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Summary. Suppose X and Y are Banach spaces, K is a compact Hausdorff space,
Σ is the σ-algebra of Borel subsets of K, C(K,X) is the Banach space of all continu-
ous X-valued functions (with the supremum norm), and T : C(K,X) → Y is a strongly
bounded operator with representing measure m : Σ → L(X,Y ).

We show that if T is a strongly bounded operator and T̂ : B(K,X) → Y is its
extension, then T is limited if and only if its extension T̂ is limited, and that T ∗ is
completely continuous (resp. unconditionally converging) if and only if T̂ ∗ is completely
continuous (resp. unconditionally converging).

We prove that ifK is a dispersed compact Hausdorff space and T is a strongly bounded
operator, then T is limited (resp. weakly precompact, has a completely continuous ad-
joint, has an unconditionally converging adjoint) whenever m(A) : X → Y is limited
(resp. weakly precompact, has a completely continuous adjoint, has an unconditionally
converging adjoint) for each A ∈ Σ.

1. Introduction. Suppose K is a compact Hausdorff space, X and Y
are Banach spaces, C(K,X) is the Banach space of all continuous X-valued
functions (with the supremum norm), and Σ is the σ-algebra of Borel subsets
of K.

Every continuous linear function T : C(K,X) → Y may be repre-
sented by a vector measure m : Σ → L(X,Y ∗∗) of finite semivariation [11],
[13, p. 182] such that

T (f) =
�

K

f dm, f ∈ C(K,X), ‖T‖ = m̃(Ω),
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and T ∗(y∗) = my∗ for y∗ ∈ Y ∗, where m̃ denotes the semivariation of m.
For each y∗ ∈ Y ∗, the vector measure my∗ = y∗m : Σ → X∗ defined by
〈my∗(A), x〉 = 〈m(A)(x), y∗〉 for A ∈ Σ and x ∈ X is a regular count-
ably additive measure of bounded variation. We denote this correspondence
m↔ T . If we denote by |y∗m| the variation of the measure y∗m, then for
E ∈ Σ, the semivariation m̃(E) is given by

m̃(E) = sup{|y∗m|(E) : y∗ ∈ Y ∗, ‖y∗‖ ≤ 1}.
We note that for f ∈ C(K,X),

	
K f dm ∈ Y even if m is not L(X,Y )-

valued. A representing measure m is called strongly bounded if m̃(Ai) → 0
for every decreasing sequence Ai → ∅ in Σ, and an operator m ↔ T :
C(K,X) → Y is called strongly bounded if m is strongly bounded [11].
By [11, Theorem 4.4], a strongly bounded representing measure takes its
values in L(X,Y ). If m is a strongly bounded representing measure, then
there is a nonnegative regular Borel measure λ such that m̃(A) → 0 as
λ(A) → 0. We call λ the control measure for m. If T is unconditionally
converging, then m is strongly bounded [15].

Let χA denote the characteristic function of a set A, and B(K,X) de-
note the space of all bounded, Σ-measurable functions on K with separa-
ble range in X and the sup norm. Clearly, C(K,X) is contained isometri-
cally in B(K,X). Further, B(K,X) embeds isometrically in C(K,X)∗∗ (see
e.g. [11]). The reader should note that if m ↔ T , then m(A)x = T ∗∗(χAx)
for all A ∈ Σ and x ∈ X. If f ∈ B(K,X), then f is the uniform limit
of X-valued simple functions,

	
K f dm is well-defined and defines an exten-

sion T̂ of T (see e.g. [14]). Theorem 2 of [6] shows that T̂ maps B(K,X)
into Y if and only if the representing measure m of T is L(X,Y )-valued.
If T : C(K,X) → Y is strongly bounded, then m is L(X,Y )-valued [11],
and thus T̂ : B(K,X) → Y . Since T̂ is the restriction to B(K,X) of the
operator T ∗∗, it is clear that an operator T : C(K,X)→ Y is compact (resp.
weakly compact) if and only if its extension T̂ : B(K,X) → Y is compact
(resp. weakly compact).

Several authors have found the study of T̂ to be quite helpful. We men-
tion the work of [6], [8], [9], and [18]. In these papers it has been proved
that if m is strongly bounded, then T : C(K,X) → Y is weakly compact,
compact, Dunford–Pettis, Dieudonné, unconditionally converging, strictly
singular, strictly cosingular, weakly precompact, and has a weakly precom-
pact adjoint if and only if its extension T̂ : B(K,X) → Y has the same
property. We show that if T : C(K,X) → Y is a strongly bounded oper-
ator and T̂ : B(K,X) → Y is its extension, then T is limited if and only
if T̂ is limited, and that T ∗ is completely continuous (resp. unconditionally
converging) if and only if T̂ ∗ is completely continuous (resp. unconditionally
converging).
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A topological space S is called dispersed (or scattered) if every nonempty
closed subset of S has an isolated point [24]. A compact Hausdorff space K
is dispersed if and only if `1 X↪→ C(K) [20].

Bombal and Cembranos [8] showed that if K is a dispersed compact
Hausdorff space and m ↔ T : C(K,X) → Y is an operator, then T is un-
conditionally converging (resp. completely continuous, Dieudonné, weakly
compact) if and only if m is strongly bounded and m(A) : X → Y is un-
conditionally converging (resp. completely continuous, Dieudonné, weakly
compact) for every A ∈ Σ. We prove that if K is a dispersed compact Haus-
dorff space and m ↔ T : C(K,X) → Y is a strongly bounded operator,
then T is limited (resp. weakly precompact, compact, has a completely con-
tinuous adjoint, has an unconditionally converging adjoint) if and only if
for every A ∈ Σ, m(A) : X → Y is limited (resp. weakly precompact, com-
pact, has a completely continuous adjoint, has an unconditionally converging
adjoint).

An operator T : X → Y is completely continuous (or Dunford–Pettis) if
it maps weakly convergent sequences to convergent sequences.

A subset S of X is said to be weakly precompact provided that every
bounded sequence from S has a weakly Cauchy subsequence [5]. An operator
T : X → Y is weakly precompact (or almost weakly compact) if T (BX) is
weakly precompact.

A bounded subset A of a Banach space X is called a limited (resp.
Dunford–Pettis (DP)) subset of X if every w∗-null (resp. weakly null) se-
quence (x∗n) in X∗ tends to 0 uniformly on A, i.e.,

lim
n

(sup{|x∗n(x)| : x ∈ A}) = 0.

Every limited subset of X is weakly precompact [10]. Every DP subset
of X is weakly precompact (see e.g. [2] and [21, p. 377]). An operator T :
X → Y is called limited if T (BX) is limited. We note that T is limited if
and only if T ∗ is w∗-norm sequentially continuous.

A series
∑
xn of elements ofX is weakly unconditionally convergent (wuc)

if
∑
|x∗(xn)| < ∞ for each x∗ ∈ X∗. An operator T : X → Y is uncondi-

tionally converging if it maps weakly unconditionally convergent series to
convergent ones.

A bounded subset A of X (resp. A of X∗) is called a V ∗-subset of X
(resp. a V -subset of X∗) provided that

lim
n

(sup{|x∗n(x)| : x ∈ A}) = 0

(resp. lim
n

(sup{|x∗(xn)| : x∗ ∈ A}) = 0)

for each wuc series
∑
x∗n in X∗ (resp. wuc series

∑
xn in X).
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A bounded subset A of X∗ is called an L-subset of X∗ if each weakly null
sequence (xn) in X tends to 0 uniformly on A, i.e.,

lim
n

(sup{|x∗(xn)| : x∗ ∈ A}) = 0.

A Banach space X has property weak (V ) (wV ) if any V -subset of X∗ is
weakly precompact [22].

2. Main results. We begin with the following lemma. If T : X → Y ∗

is an operator, then T ∗|Y denotes the restriction of T ∗ to Y .

Lemma 1.

(i) If T : X → Y is an operator, then T (BX) is a DP subset of Y if
and only if T ∗ : Y ∗ → X∗ is completely continuous.

(ii) If T : X → Y is an operator, then T (BX) is a V ∗-subset of Y if
and only if T ∗ : Y ∗ → X∗ is unconditionally converging.

(iii) If T : X → Y ∗ is an operator, then T (BX) is a V -subset of Y ∗ if
and only if T ∗|Y : Y → X∗ is unconditionally converging.

(iv) If T : X → Y ∗ is an operator, then T (BX) is an L-subset of Y ∗ if
and only if T ∗|Y : Y → X∗ is completely continuous.

Proof. (i) Suppose T (BX) is a DP subset of Y and T ∗ : Y ∗ → X∗ is not
completely continuous. Let (y∗n) be weakly null in Y ∗ such that ‖T ∗(y∗n)‖9 0.
Choose a sequence (xn) in BX and ε > 0 such that 〈T ∗(y∗n), xn〉 > ε for all n.
Then 〈y∗n, T (xn)〉 = 〈T ∗(y∗n), xn〉 > ε for all n, contrary to T (BX) being a
DP set.

Conversely, suppose T ∗ : Y ∗ → X∗ is completely continuous. Let (xn) be
a sequence in BX and (y∗n) be weakly null in Y ∗. Then

〈y∗n, T (xn)〉 = 〈T ∗(y∗n), xn〉 ≤ ‖T ∗(y∗n)‖ → 0,

and T (BX) is a DP subset of Y .
(ii) The proof is similar to that of (i).
(iii) Suppose T (BX) is a V -subset of Y ∗. We show that T ∗|Y : Y → X∗

is unconditionally converging. Suppose
∑
yn is wuc in Y . It suffices to show

that ‖T ∗(yn)‖ → 0. Suppose ‖T ∗(yn)‖ 9 0. Choose a sequence (xn) in BX
and ε > 0 such that 〈T ∗(yn), xn〉 > ε for all n. Then 〈yn, T (xn)〉 > ε for
all n, which contradicts T (BX) being a V -set.

Conversely, suppose T ∗|Y : Y → X∗ is unconditionally converging. Let
(xn) be a sequence in BX and

∑
yn be wuc in Y . Since T ∗|Y is uncondition-

ally converging,

〈yn, T (xn)〉 = 〈T ∗(yn), xn〉 ≤ ‖T ∗(yn)‖ → 0,

and T (BX) is a V -subset of Y ∗.
(iv) The proof is similar to that of (iii).
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Suppose that T : C(K,X) → Y is an operator and T̂ : B(K,X) → Y ∗∗

is its extension to B(K,X). As noted in the Introduction, if m ↔ T :
C(K,X) → Y is strongly bounded, then m is L(X,Y )-valued and T̂ maps
B(K,X) into Y . Let B0 denote the unit ball of C(K,X), and B denote the
unit ball of B(K,X).

Theorem 2. Suppose that T : C(K,X) → Y is a strongly bounded
operator and T̂ : B(K,X)→ Y is its extension. Then:

(i) T is limited if and only if T̂ is limited.
(ii) T ∗ is completely continuous (resp. unconditionally converging) if

and only if T̂ ∗ is completely continuous (resp. unconditionally con-
verging).

Proof. (i) Suppose that T : C(K,X) → Y is limited and T̂ is not. Let
(y∗n) be w∗-null in Y ∗ and (fn) be a sequence in the unit ball of B(K,X) such
that 〈y∗n, T̂ (fn)〉 = 1 for all n. Without loss of generality assume ‖y∗n‖ ≤ 1
for all n.

Using the existence of a control measure for m and Lusin’s theorem,
one can find a compact subset K0 of K such that m̃(K \ K0) < 1/4 and
gn = fn|K0 is continuous for each n ∈ N. Let H = [gn] be the closed linear
subspace spanned by (gn) in C(K0, X), and S : H → C(K,X) be the
isometric extension operator given by [8, Theorem 1]. If hn = S(gn) for
each n ∈ N, then (hn) is in the unit ball of C(K,X), and

|〈y∗n, T (hn)〉| ≥
∣∣∣〈y∗n, �

K0

hn dm
〉∣∣∣− ∣∣∣〈y∗n, �

K\K0

hn dm
〉∣∣∣

≥
∣∣∣〈y∗n, �

K0

fn dm
〉∣∣∣− 1/4

≥
∣∣∣〈y∗n, �

K

fn dm
〉∣∣∣− ∣∣∣〈y∗n, �

K\K0

fn dm
〉∣∣∣− 1/4

≥ |〈y∗n, T̂ (fn)〉| − 1/4− 1/4 = 1/2.

This is a contradiction, since T (B0) is limited.
(ii) By Lemma 1, it is enough to show that T (B0) is a DP set (resp.

a V ∗-set) if and only if T̂ (B) is a DP set (resp. a V ∗-set). Suppose that
T (B0) is a DP set (resp. a V ∗-set) and T̂ (B) is not a DP set (resp. a V ∗-set).
Suppose (y∗n) is weakly null (resp.

∑
y∗n is wuc) in Y ∗ and (fn) is a sequence

in the unit ball of B(K,X) such that 〈y∗n, T̂ (fn)〉 = 1 for each n. Continuing
as above we find a sequence (hn) in the unit ball of C(K,X) such that
|〈y∗n, T (hn)〉| ≥ 1/2. This is a contradiction, since T (B0) is a DP set (resp. a
V ∗-set).
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Corollary 3. Suppose that m ↔ T : C(K,X) → Y is a strongly
bounded operator.

(i) If T is limited, then m(A) : X → Y is limited for each A ∈ Σ.
(ii) If T ∗ is completely continuous (resp. unconditionally converging),

then for each A ∈ Σ, m(A)∗ : Y ∗ → X∗ is completely continuous
(resp. unconditionally converging).

Proof. We will only consider the case of limited operators. The proof
of (ii) is similar. If A ∈ Σ, A 6= ∅, define θA : X → B(K,X) by θA(x) = χAx.
Then θA is an isomorphic isometric embedding of X into B(K,X) and
T̂ θA = m(A). By Theorem 2, T̂ is limited, and thus m(A) is.

The proofs of the following results are similar to those of Theorem 2 and
Corollary 3 and will be omitted.

Theorem 4. Suppose that T : C(K,X) → Y ∗ is a strongly bounded
operator and T̂ : B(K,X) → Y ∗ is its extension. Then T ∗|Y is completely
continuous (resp. unconditionally converging) if and only if T̂ ∗|Y is com-
pletely continuous (resp. unconditionally converging).

Corollary 5. Suppose that m ↔ T : C(K,X) → Y ∗ is a strongly
bounded operator. If T ∗|Y is completely continuous (resp. unconditionally
converging), then for each A ∈ Σ, m(A)∗|Y is completely continuous (resp.
unconditionally converging).

Next we study the properties of the compact space K for which an op-
erator T : C(K,X) → Y with representing measure m is limited (resp.
weakly precompact, compact, has a completely continuous adjoint, has an
unconditionally converging adjoint) whenever m is strongly bounded and
m(A) : X → Y is limited (resp. weakly precompact, compact, has a com-
pletely continuous adjoint, has an unconditionally converging adjoint) for
each A ∈ Σ.

If T : C(K,X) → Y is an operator, K̄ is a metrizable compact space,
and π : K → K̄ a continuous map which is onto, we will call K̄ a quotient
of K. The map π̄ : C(K̄) → C(K) given by π̄f̄ = f̄π defines an isometric
embedding of C(K̄) into C(K). Let T̄ : C(K̄,X) → Y be the operator
defined by T̄ (f̄) = T (f̄π), where f̄ ∈ C(K̄,X) and π : K → K̄ is the
canonical mapping.

The following results will be useful in our study.

Lemma 6.

(i) An operator T : C(K,X) → Y is limited (resp. weakly precompact,
compact) if and only if, for each metrizable quotient K̄ of K, the
operator T̄ : C(K̄,X) → Y defined as above is limited (resp. weakly
precompact, compact).



Operators on C(K,X) 267

(ii) If T : C(K,X)→ Y is an operator, then T ∗ is completely continuous
(resp. unconditionally converging) if and only if, for each metrizable
quotient K̄ of K, T̄ ∗ is completely continuous (resp. unconditionally
converging), where T̄ : C(K̄,X)→ Y is defined as above.

Proof. We will only consider the case of limited operators. The proof for
the other operators is similar. Suppose that T : C(K,X)→ Y is limited and
K̄ is a metrizable quotient of K. Then T̄ is limited.

Conversely, let T : C(K,X) → Y be an operator and let (fn) be a
sequence in the unit ball of C(K,X). It is known (see [6]) that there exists
a metrizable quotient K̄ of K and a sequence (f̄n) in C(K̄,X) defined by
f̄n(π(t)) = fn(t) for all t ∈ K and n ∈ N. Define T̄ : C(K̄,X) → Y by
T̄ (f̄) = T (f̄π), where π : K → K̄ is the canonical mapping. By assumption,
T̄ is limited. Then (T̄ (f̄n)) = (T (fn)) is limited.

Similarly, we obtain the following result.

Lemma 7. If T : C(K,X)→ Y ∗ is an operator, then T ∗|Y is completely
continuous (resp. unconditionally converging) if and only if, for each metriz-
able quotient K̄ of K, T̄ ∗|Y is completely continuous (resp. unconditionally
converging), where T̄ : C(K̄,X)→ Y ∗ is defined as above.

Lemma 8 ([8, Lemma 5]). Let K and K0 be two compact Hausdorff
spaces, Σ and Σ0 the Borel σ-algebras of K and K0 respectively, and
α : K → K0 a continuous map. If m is the representing measure of an op-
erator T : C(K,X)→ Y and m0 is the representing measure of the operator
T0 : C(K0, X)→ Y defined by T0(f) = T (fα), then m0(A) = m(α−1(A))
for all A ∈ Σ0. Consequently, m̃0(A) ≤ m̃(α−1(A)) for all A ∈ Σ0.

Lemma 9 ([23], [17], [12], [7]). Let H be a bounded subset of X. If for
each ε > 0 there is a limited (resp. weakly precompact, relatively compact,
DP, V ∗) subset Hε of X such that H ⊆ Hε + εBX , then H is limited (resp.
weakly precompact, relatively compact, DP, V ∗).

Lemma 10 ([16], [3]). Let H be a bounded subset of X∗. If for each ε > 0
there is an L-subset (resp. a V -subset) Hε of X∗ such that H ⊆ Hε+ εBX∗,
then H is an L-set (resp. a V -set).

Abbott [1] gave an example of a pair m ↔ T such that T is weakly
precompact and m is not strongly bounded.

Theorem 11. Suppose that K is a dispersed compact Hausdorff space
and m↔ T : C(K,X)→ Y is a strongly bounded operator. Then:

(1) T is weakly precompact (resp. limited) if and only if m(A) : X → Y
is weakly precompact (resp. limited) for each A ∈ Σ.
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(2) T ∗ : Y ∗ → C(K,X)∗ is completely continuous (resp. unconditionally
converging) if and only if m(A)∗ : Y ∗ → X∗ is completely continuous
(resp. unconditionally converging) for each A ∈ Σ.

Proof. Suppose m↔ T : C(K,X)→ Y is strongly bounded.
(1) If T is weakly precompact (resp. limited), then for each A ∈ Σ,

m(A) : X → Y is weakly precompact (resp. limited) by [18, Corollary 17]
(resp. Corollary 3).

Conversely, suppose that m ↔ T : C(K,X) → Y is a strongly bounded
operator and m(A) : X → Y is weakly precompact (resp. limited) for each
A ∈ Σ. From Lemmas 6 and 8 and the fact that a quotient space of a dis-
persed space is dispersed [24, 8.5.3], we can suppose without loss of generality
that K is metrizable. Since K is dispersed and metrizable, it is countable
[24, 8.5.5]. Suppose that K = {ti : i ∈ N}. Let (fn) be a sequence in the unit
ball of C(K,X). For each i ∈ N, the set {fn(ti) : n ∈ N} is bounded in X.
Then the set

Hi = {m({ti})(fn(ti)) : n ∈ N}
is weakly precompact (resp. limited) for each i ∈ N. Let Ai = {tj : j > i}
for i ∈ N. Then (Ai) is a decreasing sequence of sets. Let ε > 0. Since m is
strongly bounded, there is a k ∈ N such that m̃(Ak) < ε. For each n ∈ N,

T (fn) =
�

K

fn dm =

k∑
i=1

m({ti})(fn(ti)) +
�

Ak

fn dm.

Further, ‖
	
Ak
fn dm‖ ≤ m̃(Ak) < ε. Therefore

T (fn) ∈ H1 + · · ·+Hk + εBY .

Since H1 + · · · + Hk is weakly precompact (resp. limited), by Lemma 9
the set {T (fn) : n ∈ N} is weakly precompact (resp. limited). Thus T is
weakly precompact (resp. limited).

(2) If T ∗ : Y ∗ → C(K,X)∗ is completely continuous (resp. uncondition-
ally converging), then for each A ∈ Σ, m(A)∗ : Y ∗ → X∗ is completely
continuous (resp. unconditionally converging) by Corollary 3.

Conversely, suppose m(A)∗ : Y ∗ → X∗ is completely continuous (resp.
unconditionally converging) for each A ∈ Σ. By Lemma 1, m(A)(BX) is
a DP set (resp. a V ∗-set) for each A ∈ Σ. Let (fn) be a sequence in the
unit ball of C(K,X). Using an argument similar to the one above, we can
show that {T (fn) : n ∈ N} is a DP set (resp. a V ∗-set). By Lemma 1,
T ∗ : Y ∗ → C(K,X)∗ is completely continuous (resp. unconditionally con-
verging).

Remark 1. It is known that if m ↔ T : C(K,X) → Y is a compact
operator, then m is strongly bounded and for each A ∈ Σ, m(A) : X → Y
is compact [11]. The proof of Theorem 11 shows that the following result
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holds: Suppose that K is a dispersed compact Hausdorff space and m↔ T :
C(K,X)→ Y is a strongly bounded operator. If (fn) is a bounded sequence
in C(K,X) and for all A ∈ Σ and t ∈ K, m(A)({fn(t) : n ∈ N}) is relatively
compact, then {T (fn) : n ∈ N} is relatively compact. It follows that if K is
dispersed and m ↔ T : C(K,X) → Y is an operator, then T is compact if
and only if m is strongly bounded and m(A) : X → Y is compact for each
A ∈ Σ.

Theorem 12. Suppose that K is a dispersed compact Hausdorff space
and m ↔ T : C(K,X) → Y ∗ is a strongly bounded operator. Then T ∗|Y :
Y → C(K,X)∗ is completely continuous (resp. unconditionally converging)
if and only if for each A ∈ Σ, m(A)∗|Y : Y → X∗ is completely continuous
(resp. unconditionally converging).

Proof. The proof is similar to the proof of Theorem 11 and uses Lemmas
1, 7, 8, and 10.

Corollary 13. Suppose that K is a dispersed compact Hausdorff space.

(i) If every unconditionally converging (resp. completely continuous) op-
erator S : X → Y is weakly precompact, then every unconditionally
converging (resp. completely continuous) operator T : C(K,X)→ Y
is weakly precompact.

(ii) If X has property (wV ), then every unconditionally converging op-
erator T : C(K,X)→ Y is weakly precompact.

Proof. (i) If m ↔ T : C(K,X) → Y is an unconditionally converging
operator, then m is strongly bounded and m(A) : X → Y is unconditionally
converging for each A ∈ Σ [15]. If m ↔ T : C(K,X) → Y is completely
continuous, then m is strongly bounded and m(A) : X → Y is completely
continuous for each A ∈ Σ (this can be shown as in [15]). Hencem is strongly
bounded and m(A) : X → Y is weakly precompact for each A ∈ Σ. Then T
is weakly precompact by Theorem 11.

(ii) Suppose X has property (wV ). Then every unconditionally operator
on X has a weakly precompact adjoint [22, p. 529], and thus is weakly
precompact, by [4, Corollary 2]. Apply (i).

Corollary 14. Suppose that K is a dispersed compact Hausdorff space.
Suppose m ↔ T : C(K,X) → Y is an operator such that m is strongly
bounded and m(A)∗ : Y ∗ → X∗ is weakly precompact for each A ∈ Σ. Then
T is unconditionally converging and weakly precompact. In addition, if X∗
is weakly sequentially complete, then T is weakly compact.

Proof. For each A ∈ Σ,m(A) : X → Y is unconditionally converging and
weakly precompact, by [4, Corollary 2]. Then T is unconditionally converging
and weakly precompact by [8, Theorem 9] and Theorem 11.
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Moreover, if X∗ is weakly sequentially complete, then m(A)∗ : Y ∗ → X∗

is weakly compact for each A ∈ Σ. Hence m(A) : X → Y is weakly compact
for each A ∈ Σ. By [8, Theorem 7], T is weakly compact.

The following theorem gives a characterization of Dunford–Pettis sets.

Theorem 15. Supppose A is a bounded subset of a Banach space X.
Then the following assertions are equivalent:

(i) A is a DP set.
(ii) If T : X → Y is an operator with weakly precompact adjoint, then

T (A) is relatively compact.
(iii) If T : X → c0 is an operator with weakly precompact adjoint, then

T (A) is relatively compact.
(iv) If T : X → c0 is a weakly compact operator, then T (A) is relatively

compact.
(v) If (x∗n) is a weakly null sequence in X∗ and (xn) is a sequence in A,

then limx∗n(xn) = 0.

Proof. (i)⇒(ii). Suppose that A is a DP set and let T : X → Y be
an operator such that T ∗ is weakly precompact. Let (xn) be a sequence
in A. Without loss of generality we may assume that (xn) is weakly Cauchy
[21], [2].

Define S : `1 → X by S(b) =
∑
bnxn for b = (bn) ∈ `1. Since the closed

absolutely convex hull of (xi) is a DP subset of X, S(B`1) is a DP set. By
Lemma 1, S∗ is completely continuous. Since T ∗ is weakly precompact, S∗T ∗,
and thus TS, is compact. Then (T (xn)) = (TS(e∗n)) is relatively compact,
and T (A) is relatively compact.

(ii)⇒(iii) and (iii)⇒(iv) are clear.
(iv)⇒(v) and (v)⇒(i) by [2, Theorem 1].

Corollary 16. Suppose that K is a dispersed compact Hausdorff space
and (fn) is a bounded sequence in C(K,X).

(i) If for each t ∈ K, (fn(t)) is a DP set, then (fn) is a DP set.
(ii) If for each t ∈ K, (fn(t)) is a V ∗-set, then (fn) is a V ∗-set.

Proof. (i) Suppose that for each t ∈ K, (fn(t)) is a DP set. Let m↔ T :
C(K,X)→ Y be an operator such that T ∗ is weakly precompact. Then T is
unconditionally converging by [4, Corollary 2], thus strongly bounded [15].
For each A ∈ Σ, m(A)∗ : Y ∗ → X∗ is weakly precompact, by [18, Corol-
lary 20]. Let A ∈ Σ and t ∈ K. By Theorem 15, m(A)({fn(t) : n ∈ N})
is relatively compact. By Remark 1, {T (fn) : n ∈ N} is relatively compact.
Then (fn) is a DP set, by Theorem 15.

(ii) Suppose that for each t ∈ K, (fn(t)) is a V ∗-set. Let m ↔ T :
C(K,X) → `1 be an operator. Then T is unconditionally converging, thus
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strongly bounded [15]. Let A ∈ Σ and t ∈ K. By [7, Proposition 1.1],
m(A)({fn(t) : n ∈ N}) is relatively compact. By Remark 1, {T (fn) : n ∈ N}
is relatively compact. Then (fn) is a V ∗-set, by [7, Proposition 1.1].

Next we produce operators m ↔ T : C(K,X) → Y such that m is
strongly bounded, m(A) is compact for each A ∈ Σ, yet T fails to be com-
pact. In the following two results the unit vector basis of c0 is denoted by (en)
and the unit vector basis of `1 is denoted by (e∗n).

Let ∆ be the Cantor set {−1, 1}N, and let λ be the Haar measure on ∆.
Let Cni, 1 ≤ i ≤ 2n, denote the dyadic partition at the nth stage, so that for
example C11 = {(tn) : t1 = 1} and C12 = {(tn) : t1 = −1}. Let (rn) in C(∆)
be the sequence of Rademacher functions on ∆, i.e., rn(t) = tn, for t ∈ ∆.

Theorem 17. Suppose X is an infinite-dimensional Banach space. Then
there is a nonlimited and noncompact operator m↔ T : C(∆,X)→ c0 such
that m is strongly bounded and m(A) : X → c0 is compact for every A ∈ Σ.

Proof. Use the Josefson–Nissenzweig theorem to choose a w∗-null se-
quence (x∗n) in X∗ with ‖x∗n‖ = 1 for all n. For each n, choose xn in BX such
that 〈x∗n, xn〉 > 1/2. Define T : C(∆,X)→ c0 by

T (f) =
( �
∆

〈x∗n, f(t)〉rn(t) dλ
)
n
, f ∈ C(∆,X).

If f ∈ C(∆) and x ∈ X, let f ⊗ x be the element of C(∆,X) defined by
(f ⊗ x)(t) = f(t)x. Then

T (f ⊗ x) =
( �
∆

〈x∗n, x〉f(t)rn(t) dλ
)
n
.

Since ‖x∗n‖ = 1 and (
	
∆ f(t)rn(t) dλ) → 0, we have T (f ⊗ x) ∈ c0 for all

f ∈ C(∆) and x ∈ X. Therefore T (f) ∈ c0 for every f ∈ C(∆,X). The
representing measure m of T is given by

m(A)(x) =
(
〈x∗n, x〉

�

A

rn(t) dλ
)
n

forA∈Σ and x∈X. Since
	
A rn(t) dλ→ 0 for allA∈Σ and {〈x∗n, x〉 : n∈N,

x ∈ BX} is bounded, it follows that m(A)(x) ∈ c0. Further, ‖m(A)‖ ≤ λ(A),
m is a dominated representing measure [14], [11, p. 148], and thus strongly
bounded. If (bn) ∈ `1, then

〈m(A)∗, (bn)〉 =
∑

bn

( �
A

rn(t) dλ
)
x∗n.

Note thatm(A)∗ maps the unit ball of `1 into the absolute closed convex hull
of {(

	
A rn(t) dλ)x∗n : n ∈ N}, which is a compact set (since ‖(

	
A rn(t) dλ)x∗n‖

≤ |
	
A rn(t) dλ| → 0).
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For each n, let fn = rnxn in C(∆,X); note that ‖fn‖ ≤ 1 and

T (fn) =
( �
∆

〈x∗i , fn(t)〉ri(t) dλ
)
i

=
( �
∆

〈x∗i , xn〉rn(t)ri(t) dλ
)
i

= 〈x∗n, xn〉en.

Since 〈T (fn), e∗n〉 = 〈x∗n, xn〉 > 1/2, T is nonlimited and noncompact.

Theorem 18. The following statements are equivalent:

(i) K is dispersed.
(ii) For any pair of Banach spaces X and Y , a strongly bounded operator

m ↔ T : C(K,X) → Y is limited if and only if m(A) : X → Y is
limited for every A ∈ Σ.

(iii) There is a Banach space X such that a strongly bounded operator
m ↔ T : C(K,X) → c0 is limited if and only if m(A) : X → c0 is
limited for every A ∈ Σ.

Proof. (i)⇒(ii) by Theorem 11. (ii)⇒(iii) is clear.
(iii)⇒(i). Suppose that (iii) holds and K is not dispersed. Then there

is a purely nonatomic regular probability Borel measure λ on K [19, Theo-
rem 2.8.10]. Now we can construct a Haar system {Ani : 1 ≤ i ≤ 2n, n ≥ 0}
in Σ (that is, A0

1 = K, for each n ∈ N, {Ani : 1 ≤ i ≤ 2n} is a partition
of K, and Ani = An+1

2i−1 ∪ A
n+1
2i , 1 ≤ i ≤ 2n, n ≥ 0) such that λ(Ani ) = 2−n

for 1 ≤ i ≤ 2n and n ≥ 0. Let (xn) be a sequence in X with ‖xn‖ = 1 for
n ≥ 0. For each n ≥ 0, choose x∗n ∈ X∗ such that 〈x∗n, xn〉 = 1 = ‖x∗n‖,
and let rn =

∑2n

i=1(−1)iχAn
i
. Then (rn) is orthonormal in L2(λ), and thus

weakly null in L1(λ). Define T : C(K,X)→ c0 by

T (f) =
( �
K

〈x∗n, f(t)〉rn(t) dλ
)
n≥0

, f ∈ C(K,X).

We note that T (f) ∈ c0 for each f ∈ C(K,X), and that the representing
measure m of T is given by

m(A)(x) =
(
〈x∗n, x〉

�

A

rn(t) dλ
)
n≥0

for A ∈ Σ and x ∈ X. As in the proof of the previous theorem, we have
‖m(A)‖ ≤ λ(A), m(A)(x) ∈ c0 for all A ∈ Σ, x ∈ X, and m is strongly
bounded. Further, m(A) : X → c0 is compact, thus limited, for every A ∈ Σ.
By assumption, T is limited.

Let T̂ be the extension of T to B(K,X). For each n, let fn = rnxn. Note
that ‖fn‖ ≤ 1 and T̂ (fn) = en. Since (en) is not limited in c0, T̂ is not
limited. By Theorem 2, T is not limited. This contradiction concludes the
proof.
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We recall that an operator T : C(K,X) → Y is compact if and only if
its extension T̂ : B(K,X) → Y is compact (as noted in the Introduction).
Since compact operators are in particular limited, the above argument and
Remark 1 also prove the following result.

Theorem 19. The following statements are equivalent:
(i) K is dispersed.
(ii) For any pair of Banach spaces X and Y , an operator m ↔ T :

C(K,X) → Y is compact if and only if m is strongly bounded and
m(A) : X → Y is compact for every A ∈ Σ.

(iii) There is a Banach space X such that an operator m ↔ T :
C(K,X) → c0 is compact if and only if m is strongly bounded and
m(A) : X → c0 is compact for every A ∈ Σ.
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