Generalized Hilbert Operators on Bergman and Dirichlet Spaces of Analytic Functions

by

Sunanda NAIK and Karabi RAJBANGSHI
Presented by Józef SICIAK

Summary. Let f be an analytic function on the unit disk \mathbb{D}. We define a generalized Hilbert-type operator $\mathcal{H}_{a, b}$ by

$$
\mathcal{H}_{a, b}(f)(z)=\frac{\Gamma(a+1)}{\Gamma(b+1)} \int_{0}^{1} \frac{f(t)(1-t)^{b}}{(1-t z)^{a+1}} d t
$$

where a and b are non-negative real numbers. In particular, for $a=b=\beta, \mathcal{H}_{a, b}$ becomes the generalized Hilbert operator \mathcal{H}_{β}, and $\beta=0$ gives the classical Hilbert operator \mathcal{H}. In this article, we find conditions on a and b such that $\mathcal{H}_{a, b}$ is bounded on Dirichlet-type spaces $S^{p}, 0<p<2$, and on Bergman spaces $A^{p}, 2<p<\infty$. Also we find an upper bound for the norm of the operator $\mathcal{H}_{a, b}$. These generalize some results of E. Diamantopolous (2004) and S. Li (2009).

1. Introduction. Let $H(\mathbb{D})$ denote the class of all analytic functions in the unit disc \mathbb{D} of the complex plane. For $0<p<\infty$, the Bergman space A^{p} consists of all $f \in H(\mathbb{D})$ such that

$$
\|f\|_{A^{p}}^{p}=\int_{\mathbb{D}}|f(z)|^{p} d m(z)<\infty,
$$

where $d m(z)=\pi^{-1} r d r d \theta$ is the normalized Lebesgue area measure on \mathbb{D}. We refer to [DS1] and [Z2] for Bergman spaces.

[^0]Let $p \in \mathbb{R}$ and $f \in H(\mathbb{D})$ with the Taylor expansion $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$. We say that f belongs to the space S^{p} if

$$
\|f\|_{S^{p}}^{2}=\sum_{n=1}^{\infty}(n+1)^{p}\left|a_{n}\right|^{2}<\infty .
$$

S^{p} is a Hilbert space with the inner product

$$
\langle f, g\rangle=\sum_{n=1}^{\infty}(n+1)^{p} a_{n} \overline{b_{n}},
$$

where $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=1}^{\infty} b_{n} z^{n}$ (see [S]). The spaces S^{0} and S^{-1} are the Hardy space H^{2} and the Bergman space A^{2}, respectively, and S^{1} is the Dirichlet space \mathcal{D} (see [\mathbb{L}).

For $0<r<1$ and $f=\sum_{n=1}^{\infty} a_{n} z^{n} \in H(\mathbb{D})$, we define

$$
M_{2}(r, f)=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta\right)^{1 / 2}=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} r^{2 n}\right)^{1 / 2}
$$

If $0<p<2$ and $f \in S^{p}$, then

$$
\begin{align*}
c_{p}\|f\|_{S^{p}}^{2} & \leq|f(0)|^{2}+\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{1-p} d m(z) \tag{1.1}\\
& =|f(0)|^{2}+2 \int_{0}^{1} r\left(1-r^{2}\right)^{1-p} M_{2}^{2}\left(r, f^{\prime}\right) d r \leq C_{p}\|f\|_{S^{p}}^{2} .
\end{align*}
$$

The optimal constants c_{p} and C_{p} are given in the Appendix.
In 2009, S. Li and S. Stević LS for $\beta \geq 0$ defined the operator

$$
\mathcal{H}_{\beta}(f)(z)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty} \frac{\Gamma(n+\beta+1) \Gamma(n+k+1)}{\Gamma(n+1) \Gamma(n+k+\beta+2)} a_{k}\right) z^{n}
$$

which they called a generalized Hilbert operator. For $\beta=0$ this is the classical Hilbert operator \mathcal{H}. In [LS] the authors proved the boundedness of generalized Hilbert operators on Hardy spaces on the polydisc. In [L], S. Li proved the boundedness of generalized Hilbert operators on Dirichlet-type spaces S^{p} for $0<p<1$.

In this article, we extend the class of generalized Hilbert operators. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in H(\mathbb{D})$ and a, b be non-negative real numbers. We define

$$
\mathcal{H}_{a, b}(f)(z)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty} \frac{\Gamma(n+a+1) \Gamma(n+k+1)}{\Gamma(n+1) \Gamma(n+k+b+2)} a_{k}\right) z^{n},
$$

and call it a generalized Hilbert-type operator. Note that $\mathcal{H}_{a, b}=\mathcal{H}_{\beta}$ for $a=b=\beta$ and $\mathcal{H}_{a, b}=\mathcal{H}$ for $a=b=0$.

A simple computation shows that $\mathcal{H}_{a, b}$ has a representation as an in-tegral-type operator:

$$
\mathcal{H}_{a, b} f(z)=\frac{\Gamma(a+1)}{\Gamma(b+1)} \int_{0}^{1} \frac{f(t)(1-t)^{b}}{(1-t z)^{a+1}} d t
$$

In particular, $a=b=\beta$ gives

$$
\mathcal{H}_{\beta}(f)(z)=\int_{0}^{1} \frac{f(t)(1-t)^{\beta}}{(1-t z)^{\beta+1}} d t
$$

and $\beta=0$ gives

$$
\mathcal{H}(f)(z)=\int_{0}^{1} \frac{f(t)}{1-t z} d t
$$

In [L], S. Li proved the boundedness of \mathcal{H}_{β} on $S^{p}, 0<p<1$. The main objective of this article is to prove the boundedness of $\mathcal{H}_{a, b}$ on Dirichlet and Bergman spaces for some p, a, b. In Theorem 2.1 we extend the result of S . Li by proving the boundedness of $\mathcal{H}_{a, b}$ on $S^{p}, 0<p<2$, and we give an estimate of the norm $\left\|\mathcal{H}_{a, b}\right\|_{S^{p}}$. In Theorem 2.2 conditions on a, b, p are given which ensure the boundedness of $\mathcal{H}_{a, b}$ on A^{p} together with an estimate of its norm.
2. Main results. Throughout this article, $B(x, y)$ denotes the usual Beta function defined for $x, y>0$ by

$$
B(x, y)=\int_{0}^{1} s^{x-1}(1-s)^{y-1} d s
$$

Theorem 2.1. Suppose $a, b \geq 0$ and $0<p<2$. Then $\mathcal{H}_{a, b}$ is bounded on S^{p} and

$$
c_{p}\left\|\mathcal{H}_{a, b} f\right\|_{S^{p}}^{2}
$$

$$
\leq C_{1}^{2}(a, b, p)\left[\left(\frac{1}{b+(p-1) / 2}\right)^{2}+\frac{2^{2-p}(a+1)^{2} C_{1}(b, p)}{(2 a+p+1)(2 a+p+2)}\right] C_{p}\|f\|_{S^{p}}^{2}
$$

where

$$
C_{1}(a, b, p)=\frac{\Gamma(a+1) 2^{(4-p) / 2}}{\Gamma(b+1)} \quad \text { and } \quad C_{1}(b, p)=B^{2}\left(b+\frac{p-1}{2}, \frac{1-p}{2}\right)
$$

Theorem 2.2. Let $p>2$ and $b \geq a \geq 0$ with $|b-a-1 / p|<1 / p$. Then $\mathcal{H}_{a, b}$ is bounded on A^{p} and

$$
\left\|\mathcal{H}_{a, b}(f)\right\|_{A^{p}} \leq C(a, b) B \frac{\Gamma(a+1) 2^{b-a}}{\Gamma(b+1)}\|f\|_{A^{p}},
$$

where

$$
\begin{aligned}
B & =B\left(\frac{2}{p}+a-b, b-\frac{2}{p}+1\right) \\
C(a, b) & = \begin{cases}2^{a-b} & \text { if } 4 \leq p<\infty \\
\left(\frac{2^{7-p}}{9(p-2+p(b-a))}+2^{4-p}\right)^{1 / p} & \text { if } 2<p<4\end{cases}
\end{aligned}
$$

In order to prove Theorem 2.1 we establish the following lemma.
Lemma 2.3. Let $0<p<2$ and $f \in S^{p}$. Then for any $z \in \mathbb{D}$,

$$
|f(z)| \leq 2^{2-p / 2} C_{p}^{1 / 2}\left(\frac{1}{1-|z|}\right)^{(3-p) / 2}\|f\|_{S^{p}}
$$

Proof. By (1.1) we have

$$
C_{p}\|f\|_{S^{p}}^{2} \geq 2 \int_{0}^{1} u\left(1-u^{2}\right)^{1-p} M_{2}^{2}\left(u, f^{\prime}\right) d u+|f(0)|^{2}
$$

Hence and by the increasing property of integral mean we obtain

$$
\begin{align*}
C_{p}\|f\|_{S^{p}}^{2} & \geq 2 \int_{0}^{1} u\left(1-u^{2}\right)^{1-p} M_{2}^{2}\left(u^{2}, f^{\prime}\right) d u+|f(0)|^{2} \tag{2.1}\\
& =\int_{0}^{1}(1-u)^{1-p} M_{2}^{2}\left(u, f^{\prime}\right) d u+|f(0)|^{2} \\
& \geq \int_{(1+|z|) / 2}^{(3+|z|) / 4}(1-u)^{1-p} M_{2}^{2}\left(u, f^{\prime}\right) d u+|f(0)|^{2} \\
& \geq\left(\frac{1-|z|}{2}\right)^{1-p} M_{2}^{2}\left(\frac{1+|z|}{2}, f^{\prime}\right)_{(1+|z|) / 2}^{(3+|z|) / 4} d u+|f(0)|^{2} \\
& =\frac{1}{2^{3-p}}(1-|z|)^{2-p} M_{2}^{2}\left(\frac{1+|z|}{2}, f^{\prime}\right)+|f(0)|^{2}
\end{align*}
$$

Applying the Cauchy integral formula to f^{2} we get

$$
\begin{equation*}
(1-|z|)|f(z)|^{2}<2 M_{2}^{2}\left(\frac{1+|z|}{2}, f\right) \tag{2.2}
\end{equation*}
$$

The second equality in the definition of $M_{2}(r, f)$ easily implies that $M_{2}^{2}(r, f)$ $\leq|f(0)|^{2}+M_{2}^{2}\left(r, f^{\prime}\right)$ for all $0<r<1$. Hence we obtain

$$
M_{2}^{2}\left(\frac{1+|z|}{2}, f\right) \leq|f(0)|^{2}+M_{2}^{2}\left(\frac{1+|z|}{2}, f^{\prime}\right)
$$

By the previous inequality and (2.2), we have

$$
M_{2}^{2}\left(\frac{1+|z|}{2}, f^{\prime}\right) \geq \frac{1}{2}|f(z)|^{2}(1-|z|)-|f(0)|^{2}
$$

Hence inequality (2.1) gives

$$
C_{p}\|f\|_{S^{p}}^{2} \geq \frac{1}{2^{4-p}}|f(z)|^{2}(1-|z|)^{3-p}
$$

which is the required result.
Proof of Theorem 2.1. Differentiating the integral representation of $\mathcal{H}_{a, b}$ we get

$$
\left|\left(\mathcal{H}_{a, b} f\right)^{\prime}(z)\right| \leq \frac{\Gamma(a+2)}{\Gamma(b+1)} \int_{0}^{1}\left|\frac{f(t) t(1-t)^{b}}{(1-t z)^{a+2}}\right| d t .
$$

Now,

$$
c_{p}\left\|\mathcal{H}_{a, b} f\right\|_{S^{p}}^{2} \leq\left|\mathcal{H}_{a, b} f(0)\right|^{2}+2 \int_{0}^{1} r\left(1-r^{2}\right)^{1-p} M_{2}^{2}\left(\left(\mathcal{H}_{a, b} f\right)^{\prime}, r\right) d r
$$

Minkowski's inequality together with the triangular inequality gives

$$
\begin{aligned}
M_{2}\left(\left(\mathcal{H}_{a, b} f\right)^{\prime}, r\right) & \leq \frac{\Gamma(a+2)}{\Gamma(b+1)} \int_{0}^{1}\left[\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{f(t) t(1-t)^{b}}{\left(1-t r e^{i \theta}\right)^{(a+2)}}\right|^{2} d \theta\right]^{1 / 2} d t \\
& \leq \frac{\Gamma(a+2)}{\Gamma(b+1)} \int_{0}^{1}|f(t)| t(1-t)^{b}(1-t r)^{-(a+2)} d t
\end{aligned}
$$

Hence,

$$
\begin{equation*}
c_{p}\left\|\mathcal{H}_{a, b} f\right\|_{S^{p}}^{2} \leq\left|\mathcal{H}_{a, b} f(0)\right|^{2}+I \tag{2.3}
\end{equation*}
$$

where

$$
I=2 \int_{0}^{1} r\left(1-r^{2}\right)^{1-p}\left(\frac{\Gamma(a+2)}{\Gamma(b+1)} \int_{0}^{1}|f(t)| t(1-t)^{b}(1-t r)^{-(a+2)} d t\right)^{2} d r
$$

Using Lemma 2.3 we obtain

$$
\left|\mathcal{H}_{a, b} f(0)\right|^{2} \leq\left(\frac{\Gamma(a+1) 2^{2-p / 2}}{\Gamma(b+1)\left(b+\frac{p-1}{2}\right)}\right)^{2} C_{p}\|f\|_{S^{p}}^{2}
$$

Moreover,

$$
\begin{aligned}
& I \leq 2\left(\frac{\Gamma(a+2)}{\Gamma(b+1)}\right)^{2} \int_{0}^{1} r\left(1-r^{2}\right)^{1-p}(1-r)^{-2(a+2)} \\
& \times\left(\int_{0}^{1} \frac{2^{2-p / 2} C_{p}^{1 / 2}\|f\|_{S^{p}}}{(1-t)^{(3-p) / 2}} t(1-t)^{b} d t\right)^{2} d r
\end{aligned}
$$

$$
\begin{aligned}
\leq & 2^{5-p}\left(\frac{\Gamma(a+2)}{\Gamma(b+1)}\right)^{2} C_{p}\|f\|_{S^{p}}^{2} \\
& \times\left[\int_{0}^{1} r\left(1-r^{2}\right)^{1-p}(1-r)^{-2(a+2)} d r\right]\left(\int_{0}^{1}(1-t)^{b+(p-3) / 2} t d t\right)^{2} \\
\leq & \frac{2^{6-2 p}}{(2 a+p+1)(2 a+p+2)}\left(\frac{\Gamma(a+2)}{\Gamma(b+1)}\right)^{2} \\
& \times\left(\int_{0}^{1}(1-t)^{b+(p-3) / 2} t^{(-1-p) / 2} d t\right)^{2} C_{p}\|f\|_{S^{p}}^{2} \\
= & \frac{2^{6-2 p}}{(2 a+p+1)(2 a+p+2)}\left(\frac{\Gamma(a+2)}{\Gamma(b+1)}\right)^{2} \\
& \times B^{2}\left(b+\frac{p-1}{2}, \frac{1-p}{2}\right) C_{p}\|f\|_{S^{p}}^{2}
\end{aligned}
$$

Therefore inequality (2.3) gives

$$
\begin{aligned}
c_{p} \| & \mathcal{H}_{a, b} f \|_{S^{p}}^{2} \\
\leq & {\left[\left(\frac{\Gamma(a+1) 2^{2-p / 2}}{\Gamma(b+1)\left(b+\frac{p-1}{2}\right)}\right)^{2}+\frac{2^{6-2 p}}{(2 a+p+1)(2 a+p+2)}\left(\frac{\Gamma(a+2)}{\Gamma(b+1)}\right)^{2} C_{1}(b, p)\right] } \\
& \times C_{p}\|f\|_{S^{p}}^{2} \\
= & C_{1}^{2}(a, b, p)\left[\left(\frac{1}{b+\frac{p-1}{2}}\right)^{2}+\frac{2^{2-p}(a+1)^{2} C_{1}(b, p)}{(2 a+p+1)(2 a+p+2)}\right] C_{p}\|f\|_{S^{p}}^{2},
\end{aligned}
$$

where $C_{1}(a, b, p)$ and $C_{1}(b, p)$ are as in the statement.
REmARK. If $a=b=\beta$, Theorem 2.1 gives the boundedness of \mathcal{H}_{β} on S^{p} for $0<p<2$, which extends [L. Theorem 1]. In particular, for $\beta=0, \mathcal{H}$ is bounded on S^{p} for $0<p<2$.

We recall the following result, to be used in the proof of Theorem 2.2.
Lemma 2.4 ([D, p. 1069]). Let $2<p<\infty$ and $f \in A^{p}$. Then for any $z \in \mathbb{D}$,

$$
|f(z)| \leq\left(\frac{1}{1-|z|^{2}}\right)^{2 / p}\|f\|_{A^{p}}
$$

Proof of Theorem 2.2. For $z \in \mathbb{D}$, we choose the path

$$
\zeta(t)=\zeta_{z}(t)=\frac{t}{(t-1) z+1}, \quad 0 \leq t \leq 1
$$

i.e a circular arc in \mathbb{D} joining 0 to 1 . A change of variable in the integral
representation of $\mathcal{H}_{a, b}$ gives

$$
\mathcal{H}_{a, b}(f)(z)=\frac{\Gamma(a+1)}{\Gamma(b+1)} \int_{0}^{1} f\left(\frac{t}{(t-1) z+1}\right) \times \frac{(1-t)^{b}(1-z)^{b-a}}{(1+(t-1) z)^{b-a+1}} d t .
$$

We define a weighted composition operator T_{t} as follows:

$$
T_{t}(f)(z)=f\left(\phi_{t}(z)\right) \omega_{t}^{b-a+1}(z)
$$

where

$$
\phi_{t}(z)=\frac{t}{(t-1) z+1} \quad \text { and } \quad \omega_{t}(z)=\frac{1}{(t-1) z+1} .
$$

Then

$$
\mathcal{H}_{a, b}(f)(z)=\frac{\Gamma(a+1)}{\Gamma(b+1)} \int_{0}^{1} T_{t}(f)(z)(1-t)^{b}(1-z)^{b-a} d t
$$

We first estimate the norm of T_{t}. Proceeding much as in the proof D, Lemma 2], for $4 \leq p<\infty$ we get

$$
\begin{equation*}
\left\|T_{t}(f)\right\|_{A^{p}} \leq \frac{t^{2 / p+a-b-1}}{(1-t)^{2 / p}}\|f\|_{A^{p}} \tag{2.4}
\end{equation*}
$$

and for $2<p<4$ we get

$$
\begin{align*}
& \left\|T_{t}(f)\right\|_{A^{p}} \tag{2.5}\\
& \quad \leq\left(\frac{2^{7-p+p(a-b)}}{9(p-2+p(b-a))}+2^{4-p+p(a-b)}\right)^{1 / p} \frac{t^{2 / p+a-b-1}}{(1-t)^{2 / p}}\|f\|_{A^{p}} .
\end{align*}
$$

Now we estimate the norm

$$
\left\|\mathcal{H}_{a, b}(f)\right\|_{A^{p}}=\frac{\Gamma(a+1)}{\Gamma(b+1)}\left(\left.\iint_{\mathbb{D}} \int_{0}^{1} T_{t}(f)(1-t)^{b}(1-z)^{b-a} d t\right|^{p} d m(z)\right)^{1 / p}
$$

Applying Minkowski's inequality gives

$$
\left\|\mathcal{H}_{a, b}(f)\right\|_{A^{p}} \leq \frac{\Gamma(a+1) 2^{b-a}}{\Gamma(b+1)} \int_{0}^{1}\left\|T_{t}(f)\right\|_{A^{p}}(1-t)^{b} d t
$$

For $4 \leq p<\infty$, using (2.4) we get

$$
\left\|\mathcal{H}_{a, b}(f)\right\|_{A^{p}} \leq \frac{\Gamma(a+1) 2^{b-a}}{\Gamma(b+1)} B\|f\|_{A^{p}} .
$$

For $2<p<4$, using (2.5) we get

$$
\left\|\mathcal{H}_{a, b}(f)\right\|_{A^{p}} \leq \frac{\Gamma(a+1)}{\Gamma(b+1)}\left(\frac{2^{7-p}}{9(p-2+p(b-a))}+2^{4-p}\right)^{1 / p} B\|f\|_{A^{p}}
$$

REmARK. For $a=b=\beta$, Theorem 2.2 gives a new result on the boundedness of \mathcal{H}_{β} on A^{p} for $2<p<\infty$. In particular when $\beta=0$, we obtain D, Theorem 1].
3. Appendix. Here we give the calculations which give the optimal values for c_{p} and C_{p}. Let $f=\sum_{n=0}^{\infty} a_{n} z^{n}$. Then

$$
\begin{aligned}
& |f(0)|^{2}+2 \int_{0}^{1} r\left(1-r^{2}\right)^{1-p} M_{2}^{2}\left(r, f^{\prime}\right) d r=\left|a_{0}\right|^{2}+2 \int_{0}^{1} r\left(1-r^{2}\right)^{1-p} M_{2}^{2}\left(r, f^{\prime}\right) d r \\
& \quad=\left|a_{0}\right|^{2}+\sum_{n=1}^{\infty}\left|n a_{n}\right|^{2} \int_{0}^{1}(1-r)^{1-p} r^{n-1} d r=\left|a_{0}\right|^{2}+\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \frac{n(n!) \Gamma(2-p)}{\Gamma(n+2-p)} \\
& \quad=\left|a_{0}\right|^{2}+\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}(n+1)^{p} \frac{n(n!)}{(2-p)(3-p) \cdots(n+1-p)(n+1)^{p}} .
\end{aligned}
$$

Let

$$
L_{n}=\frac{(n-1)(n-1)!}{(2-p) \cdots(n-p) n^{p}} \quad \text { for } n \geq 2
$$

It is clear that the optimal choice for c_{p} is $\min \left(1, \inf _{n \geq 2} L_{n}\right)$, and for C_{p} it is $\max \left(1, \sup _{n \geq 2} L_{n}\right)$. We will show that L_{n} is an increasing sequence, which means that

$$
\frac{L_{n+1}}{L_{n}}=\left(\frac{n}{n+1}\right)^{p+1}\left(\frac{n}{n-1}\right)\left(\frac{1}{1-\frac{p}{n+1}}\right) \geq 1
$$

Indeed, the last inequality is the same as

$$
\left(1-\frac{1}{n+1}\right)^{p+2} \geq 1-\frac{p+2}{n+1}+\frac{2 p}{(n+1)^{2}}
$$

Therefore it is enough to prove that

$$
(1-x)^{r} \geq 1-r x+(2 r-4) x^{2} \quad \text { for } 2<r<4 \text { and } 0<x \leq 1 / 2
$$

For some $0 \leq \theta \leq x \leq 1 / 2$, by the Taylor formula we get

$$
(1-x)^{r}=1-r x+\frac{r(r-1)}{2} x^{2}-\frac{r(r-1)(r-2)}{6} x^{3}(1-\theta)^{r-3}
$$

Thus the preceding inequality will be proved if we show that for $2<r<4$,

$$
\frac{r(r-1)}{2} \geq 2 r-4+\frac{r(r-1)(r-2)}{12}
$$

which is the same as

$$
(4-r)\left(r^{2}-5 r+12\right) \geq 0
$$

This is true for all $r<4$. Therefore

$$
\inf _{n \geq 2} L_{n}=\frac{1}{(2-p) 2^{p}}
$$

Using the Gauss formula

$$
\Gamma(x)=\lim _{n \rightarrow \infty} \frac{n!n^{x}}{x(x+1) \cdots(x+n)} \quad \text { for } x>0
$$

we get

$$
\sup _{n \geq 2} L_{n}=\lim _{n \rightarrow \infty} L_{n}=\Gamma(2-p) .
$$

Thus

$$
c_{p}=\min \left\{1, \frac{1}{(2-p) 2^{p}}\right\} \quad \text { and } \quad C_{p}=\max \{1, \Gamma(2-p)\}
$$

Acknowledgements. The authors thank Stanisław Kwapień for his valuable comments and suggestions which improved the presentation of the paper.

References

[D] E. Diamantopolous, Hilbert matrix on Bergman spaces, Illinois J. Math. 48 (2004), 1067-1078.
[DS] E. Diamantopolous and A. Siskakis, Composition operators and the Hilbert matrix, Studia Math. 140 (2000), 191-198.
[DJV] M. Dostanić, M. Jevtić and D. Vukotić, Norm of the Hilbert matrix on Bergman and Hardy spaces and a theorem of Nehari type, J. Funct. Anal. 254 (2008), 2800-2815.
[DS1] P. L. Duren and A. P. Schuster, Bergman Spaces, Math. Surveys Monogr. 100, Amer. Math. Soc., Providence, RI, 2004.
[HLP] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, 1988.
[L] S. Li, Generalized Hilbert operator on Dirichlet-type space, Appl. Math. Comput. 214 (2009), 304-309.
[LS] S. Li and S. Stević, Generalized Hilbert operator and Fejér-Riesz type inequalities on the polydisc, Acta Math. Sci. Ser. B 29 (2009), 191-200.
[S] A. Shields, Weighted shift operators and analytic function theory, in: Topics in Operator Theory, Math. Surveys 13, Amer. Math. Soc., Providence, RI, 1974, 49-128.
[SS] S. Stević, Hilbert operator on the polydisc, Bull. Inst. Math. Acad. Sinica 31 (2003), 135-142.
[Z1] X. Zhu, A class of integral operators on weighted Bergman spaces with a small parameter, Indian J. Math. 50 (2008), 381-388.
[Z2] K. Zhu, Operator Theory in Function Spaces, 2nd ed., Math. Surveys Monogr. 138, Amer. Math. Soc., Providence, RI, 2007.

Sunanda Naik, Karabi Rajbangshi
Department of Applied Sciences
Gauhati University
Guwahati 781-014, India
E-mail: spn20@yahoo.com
karabi26@gmail.com

[^0]: 2010 Mathematics Subject Classification: 30H20, 47B38, 30A10, 47B35.
 Key words and phrases: generalized Hilbert operators, integral operators, Bergman spaces, Dirichlet spaces.
 Received 28 July 2015; revised 8 December 2015.
 Published online 4 January 2016.

