FUNCTIONAL ANALYSIS

On Some Classes of Operators on C(K, X)

by

Ioana GHENCIU

Presented by Stanisław KWAPIEŃ

Summary. Suppose X and Y are Banach spaces, K is a compact Hausdorff space, Σ is the σ -algebra of Borel subsets of K, C(K, X) is the Banach space of all continuous X-valued functions (with the supremum norm), and $T : C(K, X) \to Y$ is a strongly bounded operator with representing measure $m : \Sigma \to L(X, Y)$.

We show that if T is a strongly bounded operator and $\hat{T} : B(K, X) \to Y$ is its extension, then T is limited if and only if its extension \hat{T} is limited, and that T^* is completely continuous (resp. unconditionally converging) if and only if \hat{T}^* is completely continuous (resp. unconditionally converging).

We prove that if K is a dispersed compact Hausdorff space and T is a strongly bounded operator, then T is limited (resp. weakly precompact, has a completely continuous adjoint, has an unconditionally converging adjoint) whenever $m(A) : X \to Y$ is limited (resp. weakly precompact, has a completely continuous adjoint, has an unconditionally converging adjoint) for each $A \in \Sigma$.

1. Introduction. Suppose K is a compact Hausdorff space, X and Y are Banach spaces, C(K, X) is the Banach space of all continuous X-valued functions (with the supremum norm), and Σ is the σ -algebra of Borel subsets of K.

Every continuous linear function $T : C(K, X) \to Y$ may be represented by a vector measure $m : \Sigma \to L(X, Y^{**})$ of finite semivariation [11], [13, p. 182] such that

$$T(f) = \int_{K} f \, dm, \quad f \in C(K, X), \quad ||T|| = \tilde{m}(\Omega),$$

²⁰¹⁰ Mathematics Subject Classification: Primary 46B20; Secondary 28B05.

Key words and phrases: limited operators, weakly precompact operators, spaces of continuous functions.

Received 3 November 2014; revised 8 December 2015. Published online 7 January 2016.

and $T^*(y^*) = m_{y^*}$ for $y^* \in Y^*$, where \tilde{m} denotes the semivariation of m. For each $y^* \in Y^*$, the vector measure $m_{y^*} = y^*m : \Sigma \to X^*$ defined by $\langle m_{y^*}(A), x \rangle = \langle m(A)(x), y^* \rangle$ for $A \in \Sigma$ and $x \in X$ is a regular countably additive measure of bounded variation. We denote this correspondence $m \leftrightarrow T$. If we denote by $|y^*m|$ the variation of the measure y^*m , then for $E \in \Sigma$, the semivariation $\tilde{m}(E)$ is given by

$$\tilde{m}(E) = \sup\{|y^*m|(E): y^* \in Y^*, \|y^*\| \le 1\}.$$

We note that for $f \in C(K, X)$, $\int_K f \, dm \in Y$ even if m is not L(X, Y)valued. A representing measure m is called *strongly bounded* if $\tilde{m}(A_i) \to 0$ for every decreasing sequence $A_i \to \emptyset$ in Σ , and an operator $m \leftrightarrow T$: $C(K, X) \to Y$ is called strongly bounded if m is strongly bounded [11]. By [11, Theorem 4.4], a strongly bounded representing measure takes its values in L(X, Y). If m is a strongly bounded representing measure, then there is a nonnegative regular Borel measure λ such that $\tilde{m}(A) \to 0$ as $\lambda(A) \to 0$. We call λ the *control measure* for m. If T is unconditionally converging, then m is strongly bounded [15].

Let χ_A denote the characteristic function of a set A, and B(K, X) denote the space of all bounded, Σ -measurable functions on K with separable range in X and the sup norm. Clearly, C(K, X) is contained isometrically in B(K, X). Further, B(K, X) embeds isometrically in $C(K, X)^{**}$ (see e.g. [11]). The reader should note that if $m \leftrightarrow T$, then $m(A)x = T^{**}(\chi_A x)$ for all $A \in \Sigma$ and $x \in X$. If $f \in B(K, X)$, then f is the uniform limit of X-valued simple functions, $\int_K f \, dm$ is well-defined and defines an extension \hat{T} of T (see e.g. [14]). Theorem 2 of [6] shows that \hat{T} maps B(K, X) into Y if and only if the representing measure m of T is L(X, Y)-valued. If $T : C(K, X) \to Y$ is strongly bounded, then m is L(X, Y)-valued [11], and thus $\hat{T} : B(K, X) \to Y$. Since \hat{T} is the restriction to B(K, X) of the operator T^{**} , it is clear that an operator $T : C(K, X) \to Y$ is compact (resp. weakly compact).

Several authors have found the study of \hat{T} to be quite helpful. We mention the work of [6], [8], [9], and [18]. In these papers it has been proved that if m is strongly bounded, then $T: C(K, X) \to Y$ is weakly compact, compact, Dunford–Pettis, Dieudonné, unconditionally converging, strictly singular, strictly cosingular, weakly precompact, and has a weakly precompact adjoint if and only if its extension $\hat{T}: B(K, X) \to Y$ has the same property. We show that if $T: C(K, X) \to Y$ is a strongly bounded operator and $\hat{T}: B(K, X) \to Y$ is its extension, then T is limited if and only if \hat{T} is limited, and that T^* is completely continuous (resp. unconditionally converging) if and only if \hat{T}^* is completely continuous (resp. unconditionally converging). A topological space S is called *dispersed* (or *scattered*) if every nonempty closed subset of S has an isolated point [24]. A compact Hausdorff space K is dispersed if and only if $\ell_1 \leftrightarrow C(K)$ [20].

Bombal and Cembranos [8] showed that if K is a dispersed compact Hausdorff space and $m \leftrightarrow T : C(K, X) \to Y$ is an operator, then T is unconditionally converging (resp. completely continuous, Dieudonné, weakly compact) if and only if m is strongly bounded and $m(A) : X \to Y$ is unconditionally converging (resp. completely continuous, Dieudonné, weakly compact) for every $A \in \Sigma$. We prove that if K is a dispersed compact Hausdorff space and $m \leftrightarrow T : C(K, X) \to Y$ is a strongly bounded operator, then T is limited (resp. weakly precompact, compact, has a completely continuous adjoint, has an unconditionally converging adjoint) if and only if for every $A \in \Sigma$, $m(A) : X \to Y$ is limited (resp. weakly precompact, compact, has a completely continuous adjoint, has an unconditionally converging adjoint).

An operator $T: X \to Y$ is completely continuous (or Dunford-Pettis) if it maps weakly convergent sequences to convergent sequences.

A subset S of X is said to be weakly precompact provided that every bounded sequence from S has a weakly Cauchy subsequence [5]. An operator $T: X \to Y$ is weakly precompact (or almost weakly compact) if $T(B_X)$ is weakly precompact.

A bounded subset A of a Banach space X is called a *limited* (resp. Dunford-Pettis (DP)) subset of X if every w^* -null (resp. weakly null) sequence (x_n^*) in X^* tends to 0 uniformly on A, i.e.,

$$\lim_{n} (\sup\{|x_{n}^{*}(x)| : x \in A\}) = 0.$$

Every limited subset of X is weakly precompact [10]. Every DP subset of X is weakly precompact (see e.g. [2] and [21, p. 377]). An operator $T : X \to Y$ is called *limited* if $T(B_X)$ is limited. We note that T is limited if and only if T^* is w^* -norm sequentially continuous.

A series $\sum x_n$ of elements of X is weakly unconditionally convergent (wuc) if $\sum |x^*(x_n)| < \infty$ for each $x^* \in X^*$. An operator $T: X \to Y$ is unconditionally converging if it maps weakly unconditionally convergent series to convergent ones.

A bounded subset A of X (resp. A of X^*) is called a V^* -subset of X (resp. a V-subset of X^*) provided that

$$\lim_{n} (\sup\{|x_{n}^{*}(x)| : x \in A\}) = 0$$

(resp.
$$\lim_{n} (\sup\{|x^{*}(x_{n})| : x^{*} \in A\}) = 0)$$

for each wuc series $\sum x_n^*$ in X^* (resp. wuc series $\sum x_n$ in X).

A bounded subset A of X^* is called an *L*-subset of X^* if each weakly null sequence (x_n) in X tends to 0 uniformly on A, i.e.,

$$\lim_{n} (\sup\{|x^*(x_n)| : x^* \in A\}) = 0.$$

A Banach space X has property weak (V) (wV) if any V-subset of X^{*} is weakly precompact [22].

2. Main results. We begin with the following lemma. If $T : X \to Y^*$ is an operator, then $T^*|_Y$ denotes the restriction of T^* to Y.

Lemma 1.

- (i) If $T: X \to Y$ is an operator, then $T(B_X)$ is a DP subset of Y if and only if $T^*: Y^* \to X^*$ is completely continuous.
- (ii) If $T: X \to Y$ is an operator, then $T(B_X)$ is a V^{*}-subset of Y if and only if $T^*: Y^* \to X^*$ is unconditionally converging.
- (iii) If $T: X \to Y^*$ is an operator, then $T(B_X)$ is a V-subset of Y^* if and only if $T^*|_Y: Y \to X^*$ is unconditionally converging.
- (iv) If $T: X \to Y^*$ is an operator, then $T(B_X)$ is an L-subset of Y^* if and only if $T^*|_Y: Y \to X^*$ is completely continuous.

Proof. (i) Suppose $T(B_X)$ is a DP subset of Y and $T^*: Y^* \to X^*$ is not completely continuous. Let (y_n^*) be weakly null in Y^* such that $||T^*(y_n^*)|| \to 0$. Choose a sequence (x_n) in B_X and $\epsilon > 0$ such that $\langle T^*(y_n^*), x_n \rangle > \epsilon$ for all n. Then $\langle y_n^*, T(x_n) \rangle = \langle T^*(y_n^*), x_n \rangle > \epsilon$ for all n, contrary to $T(B_X)$ being a DP set.

Conversely, suppose $T^*: Y^* \to X^*$ is completely continuous. Let (x_n) be a sequence in B_X and (y_n^*) be weakly null in Y^* . Then

$$\langle y_n^*, T(x_n) \rangle = \langle T^*(y_n^*), x_n \rangle \le \|T^*(y_n^*)\| \to 0,$$

and $T(B_X)$ is a DP subset of Y.

(ii) The proof is similar to that of (i).

(iii) Suppose $T(B_X)$ is a V-subset of Y^* . We show that $T^*|_Y : Y \to X^*$ is unconditionally converging. Suppose $\sum y_n$ is wuc in Y. It suffices to show that $||T^*(y_n)|| \to 0$. Suppose $||T^*(y_n)|| \to 0$. Choose a sequence (x_n) in B_X and $\epsilon > 0$ such that $\langle T^*(y_n), x_n \rangle > \epsilon$ for all n. Then $\langle y_n, T(x_n) \rangle > \epsilon$ for all n, which contradicts $T(B_X)$ being a V-set.

Conversely, suppose $T^*|_Y : Y \to X^*$ is unconditionally converging. Let (x_n) be a sequence in B_X and $\sum y_n$ be wuc in Y. Since $T^*|_Y$ is unconditionally converging,

$$\langle y_n, T(x_n) \rangle = \langle T^*(y_n), x_n \rangle \le ||T^*(y_n)|| \to 0,$$

and $T(B_X)$ is a V-subset of Y^* .

(iv) The proof is similar to that of (iii).

Suppose that $T: C(K, X) \to Y$ is an operator and $\hat{T}: B(K, X) \to Y^{**}$ is its extension to B(K, X). As noted in the Introduction, if $m \leftrightarrow T$: $C(K, X) \to Y$ is strongly bounded, then m is L(X, Y)-valued and \hat{T} maps B(K, X) into Y. Let B_0 denote the unit ball of C(K, X), and B denote the unit ball of B(K, X).

THEOREM 2. Suppose that $T : C(K, X) \to Y$ is a strongly bounded operator and $\hat{T} : B(K, X) \to Y$ is its extension. Then:

- (i) T is limited if and only if \hat{T} is limited.
- (ii) T* is completely continuous (resp. unconditionally converging) if and only if T^{*} is completely continuous (resp. unconditionally converging).

Proof. (i) Suppose that $T : C(K, X) \to Y$ is limited and \hat{T} is not. Let (y_n^*) be w^* -null in Y^* and (f_n) be a sequence in the unit ball of B(K, X) such that $\langle y_n^*, \hat{T}(f_n) \rangle = 1$ for all n. Without loss of generality assume $||y_n^*|| \leq 1$ for all n.

Using the existence of a control measure for m and Lusin's theorem, one can find a compact subset K_0 of K such that $\tilde{m}(K \setminus K_0) < 1/4$ and $g_n = f_n|_{K_0}$ is continuous for each $n \in \mathbb{N}$. Let $H = [g_n]$ be the closed linear subspace spanned by (g_n) in $C(K_0, X)$, and $S : H \to C(K, X)$ be the isometric extension operator given by [8, Theorem 1]. If $h_n = S(g_n)$ for each $n \in \mathbb{N}$, then (h_n) is in the unit ball of C(K, X), and

$$\begin{split} |\langle y_n^*, T(h_n) \rangle| &\geq \left| \left\langle y_n^*, \int_{K_0} h_n \, dm \right\rangle \right| - \left| \left\langle y_n^*, \int_{K \setminus K_0} h_n \, dm \right\rangle \right| \\ &\geq \left| \left\langle y_n^*, \int_{K_0} f_n \, dm \right\rangle \right| - 1/4 \\ &\geq \left| \left\langle y_n^*, \int_K f_n \, dm \right\rangle \right| - \left| \left\langle y_n^*, \int_{K \setminus K_0} f_n \, dm \right\rangle \right| - 1/4 \\ &\geq \left| \left\langle y_n^*, \hat{T}(f_n) \right\rangle \right| - 1/4 - 1/4 = 1/2. \end{split}$$

This is a contradiction, since $T(B_0)$ is limited.

(ii) By Lemma 1, it is enough to show that $T(B_0)$ is a DP set (resp. a V^* -set) if and only if $\hat{T}(B)$ is a DP set (resp. a V^* -set). Suppose that $T(B_0)$ is a DP set (resp. a V^* -set) and $\hat{T}(B)$ is not a DP set (resp. a V^* -set). Suppose (y_n^*) is weakly null (resp. $\sum y_n^*$ is wuc) in Y^* and (f_n) is a sequence in the unit ball of B(K, X) such that $\langle y_n^*, \hat{T}(f_n) \rangle = 1$ for each n. Continuing as above we find a sequence (h_n) in the unit ball of C(K, X) such that $|\langle y_n^*, T(h_n) \rangle| \ge 1/2$. This is a contradiction, since $T(B_0)$ is a DP set (resp. a V^* -set).

COROLLARY 3. Suppose that $m \leftrightarrow T : C(K,X) \to Y$ is a strongly bounded operator.

- (i) If T is limited, then $m(A) : X \to Y$ is limited for each $A \in \Sigma$.
- (ii) If T^* is completely continuous (resp. unconditionally converging), then for each $A \in \Sigma$, $m(A)^* : Y^* \to X^*$ is completely continuous (resp. unconditionally converging).

Proof. We will only consider the case of limited operators. The proof of (ii) is similar. If $A \in \Sigma$, $A \neq \emptyset$, define $\theta_A : X \to B(K, X)$ by $\theta_A(x) = \chi_A x$. Then θ_A is an isomorphic isometric embedding of X into B(K, X) and $\hat{T}\theta_A = m(A)$. By Theorem 2, \hat{T} is limited, and thus m(A) is.

The proofs of the following results are similar to those of Theorem 2 and Corollary 3 and will be omitted.

THEOREM 4. Suppose that $T : C(K,X) \to Y^*$ is a strongly bounded operator and $\hat{T} : B(K,X) \to Y^*$ is its extension. Then $T^*|_Y$ is completely continuous (resp. unconditionally converging) if and only if $\hat{T}^*|_Y$ is completely continuous (resp. unconditionally converging).

COROLLARY 5. Suppose that $m \leftrightarrow T : C(K,X) \to Y^*$ is a strongly bounded operator. If $T^*|_Y$ is completely continuous (resp. unconditionally converging), then for each $A \in \Sigma$, $m(A)^*|_Y$ is completely continuous (resp. unconditionally converging).

Next we study the properties of the compact space K for which an operator $T : C(K, X) \to Y$ with representing measure m is limited (resp. weakly precompact, compact, has a completely continuous adjoint, has an unconditionally converging adjoint) whenever m is strongly bounded and $m(A) : X \to Y$ is limited (resp. weakly precompact, compact, has a completely continuous adjoint, has an unconditionally converging adjoint) for each $A \in \Sigma$.

If $T: C(K, X) \to Y$ is an operator, \overline{K} is a metrizable compact space, and $\pi: K \to \overline{K}$ a continuous map which is onto, we will call \overline{K} a *quotient* of K. The map $\overline{\pi}: C(\overline{K}) \to C(K)$ given by $\overline{\pi}\overline{f} = \overline{f}\pi$ defines an isometric embedding of $C(\overline{K})$ into C(K). Let $\overline{T}: C(\overline{K}, X) \to Y$ be the operator defined by $\overline{T}(\overline{f}) = T(\overline{f}\pi)$, where $\overline{f} \in C(\overline{K}, X)$ and $\pi: K \to \overline{K}$ is the canonical mapping.

The following results will be useful in our study.

Lemma 6.

(i) An operator T : C(K, X) → Y is limited (resp. weakly precompact, compact) if and only if, for each metrizable quotient K of K, the operator T : C(K, X) → Y defined as above is limited (resp. weakly precompact, compact).

(ii) If T : C(K, X) → Y is an operator, then T* is completely continuous (resp. unconditionally converging) if and only if, for each metrizable quotient K of K, T* is completely continuous (resp. unconditionally converging), where T : C(K, X) → Y is defined as above.

Proof. We will only consider the case of limited operators. The proof for the other operators is similar. Suppose that $T: C(K, X) \to Y$ is limited and \overline{K} is a metrizable quotient of K. Then \overline{T} is limited.

Conversely, let $T : C(K, X) \to Y$ be an operator and let (f_n) be a sequence in the unit ball of C(K, X). It is known (see [6]) that there exists a metrizable quotient \bar{K} of K and a sequence (\bar{f}_n) in $C(\bar{K}, X)$ defined by $\bar{f}_n(\pi(t)) = f_n(t)$ for all $t \in K$ and $n \in \mathbb{N}$. Define $\bar{T} : C(\bar{K}, X) \to Y$ by $\bar{T}(\bar{f}) = T(\bar{f}\pi)$, where $\pi : K \to \bar{K}$ is the canonical mapping. By assumption, \bar{T} is limited. Then $(\bar{T}(\bar{f}_n)) = (T(f_n))$ is limited.

Similarly, we obtain the following result.

LEMMA 7. If $T: C(K, X) \to Y^*$ is an operator, then $T^*|_Y$ is completely continuous (resp. unconditionally converging) if and only if, for each metrizable quotient \bar{K} of K, $\bar{T}^*|_Y$ is completely continuous (resp. unconditionally converging), where $\bar{T}: C(\bar{K}, X) \to Y^*$ is defined as above.

LEMMA 8 ([8, Lemma 5]). Let K and K_0 be two compact Hausdorff spaces, Σ and Σ_0 the Borel σ -algebras of K and K_0 respectively, and $\alpha: K \to K_0$ a continuous map. If m is the representing measure of an operator $T: C(K, X) \to Y$ and m_0 is the representing measure of the operator $T_0: C(K_0, X) \to Y$ defined by $T_0(f) = T(f\alpha)$, then $m_0(A) = m(\alpha^{-1}(A))$ for all $A \in \Sigma_0$. Consequently, $\tilde{m}_0(A) \leq \tilde{m}(\alpha^{-1}(A))$ for all $A \in \Sigma_0$.

LEMMA 9 ([23], [17], [12], [7]). Let H be a bounded subset of X. If for each $\epsilon > 0$ there is a limited (resp. weakly precompact, relatively compact, DP, V^*) subset H_{ϵ} of X such that $H \subseteq H_{\epsilon} + \epsilon B_X$, then H is limited (resp. weakly precompact, relatively compact, DP, V^*).

LEMMA 10 ([16], [3]). Let H be a bounded subset of X^* . If for each $\epsilon > 0$ there is an L-subset (resp. a V-subset) H_{ϵ} of X^* such that $H \subseteq H_{\epsilon} + \epsilon B_{X^*}$, then H is an L-set (resp. a V-set).

Abbott [1] gave an example of a pair $m \leftrightarrow T$ such that T is weakly precompact and m is not strongly bounded.

THEOREM 11. Suppose that K is a dispersed compact Hausdorff space and $m \leftrightarrow T : C(K, X) \to Y$ is a strongly bounded operator. Then:

(1) T is weakly precompact (resp. limited) if and only if $m(A) : X \to Y$ is weakly precompact (resp. limited) for each $A \in \Sigma$.

(2) $T^*: Y^* \to C(K, X)^*$ is completely continuous (resp. unconditionally converging) if and only if $m(A)^*: Y^* \to X^*$ is completely continuous (resp. unconditionally converging) for each $A \in \Sigma$.

Proof. Suppose $m \leftrightarrow T : C(K, X) \to Y$ is strongly bounded.

(1) If T is weakly precompact (resp. limited), then for each $A \in \Sigma$, $m(A) : X \to Y$ is weakly precompact (resp. limited) by [18, Corollary 17] (resp. Corollary 3).

Conversely, suppose that $m \leftrightarrow T : C(K, X) \to Y$ is a strongly bounded operator and $m(A) : X \to Y$ is weakly precompact (resp. limited) for each $A \in \Sigma$. From Lemmas 6 and 8 and the fact that a quotient space of a dispersed space is dispersed [24, 8.5.3], we can suppose without loss of generality that K is metrizable. Since K is dispersed and metrizable, it is countable [24, 8.5.5]. Suppose that $K = \{t_i : i \in \mathbb{N}\}$. Let (f_n) be a sequence in the unit ball of C(K, X). For each $i \in \mathbb{N}$, the set $\{f_n(t_i) : n \in \mathbb{N}\}$ is bounded in X. Then the set

$$H_i = \{m(\{t_i\})(f_n(t_i)) : n \in \mathbb{N}\}$$

is weakly precompact (resp. limited) for each $i \in \mathbb{N}$. Let $A_i = \{t_j : j > i\}$ for $i \in \mathbb{N}$. Then (A_i) is a decreasing sequence of sets. Let $\epsilon > 0$. Since m is strongly bounded, there is a $k \in \mathbb{N}$ such that $\tilde{m}(A_k) < \epsilon$. For each $n \in \mathbb{N}$,

$$T(f_n) = \int_K f_n \, dm = \sum_{i=1}^k m(\{t_i\})(f_n(t_i)) + \int_{A_k} f_n \, dm.$$

Further, $\|\int_{A_k} f_n dm\| \le \tilde{m}(A_k) < \epsilon$. Therefore

 $T(f_n) \in H_1 + \dots + H_k + \epsilon B_Y.$

Since $H_1 + \cdots + H_k$ is weakly precompact (resp. limited), by Lemma 9 the set $\{T(f_n) : n \in \mathbb{N}\}$ is weakly precompact (resp. limited). Thus T is weakly precompact (resp. limited).

(2) If $T^*: Y^* \to C(K, X)^*$ is completely continuous (resp. unconditionally converging), then for each $A \in \Sigma$, $m(A)^*: Y^* \to X^*$ is completely continuous (resp. unconditionally converging) by Corollary 3.

Conversely, suppose $m(A)^* : Y^* \to X^*$ is completely continuous (resp. unconditionally converging) for each $A \in \Sigma$. By Lemma 1, $m(A)(B_X)$ is a DP set (resp. a V^* -set) for each $A \in \Sigma$. Let (f_n) be a sequence in the unit ball of C(K, X). Using an argument similar to the one above, we can show that $\{T(f_n) : n \in \mathbb{N}\}$ is a DP set (resp. a V^* -set). By Lemma 1, $T^* : Y^* \to C(K, X)^*$ is completely continuous (resp. unconditionally converging).

REMARK 1. It is known that if $m \leftrightarrow T : C(K, X) \to Y$ is a compact operator, then m is strongly bounded and for each $A \in \Sigma$, $m(A) : X \to Y$ is compact [11]. The proof of Theorem 11 shows that the following result holds: Suppose that K is a dispersed compact Hausdorff space and $m \leftrightarrow T$: $C(K, X) \to Y$ is a strongly bounded operator. If (f_n) is a bounded sequence in C(K, X) and for all $A \in \Sigma$ and $t \in K$, $m(A)(\{f_n(t) : n \in \mathbb{N}\})$ is relatively compact, then $\{T(f_n) : n \in \mathbb{N}\}$ is relatively compact. It follows that if K is dispersed and $m \leftrightarrow T : C(K, X) \to Y$ is an operator, then T is compact if and only if m is strongly bounded and $m(A) : X \to Y$ is compact for each $A \in \Sigma$.

THEOREM 12. Suppose that K is a dispersed compact Hausdorff space and $m \leftrightarrow T : C(K, X) \to Y^*$ is a strongly bounded operator. Then $T^*|_Y :$ $Y \to C(K, X)^*$ is completely continuous (resp. unconditionally converging) if and only if for each $A \in \Sigma$, $m(A)^*|_Y : Y \to X^*$ is completely continuous (resp. unconditionally converging).

Proof. The proof is similar to the proof of Theorem 11 and uses Lemmas 1, 7, 8, and 10. \blacksquare

COROLLARY 13. Suppose that K is a dispersed compact Hausdorff space.

- (i) If every unconditionally converging (resp. completely continuous) operator S : X → Y is weakly precompact, then every unconditionally converging (resp. completely continuous) operator T : C(K, X) → Y is weakly precompact.
- (ii) If X has property (wV), then every unconditionally converging operator $T: C(K, X) \to Y$ is weakly precompact.

Proof. (i) If $m \leftrightarrow T : C(K, X) \to Y$ is an unconditionally converging operator, then m is strongly bounded and $m(A) : X \to Y$ is unconditionally converging for each $A \in \Sigma$ [15]. If $m \leftrightarrow T : C(K, X) \to Y$ is completely continuous, then m is strongly bounded and $m(A) : X \to Y$ is completely continuous for each $A \in \Sigma$ (this can be shown as in [15]). Hence m is strongly bounded and $m(A) : X \to Y$ is weakly precompact for each $A \in \Sigma$. Then Tis weakly precompact by Theorem 11.

(ii) Suppose X has property (wV). Then every unconditionally operator on X has a weakly precompact adjoint [22, p. 529], and thus is weakly precompact, by [4, Corollary 2]. Apply (i).

COROLLARY 14. Suppose that K is a dispersed compact Hausdorff space. Suppose $m \leftrightarrow T : C(K, X) \to Y$ is an operator such that m is strongly bounded and $m(A)^* : Y^* \to X^*$ is weakly precompact for each $A \in \Sigma$. Then T is unconditionally converging and weakly precompact. In addition, if X^* is weakly sequentially complete, then T is weakly compact.

Proof. For each $A \in \Sigma$, $m(A) : X \to Y$ is unconditionally converging and weakly precompact, by [4, Corollary 2]. Then T is unconditionally converging and weakly precompact by [8, Theorem 9] and Theorem 11.

Moreover, if X^* is weakly sequentially complete, then $m(A)^* : Y^* \to X^*$ is weakly compact for each $A \in \Sigma$. Hence $m(A) : X \to Y$ is weakly compact for each $A \in \Sigma$. By [8, Theorem 7], T is weakly compact.

The following theorem gives a characterization of Dunford–Pettis sets.

THEOREM 15. Suppose A is a bounded subset of a Banach space X. Then the following assertions are equivalent:

- (i) A is a DP set.
- (ii) If $T: X \to Y$ is an operator with weakly precompact adjoint, then T(A) is relatively compact.
- (iii) If $T: X \to c_0$ is an operator with weakly precompact adjoint, then T(A) is relatively compact.
- (iv) If $T: X \to c_0$ is a weakly compact operator, then T(A) is relatively compact.
- (v) If (x_n^*) is a weakly null sequence in X^* and (x_n) is a sequence in A, then $\lim x_n^*(x_n) = 0$.

Proof. (i) \Rightarrow (ii). Suppose that A is a DP set and let $T : X \to Y$ be an operator such that T^* is weakly precompact. Let (x_n) be a sequence in A. Without loss of generality we may assume that (x_n) is weakly Cauchy [21], [2].

Define $S : \ell_1 \to X$ by $S(b) = \sum b_n x_n$ for $b = (b_n) \in \ell_1$. Since the closed absolutely convex hull of (x_i) is a DP subset of X, $S(B_{\ell_1})$ is a DP set. By Lemma 1, S^* is completely continuous. Since T^* is weakly precompact, S^*T^* , and thus TS, is compact. Then $(T(x_n)) = (TS(e_n^*))$ is relatively compact, and T(A) is relatively compact.

 $(ii) \Rightarrow (iii)$ and $(iii) \Rightarrow (iv)$ are clear.

 $(iv) \Rightarrow (v) \text{ and } (v) \Rightarrow (i) \text{ by } [2, \text{ Theorem 1}]. \blacksquare$

COROLLARY 16. Suppose that K is a dispersed compact Hausdorff space and (f_n) is a bounded sequence in C(K, X).

- (i) If for each $t \in K$, $(f_n(t))$ is a DP set, then (f_n) is a DP set.
- (ii) If for each $t \in K$, $(f_n(t))$ is a V^* -set, then (f_n) is a V^* -set.

Proof. (i) Suppose that for each $t \in K$, $(f_n(t))$ is a DP set. Let $m \leftrightarrow T$: $C(K, X) \to Y$ be an operator such that T^* is weakly precompact. Then T is unconditionally converging by [4, Corollary 2], thus strongly bounded [15]. For each $A \in \Sigma$, $m(A)^* : Y^* \to X^*$ is weakly precompact, by [18, Corollary 20]. Let $A \in \Sigma$ and $t \in K$. By Theorem 15, $m(A)(\{f_n(t) : n \in \mathbb{N}\})$ is relatively compact. By Remark 1, $\{T(f_n) : n \in \mathbb{N}\}$ is relatively compact. Then (f_n) is a DP set, by Theorem 15.

(ii) Suppose that for each $t \in K$, $(f_n(t))$ is a V^* -set. Let $m \leftrightarrow T$: $C(K, X) \to \ell_1$ be an operator. Then T is unconditionally converging, thus strongly bounded [15]. Let $A \in \Sigma$ and $t \in K$. By [7, Proposition 1.1], $m(A)(\{f_n(t): n \in \mathbb{N}\})$ is relatively compact. By Remark 1, $\{T(f_n): n \in \mathbb{N}\}$ is relatively compact. Then (f_n) is a V^* -set, by [7, Proposition 1.1].

Next we produce operators $m \leftrightarrow T : C(K, X) \to Y$ such that m is strongly bounded, m(A) is compact for each $A \in \Sigma$, yet T fails to be compact. In the following two results the unit vector basis of c_0 is denoted by (e_n) and the unit vector basis of ℓ_1 is denoted by (e_n^*) .

Let Δ be the Cantor set $\{-1,1\}^{\mathbb{N}}$, and let λ be the Haar measure on Δ . Let C_{ni} , $1 \leq i \leq 2^n$, denote the dyadic partition at the *n*th stage, so that for example $C_{11} = \{(t_n) : t_1 = 1\}$ and $C_{12} = \{(t_n) : t_1 = -1\}$. Let (r_n) in $C(\Delta)$ be the sequence of Rademacher functions on Δ , i.e., $r_n(t) = t_n$, for $t \in \Delta$.

THEOREM 17. Suppose X is an infinite-dimensional Banach space. Then there is a nonlimited and noncompact operator $m \leftrightarrow T : C(\Delta, X) \to c_0$ such that m is strongly bounded and $m(A) : X \to c_0$ is compact for every $A \in \Sigma$.

Proof. Use the Josefson–Nissenzweig theorem to choose a w^* -null sequence (x_n^*) in X^* with $||x_n^*|| = 1$ for all n. For each n, choose x_n in B_X such that $\langle x_n^*, x_n \rangle > 1/2$. Define $T : C(\Delta, X) \to c_0$ by

$$T(f) = \left(\int_{\Delta} \langle x_n^*, f(t) \rangle r_n(t) \, d\lambda \right)_n, \quad f \in C(\Delta, X).$$

If $f \in C(\Delta)$ and $x \in X$, let $f \otimes x$ be the element of $C(\Delta, X)$ defined by $(f \otimes x)(t) = f(t) x$. Then

$$T(f \otimes x) = \left(\int_{\Delta} \langle x_n^*, x \rangle f(t) r_n(t) \, d\lambda \right)_n.$$

Since $||x_n^*|| = 1$ and $(\int_{\Delta} f(t)r_n(t) d\lambda) \to 0$, we have $T(f \otimes x) \in c_0$ for all $f \in C(\Delta)$ and $x \in X$. Therefore $T(f) \in c_0$ for every $f \in C(\Delta, X)$. The representing measure m of T is given by

$$m(A)(x) = \left(\langle x_n^*, x \rangle \int_A r_n(t) \, d\lambda \right)_n$$

for $A \in \Sigma$ and $x \in X$. Since $\int_A r_n(t) d\lambda \to 0$ for all $A \in \Sigma$ and $\{\langle x_n^*, x \rangle : n \in \mathbb{N}, x \in B_X\}$ is bounded, it follows that $m(A)(x) \in c_0$. Further, $||m(A)|| \leq \lambda(A)$, m is a dominated representing measure [14], [11, p. 148], and thus strongly bounded. If $(b_n) \in \ell_1$, then

$$\langle m(A)^*, (b_n) \rangle = \sum b_n \left(\int_A r_n(t) \, d\lambda \right) x_n^*.$$

Note that $m(A)^*$ maps the unit ball of ℓ_1 into the absolute closed convex hull of $\{(\int_A r_n(t) d\lambda) x_n^* : n \in \mathbb{N}\}$, which is a compact set (since $\|(\int_A r_n(t) d\lambda) x_n^*\| \le |\int_A r_n(t) d\lambda| \to 0$).

For each n, let $f_n = r_n x_n$ in $C(\Delta, X)$; note that $||f_n|| \le 1$ and

$$T(f_n) = \left(\int_{\Delta} \langle x_i^*, f_n(t) \rangle r_i(t) \, d\lambda \right)_i$$
$$= \left(\int_{\Delta} \langle x_i^*, x_n \rangle r_n(t) r_i(t) \, d\lambda \right)_i = \langle x_n^*, x_n \rangle e_n.$$

Since $\langle T(f_n), e_n^* \rangle = \langle x_n^*, x_n \rangle > 1/2$, *T* is nonlimited and noncompact. THEOREM 18 The following statements are equivalent:

THEOREM 18. The following statements are equivalent:

- (i) K is dispersed.
- (ii) For any pair of Banach spaces X and Y, a strongly bounded operator m ↔ T : C(K, X) → Y is limited if and only if m(A) : X → Y is limited for every A ∈ Σ.
- (iii) There is a Banach space X such that a strongly bounded operator $m \leftrightarrow T : C(K, X) \to c_0$ is limited if and only if $m(A) : X \to c_0$ is limited for every $A \in \Sigma$.

Proof. (i) \Rightarrow (ii) by Theorem 11. (ii) \Rightarrow (iii) is clear.

(iii) \Rightarrow (i). Suppose that (iii) holds and K is not dispersed. Then there is a purely nonatomic regular probability Borel measure λ on K [19, Theorem 2.8.10]. Now we can construct a Haar system $\{A_i^n : 1 \le i \le 2^n, n \ge 0\}$ in Σ (that is, $A_1^0 = K$, for each $n \in \mathbb{N}$, $\{A_i^n : 1 \le i \le 2^n\}$ is a partition of K, and $A_i^n = A_{2i-1}^{n+1} \cup A_{2i}^{n+1}$, $1 \le i \le 2^n$, $n \ge 0$) such that $\lambda(A_i^n) = 2^{-n}$ for $1 \le i \le 2^n$ and $n \ge 0$. Let (x_n) be a sequence in X with $||x_n|| = 1$ for $n \ge 0$. For each $n \ge 0$, choose $x_n^* \in X^*$ such that $\langle x_n^*, x_n \rangle = 1 = ||x_n^*||$, and let $r_n = \sum_{i=1}^{2^n} (-1)^i \chi_{A_i^n}$. Then (r_n) is orthonormal in $L^2(\lambda)$, and thus weakly null in $L^1(\lambda)$. Define $T : C(K, X) \to c_0$ by

$$T(f) = \left(\int_{K} \langle x_n^*, f(t) \rangle r_n(t) \, d\lambda \right)_{n \ge 0}, \quad f \in C(K, X).$$

We note that $T(f) \in c_0$ for each $f \in C(K, X)$, and that the representing measure m of T is given by

$$m(A)(x) = \left(\langle x_n^*, x \rangle \int_A r_n(t) \, d\lambda \right)_{n \ge 0}$$

for $A \in \Sigma$ and $x \in X$. As in the proof of the previous theorem, we have $||m(A)|| \leq \lambda(A), m(A)(x) \in c_0$ for all $A \in \Sigma, x \in X$, and m is strongly bounded. Further, $m(A) : X \to c_0$ is compact, thus limited, for every $A \in \Sigma$. By assumption, T is limited.

Let \hat{T} be the extension of T to B(K, X). For each n, let $f_n = r_n x_n$. Note that $||f_n|| \leq 1$ and $\hat{T}(f_n) = e_n$. Since (e_n) is not limited in c_0 , \hat{T} is not limited. By Theorem 2, T is not limited. This contradiction concludes the proof. \blacksquare

We recall that an operator $T : C(K, X) \to Y$ is compact if and only if its extension $\hat{T} : B(K, X) \to Y$ is compact (as noted in the Introduction). Since compact operators are in particular limited, the above argument and Remark 1 also prove the following result.

THEOREM 19. The following statements are equivalent:

- (i) K is dispersed.
- (ii) For any pair of Banach spaces X and Y, an operator m ↔ T : C(K,X) → Y is compact if and only if m is strongly bounded and m(A): X → Y is compact for every A ∈ Σ.
- (iii) There is a Banach space X such that an operator $m \leftrightarrow T$: $C(K,X) \to c_0$ is compact if and only if m is strongly bounded and $m(A): X \to c_0$ is compact for every $A \in \Sigma$.

References

- C. Abbott, Weakly precompact and GSP operators on continuous function spaces, Bull. Polish Acad. Sci. Math. 37 (1989), 467–476.
- [2] K. Andrews, Dunford-Pettis sets in the space of Bochner integrable functions, Math. Ann. 241 (1979), 35-41.
- [3] E. Bator and P. Lewis, Properties (V) and (wV) on $C(\Omega, X)$, Math. Proc. Cambridge Philos. Soc. 117 (1995), 469–477.
- [4] E. Bator and P. Lewis, Operators having weakly precompact adjoints, Math. Nachr. 157 (1992), 99–103.
- [5] E. Bator, P. Lewis, and J. Ochoa, Evaluation maps, restriction maps, and compactness, Colloq. Math. 78 (1998), 1–17.
- [6] J. Batt and E. J. Berg, Linear bounded transformations on the space of continuous functions, J. Funct. Anal. 4 (1969), 215–239.
- [7] F. Bombal, On (V^{*}) sets and Pełczyński's property (V^{*}), Glasgow Math. J. 32 (1990), 109–120.
- [8] F. Bombal and P. Cembranos, Characterizations of some classes of operators on spaces of vector-valued continuous functions, Math. Proc. Cambridge Philos. Soc. 97 (1985), 137–146.
- [9] F. Bombal and B. Porras, Strictly singular and strictly cosingular operators on C(K, E), Math. Nachr. 143 (1989), 355–364.
- [10] J. Bourgain and J. Diestel, *Limited operators and strict cosingularity*, Math. Nachr. 119 (1984), 55–58.
- J. K. Brooks and P. Lewis, *Linear Operators and Vector Measures*, Trans. Amer. Math. Soc. 192 (1974), 139–162.
- [12] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, Berlin, 1984.
- [13] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
- [14] N. Dinculeanu, Vector Measures, Pergamon Press, 1967.
- [15] I. Dobrakov, On representation of linear operators on C₀(T, X), Czechoslovak Math. J. 21 (1971), 13–30.
- [16] I. Ghenciu, *Limited sets and bibasic sequences*, Canad. Math. Bull. 58 (2015), 71–79.

- [17] I. Ghenciu, Weakly precompact subsets of $L_1(\mu, X)$, Colloq. Math. 129 (2012), 133–143.
- [18] I. Ghenciu and P. Lewis, Strongly bounded representing measures and convergence theorems, Glasgow Math. J. 52 (2010), 435–445.
- [19] H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer, 1974.
- [20] A. Pełczyński and Z. Semadeni, Spaces of continuous functions (III), Studia Math. 18 (1959), 211–222.
- [21] H. Rosenthal, Pointwise compact subsets of the first Baire class, Amer. J. Math. 99 (1977), 362–377.
- [22] E. Saab and P. Saab, On unconditionally converging and weakly precompact operators, Illinois J. Math. 35 (1991), 522–531.
- [23] T. Schlumprecht, Limited sets in Banach spaces, Dissertation, Münich, 1987.
- [24] Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa, 1971.

Ioana Ghenciu Department of Mathematics University of Wisconsin–River Falls River Falls, WI 54022-5001, U.S.A. E-mail: ioana.ghenciu@uwrf.edu