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Abstract. The existence of a traveling wave with special properties to modified KdV and BKdV
equations is proved. Nonlinear terms in the equations are defined by means of a function f of
an unknown u satisfying some conditions.

1. Introduction. Waves on shallow water can be described by nonlinear evolution equa-
tions such as Korteweg–de Vries equation

ut + uxxx − 6uux = 0.

One can extend possible applications if the dispersive term has a more general form
f(u)ux with some appropriate function f . If we want to include dissipation in the model,
the Burgers–Korteweg–de Vries equation will fit better:

ut + uxxx + µuxx − 6uux = 0.

The difference between the two equations lies in the term µuxx which has the effect that
the second equation is similar to the diffusion equation (and also has similar properties).
Again, we replace the dispersive term by a general one f(u)ux. Equations of these type
model many physical phenomena such as shallow-water waves with weakly non-linear
restoring forces, ion-acoustic waves in a plasma, and acoustic waves on a crystal lattice.
They first appeared in [8] but the history is long and complicated, see [1, 2].

Most nonlinear partial differential equations cannot be explicitly solved; one can
study only special solutions such as steady-state ones (ut = 0) or traveling waves
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u(t, x) = z(x − vt), [9]. This last case is especially important since all considered equa-
tions are models of wave phenomena and solutions of this form vary strongly in time in
the whole future: they do not converge as t → ∞ to stationary solutions. The resulting
equation for the function z is an ordinary differential equation which simplifies consider-
ations: methods from the theory of dynamical systems can be used. On the other hand,
ODEs have many solutions and we can put additional conditions on the behavior of the
function z. If the limits z± := limξ→±∞ z(ξ) exist and z+ = z−, then we have a solitary
wave; if z+ 6= z−, we have found a wave front. Some authors distinguish wave front so-
lutions (which have constant sign) from so called kick-profile waves (which change sign
infinitely many times). The existence of traveling waves has been shown for many other
equations [10, 12].

Sometimes, a nonlinear equation has such a form that the method of inverse scattering
can be applied [3]. This method gives the exact solution although the formula for the
solution is not explicit. Many authors search for exact solutions to a given equation which
has a special form (sine or cosine functions, exponential functions) [5, 7, 11, 12] but this is
impossible if the nonlinearity f is general. Here, we will show the existence of a traveling
wave assuming only qualitative behavior of f .

2. Definitions. Let us consider the following modified KdV equation
uxxx + ut + f(u)ux = 0, (1)

and the modified BKdV equation
uxxx + ut + f(u)ux + µuxx = 0, (2)

where µ > 0.
Definition 1. By a traveling wave of equations (1) and (2) we mean any solution

u(x, t) = z(ξ),
where z ∈ C3(R), (t, x) ∈ R×R, ξ = x− vt, v ∈ R\{0} such that there exist finite limits

z− := lim
ξ→−∞

z(ξ) and z+ := lim
ξ→+∞

z(ξ).

Definition 2. We say that the traveling wave is a wave front if
z− 6= z+.

Definition 3. We say that a wave front is a kick-profile wave solution if z(ξ) tends
oscillating to z− (alternatively z+) when ξ → −∞ (alternatively ξ → +∞).

3. The modified KdV equation. In this section, we shall study equation (1) under
the following hypotheses on f ∈ C1([0,∞)):
(i) f(0) = 0,
(ii) there exists z0 such that f ′(z) > 0 for z ∈ (0, z0) and f ′(z) < 0 for z > z0,
(iii) there exists R > 0 such that zf ′(z) is decreasing for z > R.

First, we shall show properties of three functions defined through f which will be used
later. The function k : R+ → R given by

k(z) = zf(z)−
∫ z

0
f(s) ds. (3)
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Notice that
k′(z) = zf ′(z) and k′′(z) = zf ′′(z) + f ′(z).

By assumptions (i) and (ii), k is positive and increasing for z ∈ (0, z0) and decreasing
for z > z0. By assumption (iii), zf ′′(z) + f ′(z) ≤ 0, hence k is concave for z sufficiently
large, so

lim
z→∞

k(z) = −∞.

So, there exists only one point zk > z0 such that k(zk) = 0. Moreover, observe that
k(z) < 0 for z > zk. (4)

Now, let us consider the function g : R+ → R given by

g(z) = 1
2z

∫ z

0
f(s) ds−

∫ z

0
sf(s) ds. (5)

We have
g′(z) = − 1

2

(
zf(z)−

∫ z

0
f(s) ds

)
= − 1

2k(z)

and
g′′(z) = − 1

2zf
′(z).

By assumptions (i) and (ii) we see that g′(0) = 0 and g′′(z) < 0 for z ∈ (0, z0), hence
g′(z) < 0 in (0, z0). Thus g is negative, decreasing and concave in (0, z0). Moreover, if
z > zk then by (4) g′(z) > 0 and by (ii) g′′(z) > 0. Therefore g becomes increasing and
convex for z > zk. Finally, there exists the unique zg > zk such that g(zg) = 0.

Define the third auxiliary function by the formula

h(z) = 1
z

∫ z

0
f(s) ds. (6)

Observe that limz→∞ f(z) = −∞. Indeed, let z̄ > max (z0, R), then, by (iii), we get
zf ′(z) < z̄f ′(z̄), for z ≥ z̄. Hence∫ z

z̄

f ′(s) ds <
∫ z

z̄

z̄f ′(z̄)
s

ds,

and
f(z) < z̄f ′(z̄) (ln z − ln z̄) + f(z̄).

Since z̄f ′(z̄) < 0, we have limz→∞ f(z) = −∞.
Now, by assumptions (i) and (ii), limz→0+ h(z) = 0. Moreover, limz→∞ h(z) = −∞.

By (3) and (6), we get

h′(z) =
zf(z)−

∫ z
0 f(s) ds
z2 = k(z)

z2 .

By (4), we know that h is increasing for z ∈ (0, zk) and then decreasing.
Now, assume that

(iv)
∫ zg

0 f(s) ds > 0.

Theorem 1. Under assumptions (i)–(iv), there exists a velocity of wave v > 0 such that
the equation (1) has at least one wave front solution.
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Proof. Looking for a traveling wave of (1) we get the differential equation

z′′′ − vz′ + f(z)z′ = 0, (7)

which is equivalent to 
z′ = x

x′ = y

y′ = vx− f(z)x.
(8)

We can write down equation (7) as(
z′′ − vz +

∫ z

0
f(s) ds

)′
= 0.

Hence, we get

z′′ = vz −
∫ z

0
f(s) ds+A, A ∈ R.

We have got a conservative system with the potential

U(z) = − 1
2vz

2 −Az +
∫ z

0
(z − s)f(s) ds.

The existence of wave fronts of (1) is equivalent to existence of a heteroclinic orbit of
the system (8) between points (z−, 0, 0) and (z+, 0, 0).

In our case, to get the heteroclinic orbit of (8) the potential U might have two max-
imum points: z− and z+ at which U has the same values and one minimum point z1,
where z− < z1 < z+.

Let z− = 0 and U(0) = 0, hence A = 0. We have

U(z) = − 1
2vz

2 +
∫ z

0
(z − s)f(s) ds, (9)

and
U ′(z) = −vz +

∫ z

0
f(s) ds. (10)

Notice that U ′(0) = 0 and U ′′(0) = −v+f(0) < 0. Hence, the potential U has a maximum
at 0.

Set
v := 1

zg

∫ zg

0
f(s) ds, (11)

where zg is the zero of g. By (iv), we get v > 0. Now, we have

U(zg) = g(zg) = 0.

Observe that there exists a point z1, z1 < zk < zg such that h(z1) = h(zg). By (10), we
have

U ′(z1) = U ′(zg) = 0.

Moreover,

U ′′(zg) = − 1
zg

∫ zg

0
f(s) ds+ f(zg) < 0.
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Indeed, by (4), k(zg) < 0, so zgf(zg)−
∫ zg

0 f(s) ds < 0. Similarly, we get

U ′′(z1) = − 1
z1

∫ z1

0
f(t) dt+ f(z1) > 0.

Finally, we get that the potential U has a maximum equal to 0 at 0 and zg and a minimum
at z1. Moreover, U(z) ≤ 0 for z ∈ (0, zg). Indeed, by (6), (10) and (11), U(z) is increasing
for z ∈ (z1, zg) and decreasing in the remaining cases. Hence, there exists a heteroclinic
orbit between 0 and zg and the proof is complete.

4. The modified BKdV equation. Here, we shall consider equation (2).

Theorem 2. Let f ∈ C2([0,∞),R) satisfy the following assumptions:

(i) f(0) = 0,
(ii) f ′(z) > 0 for z > 0.

Then, for all v ∈ (0, v0), where v0 = limz→∞ f(z) ∈ (0,+∞], the equation (2) has at
least one wave front solution (a kick-profile wave solution in a case).

Proof. When we look for traveling wave solutions of (2) we get the ordinary differential
equation

z′′′ − vz′ + f(z)z′ + µz′′ = 0.

Hence
(z′′ − vz + F (z) + µz′)′ = 0,

where F (z) =
∫ z

0 f(s) ds. By the above, we get
z′′ = vz − F (z)− µz′ +A,

which is equivalent to the system{
z′ = y

y′ = vz − F (z)− µy +A.
(12)

Due to the definition, the existence of wave fronts of (2) is equivalent to the existence of
an orbit of system (12) connecting points (z−, 0) and (z+, 0).

Set A = 0. The stationary points of (12) sit on z axis, where vz = F (z). Since F is
convex and F (0) = 0, we have at most two such points and exactly two (notice that F
is defined only for z ≥ 0) iff v ∈ (0, v0). The Jacobi matrix of the vector field defined by
the right-hand side of (12) equals at these stationary points

J(z±, 0) =
[

0 1
v − f(z±) −µ

]
and the characteristic polynomial is

P±(λ) = λ2 + µλ+ f(z±)− v.
Since 0 = f(z−) < v, the eigenvalues at z− have opposite signs and this stationary point
is a saddle. Similarly f(z+) > v and the eigenvalues

λ1,2 =
(
−1

2µ±
√

1
4µ

2 + v − f(z+)
)
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are both real negative if f(z+) − v ≤ 1
4µ

2—in this case the second stationary point is a
stable node, or complex conjugate with negative real parts if f(z+) − v > 1

4µ
2—it is a

stable focus.
It remains to show that the trajectory tending to (z−, 0) as t → −∞ is the sought

heteroclinic orbit. Let us consider the function of energy E(z, y) = 1
2y

2 +
∫ z

0 (F (t)−vt) dt.
The directional derivative of E in direction given by the vector field (12) E′ = −y2, hence
E is decreasing along all trajectories. On the other hand, E tends to ∞ if ‖(z, y)‖ → ∞,
that gives all trajectories are bounded as t→ +∞. Moreover, E(z−, 0) = 0 and E(0, y) =
1
2y

2 ≥ 0, hence the trajectory outgoing from (z−, 0) cannot escape from the half-plane
z > 0.

On the other hand, the divergence of the vector field equals −1, thus, by the Bendixson
criterion, there are no periodic orbits neither homoclinic ones. Therefore the trajectory
outgoing from (z−, 0) will tend to the second stationary point due to the Poincaré–
Bendixson Theorem. This ends the proof; the kick-profile wave is obtained for the case
f(z+)− v > 1

4 .
Remark. We have set arbitrarily A = 0. For A 6= 0, at least one of two stationary points
of (12) is lost: if A > 0 it remains only z+, if A < 0 we can even lose both points for
sufficiently small v.
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