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Summary. Let f be an analytic function on the unit disk D. We define a generalized
Hilbert-type operator Ha,b by

Ha,b(f)(z) =
Γ (a+ 1)

Γ (b+ 1)

1�

0

f(t)(1− t)b

(1− tz)a+1
dt,

where a and b are non-negative real numbers. In particular, for a = b = β, Ha,b becomes
the generalized Hilbert operator Hβ , and β = 0 gives the classical Hilbert operator H.
In this article, we find conditions on a and b such that Ha,b is bounded on Dirichlet-type
spaces Sp, 0 < p < 2, and on Bergman spaces Ap, 2 < p <∞. Also we find an upper bound
for the norm of the operator Ha,b. These generalize some results of E. Diamantopolous
(2004) and S. Li (2009).

1. Introduction. Let H(D) denote the class of all analytic functions in
the unit disc D of the complex plane. For 0 < p <∞, the Bergman space Ap
consists of all f ∈ H(D) such that

‖f‖pAp =
�

D

|f(z)|p dm(z) <∞,

where dm(z) = π−1r dr dθ is the normalized Lebesgue area measure on D.
We refer to [DS1] and [Z2] for Bergman spaces.
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Let p ∈ R and f ∈ H(D) with the Taylor expansion f(z) =
∑∞

n=1 anz
n.

We say that f belongs to the space Sp if

‖f‖2Sp =
∞∑
n=1

(n+ 1)p|an|2 <∞.

Sp is a Hilbert space with the inner product

〈f, g〉 =
∞∑
n=1

(n+ 1)panbn,

where f(z) =
∑∞

n=1 anz
n and g(z) =

∑∞
n=1 bnz

n (see [S]). The spaces S0

and S−1 are the Hardy space H2 and the Bergman space A2, respectively,
and S1 is the Dirichlet space D (see [L]).

For 0 < r < 1 and f =
∑∞

n=1 anz
n ∈ H(D), we define

M2(r, f) =

(
1

2π

2π�

0

|f(reiθ)|2 dθ
)1/2

=
( ∞∑
n=1

|an|2r2n
)1/2

.

If 0 < p < 2 and f ∈ Sp, then

cp‖f‖2Sp ≤ |f(0)|2 +
�

D

|f ′(z)|2(1− |z|2)1−p dm(z)(1.1)

= |f(0)|2 + 2

1�

0

r(1− r2)1−pM2
2 (r, f

′) dr ≤ Cp‖f‖2Sp .

The optimal constants cp and Cp are given in the Appendix.
In 2009, S. Li and S. Stević [LS] for β ≥ 0 defined the operator

Hβ(f)(z) =
∞∑
n=0

( ∞∑
k=0

Γ (n+ β + 1)Γ (n+ k + 1)

Γ (n+ 1)Γ (n+ k + β + 2)
ak

)
zn,

which they called a generalized Hilbert operator. For β = 0 this is the classical
Hilbert operator H. In [LS] the authors proved the boundedness of general-
ized Hilbert operators on Hardy spaces on the polydisc. In [L], S. Li proved
the boundedness of generalized Hilbert operators on Dirichlet-type spaces
Sp for 0 < p < 1.

In this article, we extend the class of generalized Hilbert operators. Let
f(z) =

∑∞
n=0 anz

n ∈ H(D) and a, b be non-negative real numbers. We define

Ha,b(f)(z) =
∞∑
n=0

( ∞∑
k=0

Γ (n+ a+ 1)Γ (n+ k + 1)

Γ (n+ 1)Γ (n+ k + b+ 2)
ak

)
zn,

and call it a generalized Hilbert-type operator. Note that Ha,b = Hβ for
a = b = β and Ha,b = H for a = b = 0.
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A simple computation shows that Ha,b has a representation as an in-
tegral-type operator:

Ha,bf(z) =
Γ (a+ 1)

Γ (b+ 1)

1�

0

f(t)(1− t)b

(1− tz)a+1
dt.

In particular, a = b = β gives

Hβ(f)(z) =
1�

0

f(t)(1− t)β

(1− tz)β+1
dt

and β = 0 gives

H(f)(z) =
1�

0

f(t)

1− tz
dt.

In [L], S. Li proved the boundedness of Hβ on Sp, 0 < p < 1. The main
objective of this article is to prove the boundedness of Ha,b on Dirichlet
and Bergman spaces for some p, a, b. In Theorem 2.1 we extend the result
of S. Li by proving the boundedness of Ha,b on Sp, 0 < p < 2, and we give
an estimate of the norm ‖Ha,b‖Sp . In Theorem 2.2 conditions on a, b, p are
given which ensure the boundedness of Ha,b on Ap together with an estimate
of its norm.

2. Main results. Throughout this article, B(x, y) denotes the usual
Beta function defined for x, y > 0 by

B(x, y) =

1�

0

sx−1(1− s)y−1 ds.

Theorem 2.1. Suppose a, b ≥ 0 and 0 < p < 2. Then Ha,b is bounded
on Sp and

cp‖Ha,bf‖2Sp

≤ C2
1 (a, b, p)

[(
1

b+ (p− 1)/2

)2

+
22−p(a+ 1)2C1(b, p)

(2a+ p+ 1)(2a+ p+ 2)

]
Cp‖f‖2Sp ,

where

C1(a, b, p) =
Γ (a+ 1)2(4−p)/2

Γ (b+ 1)
and C1(b, p) = B2

(
b+

p− 1

2
,
1− p
2

)
.

Theorem 2.2. Let p > 2 and b ≥ a ≥ 0 with |b− a− 1/p| < 1/p. Then
Ha,b is bounded on Ap and

‖Ha,b(f)‖Ap ≤ C(a, b)B
Γ (a+ 1)2b−a

Γ (b+ 1)
‖f‖Ap ,
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where

B = B

(
2

p
+ a− b, b− 2

p
+ 1

)
,

C(a, b) =


2a−b if 4 ≤ p <∞,(

27−p

9(p− 2 + p(b− a))
+ 24−p

)1/p

if 2 < p < 4.

In order to prove Theorem 2.1 we establish the following lemma.

Lemma 2.3. Let 0 < p < 2 and f ∈ Sp. Then for any z ∈ D,

|f(z)| ≤ 22−p/2C1/2
p

(
1

1− |z|

)(3−p)/2
‖f‖Sp .

Proof. By (1.1) we have

Cp‖f‖2Sp ≥ 2

1�

0

u(1− u2)1−pM2
2 (u, f

′) du+ |f(0)|2.

Hence and by the increasing property of integral mean we obtain

Cp‖f‖2Sp ≥ 2

1�

0

u(1− u2)1−pM2
2 (u

2, f ′) du+ |f(0)|2(2.1)

=

1�

0

(1− u)1−pM2
2 (u, f

′) du+ |f(0)|2

≥
(3+|z|)/4�

(1+|z|)/2

(1− u)1−pM2
2 (u, f

′) du+ |f(0)|2

≥
(
1− |z|

2

)1−p
M2

2

(
1 + |z|

2
, f ′
) (3+|z|)/4�

(1+|z|)/2

du+ |f(0)|2

=
1

23−p
(1− |z|)2−pM2

2

(
1 + |z|

2
, f ′
)
+ |f(0)|2.

Applying the Cauchy integral formula to f2 we get

(2.2) (1− |z|)|f(z)|2 < 2M2
2

(
1 + |z|

2
, f

)
.

The second equality in the definition ofM2(r, f) easily implies thatM2
2 (r, f)

≤ |f(0)|2 +M2
2 (r, f

′) for all 0 < r < 1. Hence we obtain

M2
2

(
1 + |z|

2
, f

)
≤ |f(0)|2 +M2

2

(
1 + |z|

2
, f ′
)
.
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By the previous inequality and (2.2), we have

M2
2

(
1 + |z|

2
, f ′
)
≥ 1

2
|f(z)|2(1− |z|)− |f(0)|2.

Hence inequality (2.1) gives

Cp‖f‖2Sp ≥
1

24−p
|f(z)|2(1− |z|)3−p,

which is the required result.

Proof of Theorem 2.1. Differentiating the integral representation of Ha,b
we get

|(Ha,bf)′(z)| ≤
Γ (a+ 2)

Γ (b+ 1)

1�

0

∣∣∣∣f(t)t(1− t)b(1− tz)a+2

∣∣∣∣ dt.
Now,

cp‖Ha,bf‖2Sp ≤ |Ha,bf(0)|2 + 2

1�

0

r(1− r2)1−pM2
2 ((Ha,bf)′, r) dr.

Minkowski’s inequality together with the triangular inequality gives

M2((Ha,bf)′, r) ≤
Γ (a+ 2)

Γ (b+ 1)

1�

0

[
1

2π

2π�

0

∣∣∣∣ f(t)t(1− t)b

(1− treiθ)(a+2)

∣∣∣∣2 dθ]1/2 dt
≤ Γ (a+ 2)

Γ (b+ 1)

1�

0

|f(t)|t(1− t)b(1− tr)−(a+2) dt.

Hence,

(2.3) cp‖Ha,bf‖2Sp ≤ |Ha,bf(0)|2 + I,

where

I = 2

1�

0

r(1− r2)1−p
(
Γ (a+ 2)

Γ (b+ 1)

1�

0

|f(t)|t(1− t)b(1− tr)−(a+2) dt

)2

dr.

Using Lemma 2.3 we obtain

|Ha,bf(0)|2 ≤
(

Γ (a+ 1)22−p/2

Γ (b+ 1)
(
b+ p−1

2

))2

Cp‖f‖2Sp .

Moreover,

I ≤ 2

(
Γ (a+ 2)

Γ (b+ 1)

)2 1�

0

r(1− r2)1−p(1− r)−2(a+2)

×
(1�

0

22−p/2C
1/2
p ‖f‖Sp

(1− t)(3−p)/2
t(1− t)b dt

)2

dr
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≤ 25−p
(
Γ (a+ 2)

Γ (b+ 1)

)2

Cp‖f‖2Sp

×
[1�
0

r(1− r2)1−p(1− r)−2(a+2) dr
](1�

0

(1− t)b+(p−3)/2t dt
)2

≤ 26−2p

(2a+ p+ 1)(2a+ p+ 2)

(
Γ (a+ 2)

Γ (b+ 1)

)2

×
(1�
0

(1− t)b+(p−3)/2t(−1−p)/2 dt
)2
Cp‖f‖2Sp

=
26−2p

(2a+ p+ 1)(2a+ p+ 2)

(
Γ (a+ 2)

Γ (b+ 1)

)2

×B2

(
b+

p− 1

2
,
1− p
2

)
Cp‖f‖2Sp .

Therefore inequality (2.3) gives

cp‖Ha,bf‖2Sp

≤
[(

Γ (a+1)22−p/2

Γ (b+1)
(
b+ p−1

2

))2+ 26−2p

(2a+p+1)(2a+p+2)

(
Γ (a+2)

Γ (b+1)

)2
C1(b, p)

]
×Cp‖f‖2Sp

= C2
1 (a, b, p)

[(
1

b+ p−1
2

)2

+
22−p(a+1)2C1(b, p)

(2a+p+1)(2a+p+2)

]
Cp‖f‖2Sp ,

where C1(a, b, p) and C1(b, p) are as in the statement.

Remark. If a = b = β, Theorem 2.1 gives the boundedness of Hβ on Sp
for 0 < p < 2, which extends [L, Theorem 1]. In particular, for β = 0, H is
bounded on Sp for 0 < p < 2.

We recall the following result, to be used in the proof of Theorem 2.2.

Lemma 2.4 ([D, p. 1069]). Let 2 < p < ∞ and f ∈ Ap. Then for any
z ∈ D,

|f(z)| ≤
(

1

1− |z|2

)2/p

‖f‖Ap .

Proof of Theorem 2.2. For z ∈ D, we choose the path

ζ(t) = ζz(t) =
t

(t− 1)z + 1
, 0 ≤ t ≤ 1,

i.e a circular arc in D joining 0 to 1. A change of variable in the integral
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representation of Ha,b gives

Ha,b(f)(z) =
Γ (a+ 1)

Γ (b+ 1)

1�

0

f

(
t

(t− 1)z + 1

)
× (1− t)b(1− z)b−a

(1 + (t− 1)z)b−a+1
dt.

We define a weighted composition operator Tt as follows:

Tt(f)(z) = f(φt(z))ω
b−a+1
t (z)

where
φt(z) =

t

(t− 1)z + 1
and ωt(z) =

1

(t− 1)z + 1
.

Then

Ha,b(f)(z) =
Γ (a+ 1)

Γ (b+ 1)

1�

0

Tt(f)(z)(1− t)b(1− z)b−a dt.

We first estimate the norm of Tt. Proceeding much as in the proof [D, Lem-
ma 2], for 4 ≤ p <∞ we get

(2.4) ‖Tt(f)‖Ap ≤
t2/p+a−b−1

(1− t)2/p
‖f‖Ap ,

and for 2 < p < 4 we get

(2.5) ‖Tt(f)‖Ap

≤
(

27−p+p(a−b)

9(p− 2 + p(b− a))
+ 24−p+p(a−b)

)1/p t2/p+a−b−1

(1− t)2/p
‖f‖Ap .

Now we estimate the norm

‖Ha,b(f)‖Ap =
Γ (a+ 1)

Γ (b+ 1)

(�
D

∣∣∣1�
0

Tt(f)(1− t)b(1− z)b−a dt
∣∣∣p dm(z)

)1/p
.

Applying Minkowski’s inequality gives

‖Ha,b(f)‖Ap ≤
Γ (a+ 1)2b−a

Γ (b+ 1)

1�

0

‖Tt(f)‖Ap(1− t)b dt.

For 4 ≤ p <∞, using (2.4) we get

‖Ha,b(f)‖Ap ≤
Γ (a+ 1)2b−a

Γ (b+ 1)
B‖f‖Ap .

For 2 < p < 4, using (2.5) we get

‖Ha,b(f)‖Ap ≤
Γ (a+ 1)

Γ (b+ 1)

(
27−p

9(p− 2 + p(b− a))
+ 24−p

)1/p

B‖f‖Ap .

Remark. For a = b = β, Theorem 2.2 gives a new result on the bound-
edness of Hβ on Ap for 2 < p <∞. In particular when β = 0, we obtain [D,
Theorem 1].
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3. Appendix. Here we give the calculations which give the optimal
values for cp and Cp. Let f =

∑∞
n=0 anz

n. Then

|f(0)|2 + 2

1�

0

r(1− r2)1−pM2
2 (r, f

′) dr = |a0|2 + 2

1�

0

r(1− r2)1−pM2
2 (r, f

′) dr

= |a0|2 +
∞∑
n=1

|nan|2
1�

0

(1− r)1−prn−1 dr = |a0|2 +
∞∑
n=1

|an|2
n(n!)Γ (2− p)
Γ (n+ 2− p)

= |a0|2 +
∞∑
n=1

|an|2(n+ 1)p
n(n!)

(2− p)(3− p) · · · (n+ 1− p)(n+ 1)p
.

Let
Ln =

(n− 1)(n− 1)!

(2− p) · · · (n− p)np
for n ≥ 2.

It is clear that the optimal choice for cp is min(1, infn≥2 Ln), and for Cp it
is max(1, supn≥2 Ln). We will show that Ln is an increasing sequence, which
means that

Ln+1

Ln
=

(
n

n+ 1

)p+1( n

n− 1

)(
1

1− p
n+1

)
≥ 1.

Indeed, the last inequality is the same as(
1− 1

n+ 1

)p+2

≥ 1− p+ 2

n+ 1
+

2p

(n+ 1)2
.

Therefore it is enough to prove that

(1− x)r ≥ 1− rx+ (2r − 4)x2 for 2 < r < 4 and 0 < x ≤ 1/2.

For some 0 ≤ θ ≤ x ≤ 1/2, by the Taylor formula we get

(1− x)r = 1− rx+
r(r − 1)

2
x2 − r(r − 1)(r − 2)

6
x3(1− θ)r−3.

Thus the preceding inequality will be proved if we show that for 2 < r < 4,
r(r − 1)

2
≥ 2r − 4 +

r(r − 1)(r − 2)

12
,

which is the same as

(4− r)(r2 − 5r + 12) ≥ 0.

This is true for all r < 4. Therefore

inf
n≥2

Ln =
1

(2− p)2p
.

Using the Gauss formula

Γ (x) = lim
n→∞

n!nx

x(x+ 1) · · · (x+ n)
for x > 0,



Generalized Hilbert Operators 235

we get
sup
n≥2

Ln = lim
n→∞

Ln = Γ (2− p).

Thus

cp = min

{
1,

1

(2− p)2p

}
and Cp = max{1, Γ (2− p)}.
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