+ 1

α+ 1
(x+ |y| − 1)

](
x+

1

2α+ 1

)
.

Finally, on D4, U(x, y) is given by

|y| − αx− 3α+ 2

2α+ 1
+ (α+ 1) exp

[
−2α+ 1

α+ 1

(
−x+ |y| − 1

2α+ 1

)]
(1− x).

It is not difficult to check that U is continuous on S \ {(1, 0)}; it is even of
class C1 in the interior of S \ {(x, y) : x + |y| = 1}. The key property of U
is studied in the following lemma.

Lemma 2.2. The function U is concave along any line segment of slope
k ∈ [−1, 1], contained in S.

Proof. For any fixed x ∈ [0, 1] and y ∈ R, consider the function G =
Gx,y,k : t 7→ U(x+ t, y+ tk), defined on [−x, 1−x]. We need to show that G
is concave. To accomplish this, we will first check that G′′(t) ≤ 0 for those t
for which (x+t, y+tk) belongs to the interior of D1, D2, D3 or D4. Note that
G′′x,y,k(t) = G′′x+t,y+tk,k(0), so we may assume t = 0 in this desired inequality.
If (x, y) belongs to Do

1, the interior of D1, then G′′(0) = 0. If (x, y) ∈ Do
2,

then

G′′(0) = − 8(α+ 1)2(1− k)

(2α+ 1)(−x+ |y|+ 1)3
(|y|+ (1− x)k),

which is nonpositive. This follows from the fact that |k| ≤ 1 and |y| > 1−|x|.
If (x, y) ∈ Do

3, a little calculation shows that

G′′(0) = (2α+1)exp

[
−2α+1

α+1
(x+ |y|−1)

]
×(1+k)

{[
2α+1

α+1

(
x+

1

2α+1

)
−2

]
+

2α+1

α+1

(
x+

1

2α+1

)
k

}
.

This expression is again nonpositive, because

|k| ≤ 1,
2α+ 1

α+ 1

(
x+

1

2α+ 1

)
− 2 ≤ −1,

2α+ 1

α+ 1

(
x+

1

2α+ 1

)
≤ 1.
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Finally, if (x, y) belongs to the interior of D4, then we derive that

G′′(0) = (2α+ 1) exp

[
−2α+ 1

α+ 1

(
−x+ |y| − 1

2α+ 1

)]
× (1− k)

{[
2α+ 1

α+ 1
(1− x)− 2

]
− 2α+ 1

α+ 1
(1− x)k

}
≤ 0,

since

|k| ≤ 1,
2α+ 1

α+ 1
(1− x)− 2 ≤ −1,

2α+ 1

α+ 1
(1− x) ≤ 1.

Recall that U is of class C1 in the interior of S \ {(x, y) : x + |y| = 1}. So,
if the segment I = {(x+ t, y + tk) : t ∈ [−x, 1− x]} is entirely contained in
D2 ∪D3 ∪D4 or entirely contained in D1, then G is concave. Suppose that
this segment has nonempty intersection with both sets D1 and D2∪D3∪D4.
Then there is t0 such that

I ∩D1 = {(x+ t, y + tk) : t ∈ [−x, t0]},
I ∩ (D2 ∪D3 ∪D4) = {(x+ t, y + tk) : t ∈ (t0, 1− x]},

so x + t0 + |y + t0k| = 1; by symmetry, we may assume that y + t0k > 0.
The function U vanishes on I ∩D1 and is concave on I ∩ (D2 ∪D3 ∪D4).
Thus, we will be done if we show that G′(t0+) ≤ 0. We derive directly
that

G′(t0+) =


−(1 + k)(2α+ 1)(x+ t0) if x+ t0 ≤ α(2α+ 1)−1,

1 + k

1− (x+ t0)

(
−(x+ t0)−

α2

2α+ 1

)
if x+ t0 > α(2α+ 1)−1,

and this is clearly nonpositive.

The next property we will need is the monotonicity along line segments
of slope ±α. It is convenient to formulate it in the language of the functions
Gx,y,k defined above.

Lemma 2.3. For any y ∈ R, the functions G0,y,±α are nonincreasing.

Proof. It suffices to focus on the function G0,y,α, since G0,y,−α = G0,−y,α
for all y and α. Since α ∈ [0, 1], the function G is concave, as we have
shown above, and hence it is enough to check that the right-hand derivative
G′0,y,α(0+) is nonpositive. A direct calculation shows that

G′0,y,α(0+) =


0 if y ≥ −1,

−2α

[
1− exp

(
−2α+ 1

α+ 1
(−y − 1)

)]
if y < −1

is nonpositive. This yields the assertion.
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In our considerations below, we will actually need to work with “stretched”
versions of U . Define a family (U (λ))λ≥0 of functions on S by

U (λ)(x, y) =

{
U(x, |y| − λ) if |y| ≥ λ,
0 otherwise.

It is easy to see that for each λ ≥ 0, the function U (λ) inherits the properties
studied in the above two lemmas: it is concave along line segments of slope
belonging to [−1, 1], and nonincreasing along the line segments of slope ±α.
We will require the following majorizations.

Lemma 2.4. Let λ ≥ 0 be a fixed parameter.

(i) For any (x, y) ∈ S satisfying |y| ≤ x we have

(2.2) U (λ)(x, y) ≤ 0.

(ii) For any (x, y) ∈ S we have

(2.3) U (λ)(x, y) ≥
(
|y| − λ− 2(α+ 1)2

2α+ 1

)
χ(λ,∞)(|y|).

(iii) There is a constant C depending only on α and λ such that

(2.4) |U (λ)(x, y)| ≤ |y|+ C for all (x, y) ∈ S.

Proof. (i) We know from the proof of Lemma 2.2 that the function t 7→
U (λ)(tx, ty) is concave. It remains to note that this function vanishes for
small values of t.

(ii) The dependence of both sides on y is through |y| − λ, so we may
assume that λ = 0 (and hence U (λ) = U). For any y ∈ R, the function
x 7→ U(x, y) is concave. Therefore, it is enough to check the majorization
for x = 0 and x = 1 only. Furthermore, since U(x, y) = U(x,−y), we may
assume that y ≥ 0. If x = 0 and y ≤ 1, then U(x, y) = 0, while the right-
hand side of (2.3) is nonpositive. If x = 0 and y ∈ (1, 2(α + 1)2/(2α + 1)),
then U(x, y) > 0 and the right-hand side of (2.3) is negative. If x = 0 and
y ≥ 2(α+ 1)2/(2α+ 1), then the majorization is equivalent to

α+
α+ 1

2α+ 1
exp

[
−2α+ 1

α+ 1
(y − 1)

]
≥ 0,

which is obvious. If x = 1 and y ≥ 0, then (2.3) is an equality.
(iii) This is evident.

Recall the following well-known fact (cf. [7]). For any semimartingale X
there is a unique continuous local martingale part Xc satisfying

[X,X]t = |X0|2 + [Xc, Xc]t +
∑

0<s≤t
|∆Xs|2
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for all t ≥ 0 (here ∆Xs = Xs − Xs− is the jump of X at time s > 0).
Moreover, [Xc, Xc] = [X,X]c is the pathwise continuous part of [X,X]. We
will also need Lemma 1 from [14], which is as follows.

Lemma 2.5. If X and Y are semimartingales, then Y is differentially
subordinate to X if and only if Y c is differentially subordinate to Xc and
for any s > 0 we have

|∆Ys| ≤ |∆Xs|.
Proof of Theorem 2.1. We split the reasoning into three separate parts.

Step 1: A mollification argument. Let ε ∈ (0, 1/2) and δ ∈ (0, ε] be fixed
numbers, and suppose that g : R2 → [0,∞) is a C∞ function, supported on
the unit ball of R2 and satisfying

	
R2 g = 1. We introduce the function

U δ,λ : S → R by the convolution

U δ,λ(x, y) =
�

[−1,1]2
U (λ)

(
ε+ δu+ (1− 2ε)x, (1− 2ε)y + δv

)
g(u, v) du dv.

Of course, this function is of class C∞ and inherits the properties of U (λ): it
is nonincreasing along the lines of slope ±α:
(2.5) U δ,λx (x, y) + α|U δ,λy (x, y)| ≤ 0, (x, y) ∈ So,
and concave along the lines of slope k ∈ [−1, 1]:

(2.6) U δ,λxx (x, y)± 2U δ,λxy (x, y)k + U δ,λyy (x, y)k2 ≤ 0, (x, y) ∈ So.
Step 2: An application of Itô’s formula. Let M , N , A, B be the local

martingale and finite variation parts of X and Y , coming from the Doob–
Meyer decompositions (1.5). It follows from the general theory of stochastic
integration that the process( t�

0+

U δ,λx (Xs−, Ys−) dMs +

t�

0+

U δ,λy (Xs−, Ys−) dNs

)
t≥0

is a local martingale. Let (σn)n≥0 denote the corresponding localizing se-
quence of stopping times. Since the function U δ,λ is of class C∞, we are
allowed to apply Itô’s formula to (U δ,λ(Xσn∧t, Yσn∧t))t≥0:

(2.7) U δ,λ(Xσn∧t, Yσn∧t) = U δ,λ(x, y) + I1 + I2 + I3/2 + I4,

where

I1 =

σn∧t�

0+

U δ,λx (Xs−, Ys−) dMs +

σn∧t�

0+

U δ,λy (Xs−, Ys−) dNs,

I2 =

σn∧t�

0+

U δ,λx (Xs−, Ys−) dAs +

σn∧t�

0+

U δ,λy (Xs−, Ys−) dBs,
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I3 =

σn∧t�

0+

U δ,λxx (Xs−, Ys−) d[X,X]cs

+ 2

σn∧t�

0+

U δ,λxy (Xs−, Ys−) d[X,Y ]cs +

σn∧t�

0+

U δ,λyy (Xs−, Ys−) d[Y, Y ]cs,

I4 =
∑

0<s≤σn∧t

[
U δ,λ(Xs, Ys)− U δ,λ(Xs−, Ys−)

− 〈∇U δ,λ(Xs−, Ys−), (∆Xs,∆Ys)〉
]
.

The term I1 is a martingale (as a function of t), so EI1 = 0. By the
α-subordination of Y to X and (2.5), we have

I2 ≤
σn∧t�

0+

U δ,λx (Xs−, Ys−) dAs +

σn∧t�

0+

|U δ,λy (Xs−, Ys−)| d|B|s

≤
σn∧t�

0+

[U δ,λx (Xs−, Ys−) + α|U δ,λy (Xs−, Ys−)|] dAs ≤ 0.

The term I3 is also nonpositive, which is due to (2.6) and the Kunita–
Watanabe inequality (cf. [9]). Indeed, for 0 ≤ s0 < s1 ≤ t we have

[Xc, Y c]σn∧s1σn∧s0 ≤ ([Xc, Xc]σn∧s1σn∧s0)1/2([Y c, Y c]σn∧s1σn∧s0)1/2

and, by the differential subordination of Y c to Xc (see Lemma 2.5), we get
[Y c, Y c]σn∧s1σn∧s0 ≤ [Xc, Xc]σn∧s1σn∧s0 . Combining these two observations with (2.6)
gives

U δ,λxx (Xs0−, Ys0−)[Xc, Xc]σn∧s1σn∧s0 + 2U δ,λxy (Xs0−, Ys0−)[Xc, Y c]σn∧s1σn∧s0

+ U δ,λyy (Xs0−, Ys0−)[Y c, Y c]σn∧s1σn∧s0 ≤ 0,

which implies I3 ≤ 0, by the approximation of integrals by Riemann sums.
Finally, I4 ≤ 0 because of the concavity of the function U δ,λ along the lines
of slope k ∈ [−1, 1] and the fact that |∆Ys| ≤ |∆Xs|, in virtue of differential
subordination. Consequently, combining all the above facts with (2.7) and
taking the expectation of both sides yields

EU δ,λ(Xσn∧t, Yσn∧t) ≤ EU δ,λ(x, y) = U δ,λ(x, y).

Step 3: Limiting arguments. Let δ → 0 and n→∞. The function U δ,λ
is continuous, so U δ,λ(x, y)→ U (λ)(ε+ (1− 2ε)x, (1− 2ε)y) and

U δ,λ(Xσn∧t, Yσn∧t)→ U (λ)(ε+ (1− 2ε)Xt, (1− 2ε)Yt)

almost surely. Next, note that (2.4) yields

|U δ,λ(Xσn∧t, Yσn∧t)| ≤ (1− 2ε)|Yσn∧t|+ δ + C ≤ sup
0≤s≤t

|Ys|+ C + 1.
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The random variable sup0≤s≤t |Ys| is integrable (cf. [12]), so by Lebesgue’s
dominated convergence theorem, we obtain

EU (λ)(ε+ (1− 2ε)Xt, (1− 2ε)Yt) ≤ U (λ)(ε+ (1− 2ε)x, (1− 2ε)y).

This, by (2.3), gives

E
(
|(1− 2ε)Yt| − λ−

2(α+ 1)2

2α+ 1

)
χ(λ,∞)((1− 2ε)|Yt|)

≤ U (λ)(ε+ (1− 2ε)x, (1− 2ε)y).

Now we let ε → 0 and apply Lebesgue’s dominated convergence theorem
again to get

E
(
|Yt| − λ−

2(α+ 1)2

2α+ 1

)
χ(λ,∞)(|Yt|) ≤ U (λ)(x, y) ≤ 0,

where the last inequality is due to (2.2). This is precisely the claim.

Now we will show how to deduce the inequality (1.6). Fix α, X, Y as in
the statement of Theorem 1.1 and let t ≥ 0, s ∈ (0, 1]. We have

Y ∗∗t (s) = sup

{
1

s

�

A

|Yt| dP : A ∈ F , P(A) = s

}
.

Let λ ≥ 0 be the smallest number such that P(|Yt| > λ) ≤ s ≤ P(|Yt| ≥ λ).
Clearly, the above supremum is attained for A satisfying {|Yt| > λ} ⊆ A ⊆
{|Yt| ≥ λ} and the required condition P(A) = s. By the definition of a
nonincreasing rearrangement, we get Y ∗t (s) = λ. So,

Y ∗∗t (s)− Y ∗t (s) =
1

s

�

A

(|Yt| − λ) dP

≤ 1

P(|Yt| > λ)
E(|Yt| − λ)χ(λ,∞)(|Yt|) ≤

2(α+ 1)2

2α+ 1
,

where the latter inequality is due to (2.1). Since s was arbitrary, the estimate
(1.6) follows.

3. Sharpness. Now we will show that the constant 2(α+1)2/(2α+1) is
the best possible even for the class of Itô processes (1.1). It will be convenient
for us to work with discrete-time processes. Suppose that the probability
space (Ω,F ,P) is equipped with a filtration (Fn)n=0,1,.... Let f = (fn)n≥0
be an adapted, nonnegative submartingale with the corresponding difference
sequence df = (dfn)n≥0 defined by df0 = f0 and dfn = fn−fn−1, n = 1, 2, . . . .
Let g = (gn)n≥0 be an adapted sequence of integrable random variables. If we
treat f and g as continuous-time processes (via ft = fbtc, gt = gbtc, t ≥ 0),
then it is easy to check that g is α-subordinate to f if and only if for any
n ≥ 0 we have

|dgn| ≤ |dfn|, E(|dgn+1| |Fn) ≤ αE(dfn+1|Fn).
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We will show that the constant 2(α + 1)2/(2α + 1) is optimal even for pro-
cesses induced by the discrete-time setting. Then the passage to Itô pro-
cesses is done by appropriate embedding into Brownian motion (see [13] for
details).

Let α ∈ (0, 1], δ ∈ (0, α/(2α+1)) be fixed. Consider the two-dimensional
Markov family (f, g) with the transition function uniquely determined by
the following conditions:

(i) The state (1/2, 1/2) leads to (1, 0) or to (0, 1) with probabilities 1/2.
(ii) The state (α/(2α + 1), (α + 1)/(2α + 1)) leads to (1, 0) or to (0, 1)

with probabilities α/(2α+ 1) and (α+ 1)/(2α+ 1), respectively.
(iii) For any y ≥ (α+ 1)/(2α+ 1) + 2δ, the state (α/(2α+ 1), y) leads to

(α/(2α+1)−δ, y−δ) or to (1, y+(α+1)/(2α+1)) with probabilities

α+ 1

α+ 1 + (2α+ 1)δ
and

(2α+ 1)δ

α+ 1 + (2α+ 1)δ
,

respectively.
(iv) For any y ≥ (α+ 1)/(2α+ 1) + 2δ, the state (α/(2α+ 1)− δ, y− δ)

leads to (0, y + α/(2α + 1) − 2δ) or to (α/(2α + 1), y − 2δ) with
probabilities (2α+ 1)δ/α and 1− (2α+ 1)δ/α, respectively.

(v) For any y ≥ 1, the state (0, y) leads to (2δ/(α+1), y+2αδ/(α+1)).
(vi) For any y ≥ 1, the state (2δ/(α + 1), y + 2αδ/(α + 1)) leads to

(0, y+ 2δ) or to (α/(2α+ 1), y+ 2δ−α/(2α+ 1)) with probabilities
2δ/α and 1− 2δ/α, respectively.

(vii) All the remaining states are absorbing.

It is easy to check that if the process (f, g) starts from (1/2, 1/2), then f
and g are nonnegative submartingales such that g is α-subordinate to f .
By the escape bounds of Burkholder [4], g converges almost surely to
a limit g∞; it is easy to see that this random variable takes values in
{0} ∪ [(2α+ 2)/(2α+ 1),∞). The further analysis splits into three parts.

Step 1. We will first derive the probability that (f, g) ever visits the
point (1, 0). To use the above Markov description, we extend this problem
to an arbitrary starting point: for any (x, y) ∈ R2, define

P (x, y) = P((f, g) ever visits (1, 0) | (f0, g0) = (x, y)).

For notational convenience, introduce the functions A(y) = P (α/(2α+1), y)
and B(y) = P (0, y + α/(2α+ 1)). By (iii), we derive that

A(y) =
α+ 1

α+ 1 + (2α+ 1)δ
P

(
α

2α+ 1
− δ, y − δ

)
(3.1)

+
(2α+ 1)δ

α+ 1 + (2α+ 1)δ
P
(

1, y +
α+ 1

2α+ 1

)
.
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But the state (1, y + (α+ 1)/(2α+ 1)) is absorbing, so the second term on
the right is equal to zero. To handle the first term, we exploit the condi-
tion (iv):

P

(
α

2α+ 1
− δ, y − δ

)
=

(2α+ 1)δ

α
B(y − 2δ) +

(
1− (2α+ 1)δ

α

)
A(y − 2δ).

This, combined with the preceding equality, yields

A(y) =
(α+ 1)(α− δ(2α+ 1))

α(α+ 1 + (2α+ 1)δ)
A(y − 2δ)(3.2)

+
(α+ 1)(2α+ 1)δ

α(α+ 1 + (2α+ 1)δ)
B(y − 2δ).

Next, we use (v) and (vi) to obtain

B(y) = P

(
2δ

α+ 1
, y +

α

2α+ 1
+

2αδ

α+ 1

)
(3.3)

=
2δ(2α+ 1)

α(α+ 1)
A(y) +

α(α+ 1)− 2δ(2α+ 1)

α(α+ 1)
B(y).

Now, multiply the equation (3.3) by

λ =
(α+ 1)(2α+ 3) + (α+ 1)

√
(2α+ 1)2 − 8(2α+ 1)δ

4(α+ 1 + (2α+ 1)δ)

and add it to (3.2). After some calculations, one obtains the identity

(3.4) γ1A(y − 2δ)− γ2B(y − 2δ) = r(γ1A(y)− γ2B(y))

with

γ1 =
(α+ 1)(α− δ(2α+ 1))

α(α+ 1 + (2α+ 1)δ)
, γ2 = λ− (α+ 1)(2α+ 1)δ

α(α+ 1 + (2α+ 1)δ)

and

r =
(α(α+ 1)− 2δ(2α+ 1)λ)(α+ 1 + (2α+ 1)δ)

(α+ 1)2(α− δ(2α+ 1))

= 1 +
δ(2α+ 1)(−2λ+ 2α+ 1) +O(δ2)

(α+ 1)(α− δ(2α+ 1)
.

The reason for the above complicated choice for λ is that it guarantees that
on both sides of (3.4) we have the same coefficients of the function A and
the same coefficients of B. This fact enables the use of induction: we deduce
that for N ,

γ1A(y− 2δ)− γ2B(y− 2δ) = rN [γ1A(y+ 2δ(N − 1))− γ2B(y+ 2δ(N − 1))].

However, when δ → 0, then λ → α + 1; hence r is smaller than 1 if δ
is sufficiently close to 0. Furthermore, directly from the definition it can
be seen that the functions A and B take values in [0, 1]. Thus, letting
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N → ∞ yields γ1A(y − 2δ) − γ2B(y − 2δ) = 0 and hence, in particu-
lar,

γ1A

(
α+ 1

2α+ 1

)
= γ2B

(
α+ 1

2α+ 1

)
.

On the other hand, condition (ii) implies

A

(
α+ 1

2α+ 1

)
=

α

2α+ 1
P (1, 0) +

α+ 1

2α+ 1
B

(
α+ 1

2α+ 1

)
=

α

2α+ 1
+

α+ 1

2α+ 1
B

(
α+ 1

2α+ 1

)
.

Combining the latter two equations gives

B

(
α+ 1

2α+ 1

)
=

α

2α+ 1

(
γ2
γ1
− α+ 1

2α+ 1

)−1
and hence, by (i),

P

(
1

2
,
1

2

)
=

1

2
P (1, 0) +

1

2
B

(
α+ 1

2α+ 1

)
(3.5)

=
1

2
+

α

2(2α+ 1)

(
γ2
γ1
− α+ 1

2α+ 1

)−1
.

Step 2. The second part of the analysis concerns the first norm of the
sequence g, i.e., the value of Eg∞, where g∞ is the pointwise limit of g. As
previously, we consider the more general setting in which the process (f, g)
starts from an arbitrary point (x, y) in R2 and define

E(x, y) = E[g∞ | (f0, g0) = (x, y)].

With a slight abuse of notation (but, hopefully, for the convenience of the
reader), set A(y) = E(α/(2α + 1), y) and B(y) = E(0, y + α/(2α + 1)), in
analogy to the above considerations. Then all the above calculations remain
valid, with a small change: the term P

(
1, y + α+1

2α+1

)
vanished in (3.1), now

the value of E
(
1, y+ α+1

2α+1

)
is equal to y+ α+1

2α+1 . So, the analogue of (3.2) is

A(y) =
(α+ 1)(α− δ(2α+ 1))

α(α+ 1 + (2α+ 1)δ)
A(y − 2δ)(3.6)

+
(α+ 1)(2α+ 1)δ

α(α+ 1 + (2α+ 1)δ)
B(y − 2δ)

+
(2α+ 1)δ

α+ 1 + (2α+ 1)δ

(
y +

α

2α+ 1

)
,

and the equality (3.3) holds true. Multiply (3.3) by λ (the same as above)
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and add it to (3.6). After some computations, one obtains

γ1A(y − 2δ)− γ2B(y − 2δ)

= r(γ1A(y)− γ2B(y))− (2α+ 1)δ

α+ 1 + (2α+ 1)δ

(
y +

α+ 1

2α+ 1

)
,

where γ1, γ2, r are as above. Hence, by induction,

γ1A(y − 2δ)− γ2B(y − 2δ)

= rN
(
γ1A(y + 2(N − 1)δ)− γ2B(y + 2(N − 1)δ)

)
− (2α+ 1)δ

α+ 1 + (2α+ 1)δ

N−1∑
k=0

rk
(
y + 2kδ +

α+ 1

2α+ 1

)
.

Now, if δ is sufficiently close to zero, then r is smaller than 1. Since A and
B have linear growth at infinity, letting N →∞ above yields

γ1A(y − 2δ)− γ2B(y − 2δ)

= − (2α+ 1)δ

α+ 1 + (2α+ 1)δ

∞∑
k=0

rk
(
y + 2kδ +

α+ 1

2α+ 1

)
= − (2α+ 1)δ

α+ 1 + (2α+ 1)δ

[(
y +

α+ 1

2α+ 1

)
1

1− r
+

2δ

(1− r)2

]
,

and hence in particular

γ1A

(
α+ 1

2α+ 1

)
− γ2B

(
α+ 1

2α+ 1

)
= − (2α+ 1)δ

α+ 1 + (2α+ 1)δ

[(
2δ +

2α+ 2

2α+ 1

)
1

1− r
+

2δ

(1− r)2

]
.

On the other hand, condition (ii) gives

A

(
α+ 1

2α+ 1

)
=

α

2α+ 1
E(1, 0) +

α+ 1

2α+ 1
B

(
α+ 1

2α+ 1

)
=

α+ 1

2α+ 1
B

(
α+ 1

2α+ 1

)
,

which combined with the preceding identity yields

B

(
α+ 1

2α+ 1

)
= − (2α+ 1)δ

α+ 1 + (2α+ 1)δ

(
α+ 1

2α+ 1
γ1 − γ2

)−1
×
[(

2δ +
2α+ 2

2α+ 1

)
1

1− r
+

2δ

(1− r)2

]
.
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Hence by (i),

E

(
1

2
,
1

2

)
=

1

2
B(1, 0) +

1

2
B

(
α+ 1

2α+ 1

)
(3.7)

= − (2α+ 1)δ

2(α+ 1 + (2α+ 1)δ)

(
α+ 1

2α+ 1
γ1 − γ2

)−1
×
[(

2δ +
2α+ 2

2α+ 1

)
1

1− r
+

2δ

(1− r)2

]
.

Step 3. Now we carry out the final limiting procedure: we let δ → 0. It
is not difficult to check that then the expressions on the right of (3.5) and
(3.7) simplify considerably: we obtain

P

(
1

2
,
1

2

)
→ 1

2
+

1

4(α+ 1)
, E

(
1

2
,
1

2

)
→ α+ 1

2
.

So, if δ is sufficiently small and n is sufficiently large, then Egn can be made
arbitrarily close to (α+ 1)/2, and the probability that gn is positive can be
made arbitrarily close to 1− (1/2 + 1/(4(α+ 1))) = (2α+ 1)/(4α+ 4). Now
take t > (2α + 1)/(4α + 4) and ε > 0. By the very definition of g∗n, the
preceding analysis gives g∗n(t) < ε provided δ is sufficiently small. On the
other hand,

g∗∗n (t) = sup

{
1

t

�

A

gn dP : A ∈ F , P(A) = t

}
.

But if δ is small and n is large, then gn vanishes on a set of probability
larger than 1 − t, so g∗∗n (t) = t−1Egn. Thus, the norm ‖gn‖W can be made
arbitrarily close to

4α+ 4

2α+ 1
· α+ 1

2
=

2(α+ 1)2

2α+ 1
.

This proves the desired optimality of the constant.
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