
KNOTS IN POLAND III

BANACH CENTER PUBLICATIONS, VOLUME 100

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 2014

THE KONTSEVICH INTEGRAL
AND RE-NORMALIZED LINK INVARIANTS

ARISING FROM LIE SUPERALGEBRAS

NATHAN GEER

School of Mathematics, Georgia Institute of Technology

Atlanta, GA 30332-0160, USA

and Max-Planck-Institut für Mathematik

Vivatsgasse 7, 53111 Bonn, Germany

E-mail: geer@math.gatech.edu

Abstract. We show that the coefficients of the re-normalized link invariants of [3] are Vassiliev

invariants which give rise to a canonical family of weight systems.

Introduction. Given a sequence of finite-dimensional representations V = {V1, V2, . . . }
of a finite-dimensional semisimple Lie algebra g one can construct the following two

invariants of links (with ordered components):

(1) the Reshetikhin–Turaev C[[h]]-valued quantum group invariant Qg,V which arises

from V and the Drinfeld–Jimbo quantization associated to g (see [9]),

(2) Wg,V ◦ Z where Wg,V is a weight system, constructed by Bar-Natan in [1], and

where Z is the Kontsevich integral [6].

Here a link or chord diagram (with ordered components) is colored by assigning the ith

representation Vi to its ith component. The above constructions are essentially the same in

the following sense. Lin [8] showed that the mth coefficient of Qg,V is a Vassiliev invariant

of type m. Moreover, there is a weight system corresponding to Qg,V which can be shown

to be equal to Wg,V . Conversely, Le and Murakami [7] show that Wg,V is canonical, i.e.

the invariant Wg,V ◦ Z is equal (up to a change of variable and normalization) to Qg,V .

In [2] it is shown that there are analogous results for Lie superalgebras of type A-G.

The theory of Lie superalgebras has properties which create new challenges and inter-

esting consequences. First, the proof of Le and Murakami uses results, due to Drinfeld,
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whose proofs are based on properties of Lie algebras which fail for Lie superalgebras.

In [2] the author overcomes this difficulty by giving a proof which uses new quantum

group results. Second, for many sequences of representations V of a Lie superalgebra g

the quantum invariant Qg,V is zero (see [3] and the reference within). However, in [3] it

is shown that the usual quantum invariants associated to Lie superalgebras of type I can

be re-normalized by modified quantum dimensions which lead to non-trivial invariants

of links. These invariants contain multivariable invariants which specialize to the multi-

variable Conway potential function. In this paper we will show that the coefficients of

these re-normalized invariants are Vassiliev invariants which give rise to canonical weight

systems. We will discuss how these results suggest that there is a natural choice for the

modified quantum dimensions for quantized Lie superalgebras of type I.

Acknowledgments. I would like to thank Bertrand Patureau-Mirand for helpful dis-

cussions. This work has been partially supported by the NSF grant DMS-0706725.

1. Quantum g and its associated ribbon function. Throughout all links and tan-

gles will have components which are ordered, framed and oriented. Let g be a Lie su-

peralgebra of type I and let h be an indeterminate. Let Uh(g) be the braided quantized

Lie superalgebra over C[[h]] associated to g (see [3] and references within). We say a

Uh(g)-module W is topologically free of finite rank if it is isomorphic as a C[[h]]-module

to V [[h]], where V is a finite-dimensional g-module. The set of isomorphism classes of

irreducible finite-dimensional g-modules are in one to one correspondence with the set of

dominant weights. Each highest weight g-module V can be deformed to a highest weight

topologically free Uh(g)-module Ṽ which is equal to V [[h]].

LetM be the category of topologically free of finite rank Uh(g)-modules. A standard

argument shows that M is a ribbon category (for details see [2]). Let T = RibM be

the ribbon category of framed oriented tangles colored by elements of M in the sense of

Turaev (see [10]). Let F be the usual ribbon functor from T to M (see [10]).

2. The Kontsevich integral and (1,1)-tangle invariants arising from g. In this

section we will recall that the quantum invariants arising from representations of g are

equal to the composition of the Kontsevich integral and certain weight systems.

We recall the notions of Vassiliev invariants, for more details see [1, 5, 2]. To make a

consistent theory of Vassiliev invariants of framed links we restrict to framed links with

even framings.

By a singular link we mean a link with a finite number of self-intersections, each

having distinct tangents. Any numerical link invariant f can be inductively extended to

an invariant of singular link according to the rule
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A Vassiliev invariant [11] of typem is a framed link invariant whose extension vanishes

on any framed singular link with more than m double points. Similarly, a Vassiliev (1, 1)-

tangle invariant of type m is a framed (1, 1)-tangle invariant whose extension vanishes

on any framed singular (1, 1)-tangle with more than m double points.
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Let V = {V1, V2, . . . } be a sequence of simple finite-dimensional representations of g.

Let Q̂g,V be the Reshetikhin–Turaev type C[[h]]-valued quantum group invariant of (1, 1)-

tangles associated to g and V . Let us briefly describe how this invariant is defined, for

more details see [2]. Let T be a (1, 1)-tangle and let us assume that the open component

is labeled with 1 and is oriented down. Color the ith component of T with Ṽi then F (T )

is an endomorphism of Ṽ1. Since V1 is simple it follows that this endomorphism is a scalar

times the identity. Then Q̂g,V (T ) is defined to be this scalar.

The pair (g, V ) also defines a weight system as follows. Let T be a tangle. A chord

diagram on T of degree m is the tangle T with a distinguished set of m unordered pairs of

points of T \∂T , considered up to homeomorphisms preserving each connected component

and the orientation. Let A(T ) be the vector space with basis given by all chord diagrams

on T modulo the four term relation.

We will now describe the category of chord diagrams on tangles, which we denote

by A. The objects of A are the empty set and finite sequences of pairs (ε, i) where ε = ±
and i ∈ N. The morphisms of A are elements of A(T ) for some tangle T . Here each pair

(ε, i) is associated to a point in the boundary of the tangle, where ε and i correspond to

the orientation and the labeling of the component, respectively. As in [2] the category A
is a strict infinitesimal symmetric category with duality.

Let U(g)-mod be the category of finite-dimensional g-modules. As shown in [2], U(g)-

mod is a strict infinitesimal symmetric category with duality (here we fix the standard

non-degenerate supersymmetric invariant even 2-tensor). The following lemma is well

known (see [5]).

Lemma 1. There exists a unique functor

Gg,V : A → U(g)-mod (1)

preserving the tensor product, symmetry, infinitesimal braiding and the duality such that

Gg,V ((+, i)) = Vi.

Let A(1, 1) be the vector space of chord diagrams on (1, 1)-tangles modulo the four

term relation (here we will assume the open component is labeled with 1). LetD ∈ A(1, 1),

then by construction we have Gg,V (D) is an endomorphism of V1 and thus a complex

number times the identity. Define Ŵg,V (D) to be this complex number.

Theorem 2. We have

(1) the mth coefficient of Q̂g,V is a Vassiliev invariant of type m,

(2) Q̂g,V = Ŵg,V ◦ Z,

(3) the weight systems corresponding to Q̂g,V are equal to the family Ŵg,V .

Proof. The proof of this theorem is almost identical to the proof of Theorems 5.2 and

5.5 in [2]. The only difference is that here links are allowed to be colored with more than

one module. One can check that the proofs of [2] can easily be adapted to compensate

for this difference and so we will not repeat the proof here.
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3. Re-normalized link invariants. Let g be a Lie superalgebra of type I, i.e. g is

equal to sl(m|n) or osp(2|2n). Here we assume that m 6= n. Let r be equal to m+ n− 1

if g = sl(m|n) and n + 1 if g = osp(2|2n). The set of isomorphism classes of irreducible

finite-dimensional g-modules is parameterized by Nr−1×C and is divided into two classes:

typical and atypical. For a ∈ Nr−1 × C we denote the corresponding g-module by V (a).

We say Ṽ is a typical Uh(g)-module if V is a typical g-module.

If V is a typical g-module then the super-dimension of V is zero and so it follows

that the quantum dimension of Ṽ is zero. Thus, it follows that if L is a link colored

with elements ofM such that at least one of these colors is a typical Uh(g)-module then

F (L) = 0.

We will now explain how to use F to construct a non-zero link invariant. Let V be

a typical Uh(g)-module. If TV is a framed (1, 1)-tangle colored by Uh(g)-modules such

that the open string is colored by a typical module V , then F (TV ) = x IdV for some x in

C[[h]]. Let us set 〈F (TV )〉 = x. In [3] Geer and Patureau define a map d from the set of

typical representations of Uh(g) to the ring C[[h]][h−1]. Let us rescale d by h|∆
+
1̄
| where

∆+
1̄

is the set of odd positive roots of g. We will still denote this rescaled function by d,

then d takes values in C[[h]]. The assignment TV 7→ d(V )〈F (TV )〉 induces a well defined

invariant of framed links. In particular, in [3] the following theorem is proved.

Theorem 3. Let L be a framed link colored by Uh(g)-modules such that at least one color

is typical. Cut L to obtain a (1, 1)-tangle TV whose open string is colored by a typical

module V . Then the map given by F ′ : L 7→ d(V )〈F (TV )〉 is independent of the cut, i.e.

F ′ is a well defined framed colored link invariant.

Note that any scalar of d also defines a link invariant. In [4] it is shown that d is the

unique function up to a constant such that the assignment in Theorem 3 gives a well

defined invariant. In the next section we explain how the Kontsevich integral suggests

that there is a natural choice for the scaling of d.

4. The invariant Q′
g,V

and the Kontsevich integral. Let V = {V1, V2, . . . } be a

sequence of finite-dimensional g-modules, such that V1 is typical. Let L be a framed

oriented link with ordered components. Define Q′
g,V

to be the C[[h]]-valued invariant of

L given by F ′(LV ) where LV is the link L whose ith component is colored by Ṽi.

Let us use the following notation:

Q′
g,V

=

∞∑
m=0

Q′mh
m, Q̂g,V =

∞∑
m=0

Q̂mh
m, d =

∞∑
m=0

dmh
m.

Now Q′
g,V

(L) = d(Ṽi)Q̂g,V (Ti) where Ti is a (1, 1)-tangle coming from cutting the ith

component of L.

Lemma 4. The coefficient Q′m is a Vassiliev invariant of type m whose weight system is

given by the assignment

D 7→ d0(Ṽi)Ŵg,V (Di)

where Di is an element of A(1, 1) coming from cutting the ith component of D. We will

denote this weight system by W ′
g,V

.
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Proof. First, since Q′m(L) =
∑m

j=0 dj(Ṽi)Q̂m−j(Ti) we have that Theorem 2 implies Q′m is

a Vassiliev invariant of type m. By definition the weight system coming from Q′m is given

by D 7→ Q′m(KD) where KD is any framed singular link with m double points whose

underlying diagram is D. Then

Q′m(KD) =

m∑
j=0

dj(Ṽi)Q̂m−j(Ti) = d0(Ṽi)Q̂m(Ti)

since Ti is a singular (1, 1)-tangle with m double points and Q̂m−j is a Vassiliev invariant

of type m − j. The lemma is completed by Theorem 2 (3) which states that for all

D ∈ A(1, 1) with m chords we have Ŵg,V (D) = Q̂m(LD) where LD is any framed

singular (1, 1)-tangle whose underlying diagram is D.

Theorem 5. The invariant W ′
g,V

is canonical, i.e. up to normalization Q′
g,V

is equal to

W ′
g,V
◦ Z.

Proof. Let L be a link whose ith component is colored with Ṽi = Vi[[h]]. Then the

assignment

L 7→ H(L), given by H(L) = (W ′
g,V
◦ Z)(L) (2)

is a well defined invariant of the colored link L. Here in the right side of the equality in

Equation (2) we ignore the coloring of L. In the rest of the proof in similar situations we

will ignore the coloring of links and tangles.

Recall that V1 is a typical module. Suppose L is equal to the closure of a (1, 1)-tangle

TṼ1
whose open string is the first component of L. Then

H(TṼ1
) := (Gg,V ◦ Z)(TṼ1

)

is an endomorphism of Ṽ1 which satisfies H(L) = H(UṼ1
)〈H(TṼ1

)〉 where UṼ1
is the

unknot colored with Ṽ1. Then we have

(W ′
g,V
◦ Z)(L) = H(UṼ1

)〈H(TṼ1
)〉

= (W ′
g,V
◦ Z)(UṼ1

)〈(Gg,V ◦ Z)(TṼ1
)〉

= (W ′
g,V
◦ Z)(UṼ1

)(Ŵg,V ◦ Z)(TṼ1
)

= (W ′
g,V
◦ Z)(UṼ1

)Q̂g,V (TṼ1
)

where the last equality follows from Theorem 2 (2). Finally, the uniqueness of the invariant

in Theorem 3 implies that d(Ṽ1) must be equal to a multiple of (W ′
g,V
◦ Z)(UṼ1

). Thus,

W ′
g,V

is canonical.

The proof of the theorem suggests that (W ′
g,V
◦ Z)(UṼ1

) is a natural choice of the

normalization of Q′
g,V

.
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