MATHEMATICAL LOGIC AND FOUNDATIONS

The Tree Property at ω_2 and Bounded Forcing Axioms

Sy-David FRIEDMAN and Víctor TORRES-PÉREZ

Presented by Henryk WOŹNIAKOWSKI

Summary. We prove that the Tree Property at ω_2 together with BPFA is equiconsistent with the existence of a weakly compact reflecting cardinal, and if BPFA is replaced by BPFA(ω_1) then it is equiconsistent with the existence of just a weakly compact cardinal. Similarly, we show that the Special Tree Property for ω_2 together with BPFA is equiconsistent with the existence of a reflecting Mahlo cardinal, and if BPFA is replaced by BPFA(ω_1) then it is equiconsistent with the existence of just a Mahlo cardinal.

1. Introduction. In this article we discuss some consistency results concerning the conjunction of forcing axioms with the Tree Property for ω_2 . We say that a regular cardinal κ has the *Tree Property* $(\text{TP}(\kappa))$ if every tree T of height κ with levels of size $< \kappa$ has a branch of length κ . Erdős and Tarski [5] showed that if κ is weakly compact, then κ has the tree property. They also proved that if κ is inaccessible and has the tree property, then κ is weakly compact.

We recall a result of Silver stating that if $TP(\omega_2)$ holds then ω_2 is weakly compact in L [12, Theorem 5.9]. Mitchell proved that if κ is weakly compact then there is a generic extension where $\kappa = \omega_2 = 2^{\omega}$ and $TP(\omega_2)$ holds (see [12]). So in particular, $TP(\omega_2)$ is equiconsistent with the existence of a weakly compact cardinal.

Our motivation for the results of this paper was to see how consistency proofs for the Tree Property for ω_2 and for forcing axioms can be combined. It is not clear how the standard consistency proofs of $TP(\omega_2)$ due to Mitchell or to Baumgartner and Laver via iterated Sacks forcing (see [3]) can

²⁰¹⁰ Mathematics Subject Classification: Primary 03E35; Secondary 03E65.

Key words and phrases: tree property, BPFA, Aronszajn trees, special Aronszajn trees. Received 10 September 2015.

Published online 19 January 2016.

be merged with consistency proofs of forcing axioms such as MA_{ω_1} or the Bounded Proper Forcing Axiom. Our approach solves this problem through use of Baumgartner's method for specializing ω_1 -trees together with a weakly compact diamond-sequence as a bookkeeping method.

In this paper we prove that the existence of a weakly compact cardinal is equiconsistent with the conjunction of $TP(\omega_2)$ and MA_{ω_1} , or even with $TP(\omega_2)$ and BPFA(ω_1). Also we prove that $TP(\omega_2)$ together with BPFA is equiconsistent with the existence of a weakly compact cardinal which is also reflecting.

We also work with similar results involving the Special Tree Property. Trees of height κ with levels of size $< \kappa$ and no branches of length κ are called κ -Aronszajn, in reference to Aronszajn's construction of a tree of height ω_1 each of whose levels is countable but with no uncountable branch (see [11]). An ω_2 -Aronszajn tree T is special if there is a function $f: T \to \omega_1$ such that for any $s, t \in T$, if $s <_T t$ then $f(s) \neq f(t)$. We say that ω_2 has the Special Tree Property, SpTP(ω_2), if there are no special ω_2 -Aronszajn trees. Recall that an inaccessible cardinal κ is Mahlo if the set of all regular cardinals below κ is stationary, and so the set of all inaccessible cardinals below κ is also stationary. Also in [12], Mitchell proved that the existence of a Mahlo cardinal is equiconsistent with SpTP(ω_2).

Using similar methods, we establish the same results for $\text{SpTP}(\omega_2)$ with "weakly compact" replaced by "Mahlo", i.e. we prove that the existence of a Mahlo cardinal is equiconsistent with the conjunction of $\text{SpTP}(\omega_2)$ and $\text{BPFA}(\omega_1)$. Also we prove that $\text{SpTP}(\omega_2)$ together with BPFA is equiconsistent with the existence of a Mahlo cardinal which is also reflecting (¹).

2. Preliminaries and basic definitions. Recall that a cardinal κ is weakly compact if it is uncountable and for every function $F : [\kappa]^2 \to 2$, there is $H \subseteq \kappa$ of cardinality κ such that $F \upharpoonright [H]^2$ is constant. We use a characterization of weak compactness due to Hanf–Scott [7]. A formula is Π_1^1 if it is of the form $\forall X \ \psi$, where X is a second-order variable and ψ has only first-order quantifiers. A cardinal κ is Π_1^1 -indescribable if whenever $U \subseteq V_{\kappa}$ and φ is a Π_1^1 -sentence such that $(V_{\kappa}, \in, U) \models \varphi$ then for some $\alpha < \kappa, (V_{\alpha}, \in, U \cap V_{\alpha}) \models \varphi$. As shown in [7], a cardinal κ is Π_1^1 -indescribable if and only if it is weakly compact.

^{(&}lt;sup>1</sup>) Sakai and Veličković [14] showed that the Weak Reflection Principle (WRP) together with MA_{ω_1} (Cohen) implies that ω_2 has the Super Tree Property. It is implicit in their proof that $WRP(\omega_2) + MA_{\omega_1}$ (Cohen) implies $TP(\omega_2)$. This leads to an alternative proof of the consistency of $TP(\omega_2) + BPFA(\omega_1)$ from a weakly compact cardinal. Our construction is flexible enough to yield further results, such as the results mentioned regarding the Special Tree Property.

We also recall the following definitions:

DEFINITION 2.1 (Shelah [15]). A notion of forcing \mathbb{P} is *proper* if for every uncountable cardinal κ , all stationary subsets of $[\kappa]^{\omega}$ remain stationary in \mathbb{P} -generic extensions.

DEFINITION 2.2. (PFA) := For every proper notion of forcing \mathbb{P} and for every collection $\langle D_{\xi} : \xi < \omega_1 \rangle$ of maximal antichains of \mathbb{P} , there exists a filter $G \subseteq \mathbb{P}$ such that $G \cap D_{\xi} \neq \emptyset$ for all $\xi < \omega_1$.

DEFINITION 2.3. (BPFA) := For every proper notion of forcing \mathbb{P} and for every collection $\langle D_{\xi} : \xi < \omega_1 \rangle$ of maximal antichains of \mathbb{P} , each of size at most ω_1 , there exists a filter $G \subseteq \mathbb{P}$ such that $G \cap D_{\xi} \neq \emptyset$ for all $\xi < \omega_1$.

Bagaria and Stavi [1, Theorem 5] showed that BPFA is equivalent to the following statement: For every proper forcing \mathbb{P} , every Σ_1 formula with parameters from H_{ω_2} that holds in a \mathbb{P} -generic extensions also holds in V.

DEFINITION 2.4. An uncountable regular cardinal κ is *reflecting* if for every $a \in H_{\kappa}$ and any formula $\varphi(x)$, if there is a regular cardinal θ such that $H_{\theta} \models \varphi(a)$, then there is a regular $\theta' < \kappa$ such that $a \in H_{\theta'} \models \varphi(a)$.

M. Goldstern and S. Shelah [6] proved that BPFA is equiconsistent with the existence of a reflecting cardinal.

BPFA(ω_1) is the statement of BPFA restricted to forcings of size at most ω_1 . BPFA(ω_1) is only slightly stronger than MA(ω_1); it is easy to force it by starting with GCH, and in ω_2 steps hitting every proper forcing of size ω_1 via a countable support iteration.

We recall some basic properties of forcing notions used in our constructions. Given two sets I, J, and a cardinal λ , let $\mathbb{P}_{\lambda}(I, J)$ be the set of all partial functions p from I to J such that $|\operatorname{dom}(p)| < \lambda$. The order in $\mathbb{P}_{\lambda}(I, J)$ is given by \supseteq .

 $\mathbb{P}_{\kappa}(\kappa \times \lambda, 2)$ is usually denoted by $\mathrm{Add}(\kappa, \lambda)$, and $\mathbb{P}_{\kappa}(\kappa, \lambda)$ is usually denoted by $\mathrm{Col}(\kappa, \lambda)$.

We say that a notion of forcing is ω -closed if every countable descending sequence of conditions $p_0 \ge p_1 \ge \cdots$ has a lower bound.

We recall that ω -closed and c.c.c. forcings are also proper (see for example [10, Lemma V.7.2]). A two-step iteration of proper forcing is proper [10, Lemma V.7.4]. Even more, Shelah showed that a countable support iteration of proper forcing notions is proper (see for example [8, Theorem 31.15]).

In our forcing constructions we will use the following forcing notion due to Baumgartner [2] which specializes any tree of height ω_1 with no uncountable branches (the tree may have uncountable levels).

DEFINITION 2.5. Given a tree T of height ω_1 with no uncountable branches we define a partial order $\mathbb{P}_{sp}(T)$ by $a \in \mathbb{P}_{sp}(T)$ if and only if a is a function from a finite subset of T into ω such that $a(t_0) \neq a(t_1)$ whenever t_0, t_1 are comparable in T.

Baumgartner [2] showed that the forcing $\mathbb{P}_{sp}(T)$ defined above has the countable chain condition. Furthermore, Silver showed that if T is an ω_2 -Aronszajn tree then T still has no cofinal branch after forcing with

 $\operatorname{Add}(\omega, \omega_2) * \operatorname{Col}(\omega_1, \omega_2).$

Therefore Baumgartner's specializing forcing can be applied to the restriction of T to a cofinal set of levels in this model; we still refer to this forcing as $\mathbb{P}_{sp}(T)$.

Given an uncountable cardinal λ , recall that a \Box_{λ} -sequence is a sequence $\langle c_{\alpha} : \alpha \in \operatorname{Lim}(\lambda^{+}) \rangle$ such that for all $\alpha \in \operatorname{Lim}(\lambda^{+})$:

- (1) c_{α} is club in α ,
- (2) $\operatorname{ot}(c_{\alpha}) \leq \lambda$,
- (3) $c_{\alpha} \cap \beta = c_{\beta}$ whenever $\beta \in \text{Lim}(c_{\alpha})$.

Let λ be an uncountable cardinal. We define $\mathbb{P}(\Box_{\lambda})$ as follows: $p \in \mathbb{P}$ iff

- dom $(p) = (\beta + 1) \cap \text{Lim}(\lambda^+)$ for some $\beta \in \text{Lim}(\lambda^+)$;
- $p(\alpha)$ is a club set in α and $ot(p(\alpha)) \leq \lambda$ for all $\alpha \in dom(p)$;
- if $\alpha \in \operatorname{dom}(p)$, then $p(\alpha) \cap \beta = p(\beta)$ for every $\beta \in \operatorname{Lim}(p(\alpha))$.

We order $\mathbb{P}(\Box_{\lambda})$ by letting $p \leq q$ if and only if $q = p|_{\operatorname{dom}(q)}$ for $p, q \in \mathbb{P}(\Box_{\lambda})$.

 $\mathbb{P}(\Box_{\lambda})$ adds a \Box_{λ} -sequence in the generic extension. It is due to Jensen and does not add λ -sequences (see [4]).

3. The Tree Property and forcing axioms. In this section we prove that $TP(\omega_2) + BPFA(\omega_1)$ is equiconsistent with the existence of a weakly compact cardinal. In our proof we use a weakly compact \diamondsuit -sequence (Definition 3.2) to code objects during the iteration. We first discuss some of the properties of these weakly compact diamond sequences.

Given a cardinal κ and $S \subseteq \kappa$, recall Jensen's Diamond Principle $\diamondsuit_{\kappa}(S)$: There is a sequence $\langle D_{\alpha} : \alpha \in S \rangle$ such that for every $X \subseteq \kappa$, the set $\{\alpha \in S : X \cap \alpha = D_{\alpha}\}$ is stationary. We recall the following (see Lemma 6.5 in [9]):

LEMMA 3.1. Suppose V = L. Given a regular cardinal κ , $\diamondsuit_{\kappa}(S)$ holds for every stationary set $S \subseteq \kappa$.

Actually, if κ is a weakly compact cardinal, we can have in L a stronger form of a diamond sequence.

DEFINITION 3.2. A weakly compact \diamondsuit -sequence for a cardinal κ is a sequence $\langle D_{\alpha} : \alpha < \kappa \rangle$ such that:

- (1) $D_{\alpha} \subseteq \alpha$,
- (2) for every $A \subseteq V_{\kappa}$ and every Π_1^1 -formula φ such that $(V_{\kappa}, A) \models \varphi(A)$, and every $D \subseteq \kappa$, the set

 $S(A,\varphi,D) = \{ \alpha < \kappa : (V_{\alpha}, A \cap V_{\alpha}) \models \varphi (A \cap V_{\alpha}) \text{ and } D \cap \alpha = D_{\alpha} \}$ is stationary in κ .

Observe that the existence of a weakly compact diamond sequence can hold only if κ is weakly compact, due to the characterization of Hanf–Scott given in the introduction.

LEMMA 3.3. In L, there is a weakly compact \diamondsuit -sequence for κ whenever κ is a weakly compact cardinal.

Proof. See [16, Theorem 2.13]. ■

In this paper, in order to code some objects of the universe, we would like to deal with subsets of V_{α} rather than just subsets of α . We have the following:

LEMMA 3.4. For a given cardinal κ , suppose there is a weakly compact \diamondsuit -sequence $\langle D_{\alpha} : \alpha < \kappa \rangle$ for κ . Then there is a sequence $\langle D_{\alpha}^* : \alpha < \kappa \rangle$ such that:

(1) $D^*_{\alpha} \subseteq V_{\alpha}$,

(2) for every $D^* \subseteq V_{\kappa}$ and every Π_1^1 -formula φ with $(V_{\kappa}, D^*) \models \varphi(D^*)$, the set

$$S^*(D^*,\varphi) = \{\alpha < \kappa : (V_\alpha, D^* \cap V_\alpha) \models \varphi(D^* \cap V_\alpha) \text{ and } D^* \cap V_\alpha = D^*_\alpha\}$$

is stationary.

Proof. Fix a weakly compact \diamond -sequence $\langle D_{\alpha} : \alpha < \kappa \rangle$ for κ . As already mentioned, the existence of a weakly compact \diamond -sequence for κ implies that κ is weakly compact due to the characterization of Hanf–Scott mentioned in the introduction. In particular, κ is inaccessible, so there is a bijection $f : \kappa \to V_{\kappa}$ (see for example [10, Lemmas I.13.26 and I.13.31]). Observe that the set

$$C = \{ \alpha < \kappa : f \mid_{\alpha} : \alpha \to V_{\alpha} \text{ is a bijection} \}$$

is a club set in κ . Define $D_{\alpha}^* = f[D_{\alpha}]$ if $\alpha \in C$ and empty otherwise. Let $D^* \subseteq V_{\kappa}$ and φ be a Π_1^1 -formula such that $(V_{\kappa}, D^*) \models \varphi(D^*)$. We need to show that the set $S^*(D^*, \varphi)$ defined above is stationary. Since $\langle D_{\alpha} : \alpha < \kappa \rangle$ is a weakly compact \diamondsuit -sequence for κ , the set

$$S = S(D^*, \varphi, f^{-1}[D^*]) \cap C$$

is stationary (see Definition 3.2).

Now it is not hard to see that $S \subseteq S^*(D^*, \varphi)$, and therefore $S^*(D^*, \varphi)$ is stationary as desired.

THEOREM 3.5. Suppose V = L and let κ be a weakly compact cardinal in L. Then there is a forcing iteration \mathbb{P} of countable support and length κ such that in $L^{\mathbb{P}}$, both $\text{TP}(\omega_2)$ and $\text{BPFA}(\omega_1)$ hold.

Proof. We remark that we can find a Π_1^1 -sentence ψ (with no parameter) such that L_{α} satisfies ψ iff α is inaccessible. For example, let ψ be the Π_1^1 -sentence expressing: "There is no cofinal function from an ordinal into the class of ordinals, ω exists and the Power Set Axiom holds". Then ψ holds in L_{α} iff α is inaccessible.

Therefore, we can fix a weakly compact diamond sequence concentrated on inaccessible cardinals and with the properties of Lemma 3.4. Let

 $\langle D_{\alpha} : \alpha \text{ inaccessible}, \alpha < \kappa \rangle$

be such a sequence.

Also observe that our weakly compact sequences can be concentrated on inaccessible cardinals, and in L we have $L_{\alpha} = V_{\alpha}$ whenever α is inaccessible.

We will perform a countable support iteration $\langle \langle \mathbb{P}_{\alpha} : \alpha \leq \kappa \rangle, \langle \dot{\mathbb{Q}}_{\alpha} : \alpha < \kappa \rangle \rangle$ in which at *L*-inaccessible stages α we will use our weakly compact diamond sequence to ensure that there is no ω_2 -Aronszajn tree, and at *L*-accessible stages we will ensure BPFA(ω_1).

Choose an enumeration $\langle \mathbb{R}_{\alpha} : \alpha < \kappa, \alpha$ not inaccessible of all nice S-names for forcings with universe ω_1 as S ranges over forcings in L_{κ} . Moreover assume that this bookkeeping is redundant in the sense that each such S-name appears cofinally often in this list.

We define our countable support iteration as follows. \mathbb{Q}_0 is the trivial forcing. If α is not inaccessible in L and $\dot{\mathbb{R}}_{\alpha}$ is a \mathbb{P}_{α} -name for a proper forcing in $L[G_{\alpha}]$ (where G_{α} denotes the \mathbb{P}_{α} -generic) then declare $\dot{\mathbb{Q}}_{\alpha}$ to be $\dot{\mathbb{R}}_{\alpha} * \operatorname{Col}(\omega_1, \alpha)$; otherwise take $\dot{\mathbb{Q}}_{\alpha}$ to be the forcing $\operatorname{Col}(\omega_1, \alpha)$.

Now suppose α is inaccessible in L. Then α is the ω_2 of $L[G_\alpha]$. See if D_α is a \mathbb{P}_α -name for an Aronszajn tree T_α in $L[G_\alpha]$. If not, let $\dot{\mathbb{Q}}_\alpha$ be the trivial forcing. Otherwise let $\dot{\mathbb{Q}}_\alpha$ be

$$\operatorname{Add}(\omega, \alpha) * \operatorname{Col}(\omega_1, \alpha) * \mathbb{P}_{\operatorname{sp}}(T),$$

i.e. add α many Cohen reals followed by a Lévy collapse of α to ω_1 followed by a specialization of T (more precisely, of the restriction of T to cofinally many levels).

Now after κ steps, κ becomes ω_2 as the forcing is proper, κ -cc and collapses each $\alpha < \kappa$ to ω_1 .

Suppose that σ were a \mathbb{P} -name for an ω_2 -Aronszajn tree in L[G] (where \mathbb{P} is the final iteration and G denotes the \mathbb{P} -generic).

Observe that σ can be regarded as a subset of V_{κ} . The statement " σ is a κ -Aronszajn tree" is a Π_1^1 -statement about V_{κ} with σ as a predicate (in addition to basic first-order properties about (V_{κ}, σ) the key second-order prop-

erty is the nonexistence of a cofinal branch). Now if ϕ is a Π_1^1 sentence then the statement "*p* forces $\phi(\sigma)$ " is a Π_1^1 -statement about (V_{κ}, σ) . (The forcing relation for a first-order statement is first-order; from this it follows that the forcing relation for Π_1^1 -statements is Π_1^1 .) (Note: \mathbb{P}_{κ} is another predicate in the sentence to be reflected; however \mathbb{P}_{κ} is actually first-order definable over V_{κ} , using the weakly compact diamond sequence, which can be chosen to be first-order definable over V_{κ}).

Apply Diamond to get an inaccesible α such that $D_{\alpha} = \sigma \cap L_{\alpha}$ and D_{α} is forced to be a name for an Aronszajn tree in \mathbb{P}_{α} . But then at stage α , T_{α} , the interpretation of D_{α} , is specialized and therefore has no branch of length α (as ω_1 is preserved). This contradicts the fact that T_{α} is an initial segment of T, the interpretation of σ , and therefore must have branches of length α .

Finally, observe that in L[G] we also have BPFA(ω_1) since any proper forcing \mathbb{Q} with universe ω_1 in L[G] is proper in $L[G_\alpha]$ at cofinally many stages α where we forced with \mathbb{Q} , so surely we have a generic filter hitting ω_1 many dense sets for \mathbb{Q} .

Observe that the above yields another proof of the consistency of $TP(\omega_2)$ from a weakly compact cardinal:

COROLLARY 3.6. The following are equiconsistent:

- (1) There exists a weakly compact cardinal.
- (2) $TP(\omega_2)$ holds.
- (3) $\operatorname{TP}(\omega_2) + \operatorname{MA}_{\omega_1}$ holds.
- (4) $\operatorname{TP}(\omega_2) + \operatorname{BPFA}(\omega_1)$ holds.

DEFINITION 3.7. We say that a cardinal κ is weakly compact relative to subsets of ω_1 whenever κ is weakly compact in L[A] for every $A \subseteq \omega_1$.

We also have the following:

PROPOSITION 3.8. If there is a weakly compact cardinal κ , there is a model where BPFA holds, ω_2 is weakly compact relative to subsets of ω_1 , but ω_2 does not have the Tree Property.

Proof. Start with a weakly compact cardinal κ , force BPFA with a forcing \mathbb{P} , and then let $\mathbb{P}(\Box_{\omega_1})$ be the forcing which adds a \Box_{ω_1} -sequence. Then $\mathrm{TP}(\omega_2)$ fails in the final model as \Box_{ω_1} is sufficient to yield the existence of an ω_2 -Aronszajn tree (see [4]).

CLAIM 3.9. $\mathbb{P}(\Box_{\omega_1})$ preserves BPFA over $V^{\mathbb{P}}$.

Proof. Observe that all subsets of ω_1 in $V^{\mathbb{P}*\mathbb{P}(\square_{\omega_1})}$ are in $V^{\mathbb{P}}$, and any proper extension of $V^{\mathbb{P}*\mathbb{P}(\square_{\omega_1})}$ is also a proper extension of $V^{\mathbb{P}}$ as $\mathbb{P}(\square_{\omega_1})$ is proper. \blacksquare

CLAIM 3.10. ω_2 is weakly compact relative to subsets of ω_1 in $V^{\mathbb{P}*\mathbb{P}(\square_{\omega_1})}$.

Proof. Any subset of ω_1 is added by a forcing of size less than κ , and any such forcing preserves the weak compactness of κ .

This ends the proof of Proposition 3.8. \blacksquare

So BPFA plus ω_2 weakly compact relative to subsets of ω_1 is not enough to get TP(ω_2). Obviously BPFA alone is not enough because its consistency strength, a reflecting cardinal, is less than that of TP(ω_2), a weakly compact cardinal.

However, we have the following:

THEOREM 3.11. $TP(\omega_2) + BPFA$ is equiconsistent with the existence of a weakly compact cardinal which is also reflecting.

Proof. Suppose that κ is a weakly compact reflecting cardinal. Repeat the proof above, forcing κ to be ω_2 , $\operatorname{TP}(\omega_2)$ and $\operatorname{BPFA}(\omega_1)$, but instead of hitting proper forcings of size ω_1 , use the consistency proof of BPFA to force with proper forcings of size less than κ which witness Σ_1 -sentences with subsets of ω_1 as parameters. The only small change is that α will not necessarily be the ω_2 of $L[G_{\alpha}]$ whenever α is *L*-inaccessible, but this will be the case for all *L*-inaccessible α in a closed unbounded subset of κ . The fact that κ is reflecting implies that the latter forcings may be chosen to have size less than κ . After κ steps, we again have $\operatorname{TP}(\omega_2)$, and the extra forcing we have done ensures that we also have BPFA.

Conversely, suppose that we have $TP(\omega_2) + BPFA$. Then by [6], ω_2 is reflecting in L, and by a result of Silver (see [12]), ω_2 is also weakly compact in L.

We have some further open questions:

- (1) $\operatorname{Con}(\operatorname{TP}(\omega_2) + \operatorname{MA} + \mathfrak{c} = \omega_3)?$
- (2) $\operatorname{Con}(\operatorname{TP}(\omega_3) + \operatorname{MA})$?

Of course $\text{Con}(\text{TP}(\omega_4) + \text{BPFA})$ is no problem because when forcing $\text{TP}(\omega_4)$ one does not need to add subsets of ω_1 . Further, $\text{TP}(\omega_3) + \text{BPFA}$ is inconsistent as BPFA implies that GCH holds at ω_1 (see [13]) whereas $\text{TP}(\omega_3)$ implies the opposite.

4. The Special Tree Property and forcing axioms. The proof is similar to that of our previous theorem. Therefore, we only give a sketch of the proof, just pointing out the differences. This time we use a simple \diamondsuit -sequence to code the names of special Aronszajn trees during the iteration.

THEOREM 4.1. Assume V = L and κ is a Mahlo cardinal. Then there is a forcing iteration \mathbb{P} of countable support and length κ such that in $L^{\mathbb{P}}$, both SpTP(ω_2) and BPFA(ω_1) hold. Proof. This time we consider a name for an ω_2 -tree together with a specializing function (into ω_1) for it. Using a diamond sequence $\langle D_\alpha : \alpha$ inaccessible \rangle , find an inaccessible $\alpha < \kappa$ where the name restricted to α is a name for an α -tree together with a specializing function for it, where α is the ω_2 of $V[G_\alpha]$ and where we guessed that name using the diamond sequence. This α -tree has no cofinal branch because it is specialized (into ω_1). Then in the construction we added α -many Cohen reals followed by an ω -closed Levy collapse of alpha to ω_1 (the tree still has no cofinal branch) and specialized the tree (into ω). But this is a contradiction because any node on level α of the original ω_2 -tree yields a cofinal branch through the α -tree and then an injection of α into ω , contradicting the fact that ω_1 is preserved.

As in the previous section (now using the result in [12] that $\text{SpTP}(\omega_2)$ implies that ω_2 is Mahlo in L), we have:

THEOREM 4.2. SpTP (ω_2) + BPFA is equiconsistent with the existence of a Mahlo cardinal which is also reflecting.

Acknowledgements. Both authors wish to thank the FWF (Austrian Science Fund) for its support through grant P 25748. The second author was also partially supported by grant P 26869-N25.

References

- J. Bagaria, Bounded forcing axioms as principles of generic absoluteness, Arch. Math. Logic 39 (2000), 393–401.
- J. E. Baumgartner, Applications of the proper forcing axiom, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 913–959.
- [3] J. E. Baumgartner and R. Laver, Iterated perfect-set forcing, Ann. Math. Logic 17 (1979), 271–288.
- [4] J. Cummings, M. Foreman, and M. Magidor, Scales, squares and reflection, J. Math. Logic 1 (2001), 35–98.
- P. Erdős and A. Tarski, On some problems involving inaccessible cardinals, in: Essays on the Foundations of Mathematics, Magnes Press, Hebrew Univ., Jerusalem, 1961, 50–82.
- [6] M. Goldstern and S. Shelah, *The bounded proper forcing axiom*, J. Symbolic Logic 60 (1995), 58–73.
- [7] W. P. Hanf and D. Scott, *Classifying inaccessible cardinals*, Notices Amer. Math. Soc. 8 (1961), 445 (abstract).
- [8] T. Jech, Set Theory, Springer Monogr. Math., Springer, Berlin, 2003.
- R. B. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229–308; Erratum, ibid. 4 (1972), 443.
- [10] K. Kunen, Set Theory, Stud. Logic (London) 34, College Publ., London, 2011.
- [11] D. Kurepa, Ensembles ordonnés et ramifiés, Publ. Math. Univ. Belgrade 4 (1935), 1–38.
- W. Mitchell, Aronszajn trees and the independence of the transfer property, Ann. Math. Logic 5 (1972/73), 21–46.

- J. Moore, Proper forcing, cardinal arithmetic, and uncountable linear orders, Bull. Symbolic Logic 11 (2005), 51–60.
- [14] H. Sakai and B. Veličković, Stationary reflection principles and two cardinal tree properties, J. Inst. Math. Jussieu 14 (2015), 69–85.
- [15] S. Shelah, *Proper Forcing*, Lecture Notes in Math. 940, Springer, Berlin, 1982.
- [16] W. Z. Sun, Stationary cardinals, Arch. Math. Logic 32 (1993), 429–442.

Sy-David Friedman Kurt Gödel Research Center Universität Wien Währinger Straße 25 A-1090 Wien, Austria E-mail: sdf@logic.univie.ac.at Víctor Torres-Pérez Institut für Diskrete Mathematik und Geometrie TU Wien Wiedner Haupstraße 8/104 1040 Wien, Austria E-mail: victor.torres@tuwien.ac.at