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Abstract. The lower semicontinuity of functionals of the type
∫

Ω f(x, u, v,∇u) dx with respect
to the (W 1,1 × Lp)-weak∗ topology is studied. Moreover, in absence of lower semicontinuity, an
integral representation in W 1,1 × Lp for the lower semicontinuous envelope is also provided.

1. Introduction. In this paper we consider energies depending on two vector fields with
different behaviours: u ∈W 1,1(Ω;Rn), v ∈ Lp(Ω;Rm), Ω being a bounded open set of RN .
Let 1 < p ≤ +∞, for every (u, v) ∈W 1,1(Ω;Rn)× Lp(Ω;Rm) define the functional

J(u, v) :=
∫

Ω
f
(
x, u(x), v(x),∇u(x)

)
dx (1)

where f : Ω × Rn × Rm × Rn×N → [0,+∞) is a continuous function with linear growth
in the last variable and p-growth in the third variable (cf. (H1p) and (H1∞) below).

The energies (1), which generalize those considered by [14], [15] and [8], have been
introduced to deal with equilibria for systems depending on elastic strain and chemical
composition. In this context a multiphase alloy is represented by the set Ω, the deforma-
tion gradient is given by ∇u, and v (when m = 1) denotes the chemical composition of
the system. We also recall that our result may find applications also in the framework of
Elasticity, when dealing with Cosserat’s theory, see [19]. In [14], the density f ≡ f(v,∇u)
is a convex-quasiconvex function, while in our model we also take into account hetero-
geneities and the deformation, without imposing any convexity restriction.
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We are interested in studying the lower semicontinuity and relaxation of (1) with
respect to the L1-strong×Lp-weak convergence. Clearly, bounded sequences {un} ⊂
W 1,1(Ω;Rn) may converge in L1, up to a subsequence, to a BV function. In this pa-
per we restrict our analysis to limits u which are in W 1,1(Ω;Rn). Thus, our results can
be considered as a step towards the study of relaxation in BV(Ω;Rn) × Lp(Ω;Rm) of
functionals (1). (For the definition and properties of BV spaces we refer to [3].)

We will consider separately the cases 1 < p <∞ and p =∞. To this end we introduce
for 1 < p < +∞ the functional

Jp(u, v) := inf
{

lim inf J(un, vn) : un ∈W 1,1(Ω;Rn), vn ∈ Lp(Ω;Rm),
un → u in L1, vn ⇀ v in Lp

}
, (2)

for any pair (u, v) ∈W 1,1(Ω;Rn)× Lp(Ω;Rm), and for p =∞ the functional

J∞(u, v) := inf
{

lim inf J(un, vn) : un ∈W 1,1(Ω;Rn), vn ∈ L∞(Ω;Rm),

un → u in L1, vn
∗
⇀ v in L∞

}
, (3)

for any pair (u, v) ∈W 1,1(Ω;Rn)× L∞(Ω;Rm).
For any p ∈ (1,+∞] we will achieve the following integral representation (see Theo-

rems 12 and 14):

Jp(u, v) =
∫

Ω
CQf

(
x, u(x), v(x),∇u(x)

)
dx,

where CQf represents the convex-quasiconvexification of f defined in (6).

2. Notation and general facts. In this section we introduce the sets of assumptions we
will make to obtain our results. We prove some properties related to convex-quasiconvex
functions and we recall several facts that will be useful through the paper.

2.1. Assumptions. Let 1 < p < +∞, to obtain a characterization of the relaxed func-
tional Jp in (2), we will make several assumptions on the continuous function

f : Ω× Rn × Rm × Rn×N → [0,+∞).
They are inspired by the set of assumptions in [17] for the case with no dependence on v.

(H1p) There exists a constant C such that
1
C

(|v|p + |ξ|)− C ≤ f(x, u, v, ξ) ≤ C(1 + |v|p + |ξ|),

for every (x, u, v, ξ) ∈ Ω× Rn × Rm × Rn×N .
(H2p) For every compact set K of Ω× Rn there exists a continuous function ωK : R →

[0,+∞) with ωK(0) = 0 such that
|f(x, u, v, ξ)− f(x′, u′, v, ξ)| ≤ ωK(|x− x′|+ |u− u′|)(1 + |v|p + |ξ|)

for every (x, u, v, ξ) and (x′, u′, v, ξ) in K × Rm × Rn×N .
Moreover, given x0 ∈ Ω, and ε > 0 there exists δ > 0 such that if |x−x0| ≤ δ then
∀(u, v, ξ) ∈ Rn × Rm × Rn×N f(x, u, v, ξ)− f(x0, u, v, ξ) ≥ −ε(1 + |v|p + |ξ|).

In order to characterize the functional J∞ defined in (3) we will replace assumptions
(H1p) and (H2p) by the following ones.
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(H1∞) GivenM > 0, there exist a bounded continuous function GM : Ω×Rn → [0,+∞)
and CM > 0 such that if |v| ≤M then for all (x, u, ξ) ∈ Ω× Rn × Rn×N

1
CM

GM (x, u)|ξ| − CM ≤ f(x, u, v, ξ) ≤ CMGM (x, u)(1 + |ξ|).

(H2∞) For everyM > 0, and for every compact set K of Ω×Rn there exists a continuous
function ωM,K : R→ [0,+∞) with ωM,K(0) = 0 such that if |v| ≤M then

|f(x, u, v, ξ)− f(x′, u′, v, ξ)| ≤ ωM,K(|x− x′|+ |u− u′|)(1 + |ξ|)
for every (x, u, ξ), (x′, u′, ξ) ∈ K × Rn×N .
Moreover, givenM > 0, x0 ∈ Ω, and ε > 0 there exists δ > 0 such that if |v| ≤M
and |x− x0| ≤ δ then
∀(u, ξ) ∈ Rn × Rn×N f(x, u, v, ξ)− f(x0, u, v, ξ) ≥ −εGM (x, u)(1 + |ξ|),

where the function GM is as in (H1∞).

2.2. Convex-quasiconvex functions. We start recalling the notion of convex-quasi-
convex function, presented in [14] (see also [19, Definition 4.1], [15] and [13]). This notion
plays, in the context of lower semicontinuity problems where the density depends on two
fields v,∇u, the role of the well known notion of quasiconvexity introduced by Morrey
for the lower semicontinuity of functionals where the dependence is just on ∇u.
Definition 1. A Borel measurable function h : Rm × Rn×N → R is said to be convex-
quasiconvex if there exists a bounded open set D of RN such that

h(v, ξ) ≤ 1
|D|

∫
D

h
(
v + η(x), ξ +∇ϕ(x)

)
dx, (4)

for every (v, ξ) ∈ Rm×Rn×N , ϕ ∈W 1,∞
0 (D;Rn) and η ∈ L∞(D;Rm) with

∫
D
η(x) dx = 0.

Remark 2.
(i) It can be easily seen that, if h is convex-quasiconvex, then condition (4) is true for

any bounded open set D ⊂ RN .
(ii) We recall that a convex-quasiconvex function is separately convex.
(iii) Through this paper we will work with functions f defined in Ω×Rn ×Rm ×Rn×N

and when saying that f is convex-quasiconvex we mean the above definition with
respect to the last two variables of f .

The following result adapts to the context of W 1,1 × Lp, i.e. growth conditions ex-
pressed by (H1p), a well known result due to Marcellini in [20] (see also Proposition 2.32
in [10] or Lemma 5.42 in [3]). Indeed, the following proposition follows as a particular
case of [9, Proposition 2.11].
Proposition 3. Let f : Ω × Rn × Rm × Rn×N → R be a separately convex function in
each entry of the variables (v, ξ), satisfying the growth condition

|f(x, u, v, ξ)| ≤ c(1 + |ξ|+ |v|p) ∀(x, u, v, ξ) ∈ Ω× Rn × Rm × Rn×N

for some p > 1. Then, if we denote by p′ the conjugate exponent of p, there exists a
constant γ > 0 such that
|f(x, u, v, ξ)− f(x, u, v′, ξ′)| ≤ γ

[
|ξ − ξ′|+

(
1 + |v|p−1 + |v′|p−1 + |ξ|1/p

′
+ |ξ′|1/p

′)
|v− v′|

]
for every ξ, ξ′ ∈ Rn×N , v, v′ ∈ Rm and (x, u) ∈ Ω× Rn.
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A similar result holds for W 1,1 × L∞ (i.e. growth conditions expressed by (H1∞)).

Proposition 4. Let f : Ω × Rn × Rm × Rn×N → R be a separately convex function in
each entry of the variables (v, ξ), satisfying assumption (H1∞). Then, given M > 0, there
exists a constant β(M,n,m,N) such that

|f(x, u, v, ξ)− f(x, u, v′, ξ′)| ≤ β(1 + |ξ|+ |ξ′|)|v − v′|+ β|ξ − ξ′|, (5)
for every v, v′ ∈ Rm, such that |v| ≤ M and |v′| ≤ M , for every ξ, ξ′ ∈ Rn×N and for
every (x, u) ∈ Ω× Rn.

We introduce the notion of convex-quasiconvexification with respect to the last vari-
ables for a function f : Ω×Rn ×Rm ×Rn×N → [0,+∞). This notion is crucial in order
to deal with the subsequent relaxation processes.

If h : Rm × Rn×N → R is any given Borel measurable function bounded from below,
the convex-quasiconvex envelope of h can be defined as the largest convex-quasiconvex
function below h:

CQh(v, ξ) := sup{g(v, ξ) : g ≤ h, g convex-quasiconvex}. (6)
Moreover, by Theorem 4.16 in [19]

CQh(v, ξ) = inf
{ 1
|D|

∫
D

h
(
v + η(x), ξ +∇ϕ(x)

)
dx :

η ∈ L∞(D;Rm),
∫
D

η(x) dx = 0, ϕ ∈W 1,∞
0 (D;Rn)

}
. (7)

Consequently, given a Carathéodory function f : Ω × Rn × Rm × Rn×N → R, by
CQf(x, u, v, ξ) we denote the convex-quasiconvexification of f(x, u, v, ξ) with respect to
the last two variables.

As for convex-quasiconvexity, condition (7) can be stated for any bounded open set
D ⊂ RN and it can be also showed that if f satisfies a growth condition of the type
(H1p) then in (4) and (7) the spaces L∞ and W 1,∞

0 can be replaced by Lp and W 1,1
0 ,

respectively.
The following results will be exploited in the sequel. We omit the proofs since they

are very similar to [21, Proposition 2.2], in turn inspired by [10].

Proposition 5. Let 1 < p < +∞. Let Ω ⊂ RN be a bounded open set and f : Ω×Rn ×
Rm × Rn×N → [0,+∞) be a continuous function satisfying (H1p) and (H2p). Let CQf
be the convex-quasiconvexification of f in (7). Then CQf satisfies (H1p), (H2p) and is a
continuous function.

Analogously we have

Proposition 6. Let Ω ⊂ RN be a bounded open set, let α : [0,+∞) → [0,+∞) be a
convex and increasing function, such that α(0) = 0 and let f : Ω× Rn × Rm × Rn×N →
[0,+∞) be a continuous function satisfying the following conditions:

• For a.e. (x, u) ∈ Ω× Rn and for every (v, ξ) ∈ Rm × Rn×N

1
C

(α(|v|) + |ξ|)− C ≤ f(x, u, v, ξ) ≤ C
(
1 + α(|v|) + |ξ|

)
. (8)
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• For every compact set K ⊂ Ω × Rn there exists a continuous function ω′K : R →
[0,+∞) such that ω′K(0) = 0 and

|f(x, u, v, ξ)− f(x′, u′, v, ξ)| ≤ ω′K
(
|x− x′|+ |u− u′|

)(
1 + α(|v|) + |ξ|

)
, (9)

for all (x, u), (x′, u′) ∈ K and (v, ξ) ∈ Rm × Rn×N .
• For every x0 ∈ Ω and ε > 0, there exists δ > 0 such that

|x− x0| ≤ δ ⇒ f(x, u, v, ξ)− f(x0, u, v, ξ) ≥ −ε
(
1 + α(|v|) + |ξ|

)
, (10)

for all (u, ξ) ∈ Rn × Rm × Rn×N .
Let CQf be the convex-quasiconvexification of f (see (7)). Then CQf satisfies conditions
analogous to (8), (9) and (10). Moreover, CQf is a continuous function.
Remark 7. We observe that from one hand (8), (9), (10) generalize (H1p) and (H2p),
and from the other hand they can be regarded as a stronger version of (H1∞) and (H2∞).

In order to provide an integral representation for Jp in (2) and J∞ in (3) onW 1,1×Lp
(1 < p < +∞) and W 1,1 × L∞ respectively, we prove some preliminary results.

For every p ∈ (1,+∞] we introduce the functional JCQf : L1(Ω;Rn)× Lp(Ω;Rm) →
R ∪ {+∞} defined as

JCQf (u, v) :=
{∫

Ω CQf
(
x, u(x), v(x),∇u(x)

)
dx if (u, v) ∈W 1,1(Ω;Rn)× Lp(Ω;Rm)

+∞ otherwise,
and its relaxed one, also defined in L1(Ω;Rn)× Lp(Ω;Rm),

JCQf (u, v) := inf
{

lim inf
n

JCQf (un, vn) : (un, vn) ∈W 1,1(Ω;Rn)× Lp(Ω;Rm),

un → u in L1, vn
∗
⇀ v in Lp

}
.

Lemma 8. Let f : Ω × Rn × Rm × Rn×N → [0,+∞) be a continuous function. Let
p ∈ (1,+∞] and consider the functionals J and JCQf and their corresponding relaxed
functionals Jp and JCQf . If f satisfies conditions (H1p)–(H2p) (if p ∈ (1,+∞)), and
both f and CQf satisfy (H1∞)–(H2∞) (if p = +∞), then

Jp(u, v) = JCQf (u, v) (11)
for every (u, v) ∈W 1,1(Ω,Rn)× Lp(Ω;Rm).
Remark 9. First we observe that the same proof shows that equality (11) holds also in
BV(Ω;Rn)×Lp(Ω;Rm), p ∈ (1,+∞], up to the extension to L1(Ω;Rn)×Lp(Ω;Rm) of J
in (1) as

J(u) =


∫

Ω
f
(
x, u(x), v(x),∇u(x)

)
dx if (u, v) ∈W 1,1(Ω;Rn)× Lp(Ω;Rm),

+∞ otherwise,

and the subsequent extension of Jp and J∞ to L1(Ω;Rn) × Lp(Ω;Rm) via formulae (2)
and (3).

We recall that a function u ∈ L1(Ω;RN ) is said to be of bounded variation, and this
is denoted by u ∈ BV(Ω;RN ), if the distributional derivative of u is representable by a
Radon measure in Ω.

For more details concerning the theory of functions of bounded variation we refer the
reader to [3].
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We emphasize also that in the above lemma, by virtue of Proposition 5, if p ∈ (1,+∞),
it is enough to assume growth and continuity hypotheses just on f (and not on CQf). If
p = +∞, by virtue of Proposition 6, we can also only make assumptions on f , replacing
conditions (H1∞) and (H2∞) by (8)–(10).

Proof. The argument is close to the proof of [21, Lemma 3.1]. First we observe that,
since CQf ≤ f , we have JCQf ≤ Jp. Next we prove the opposite inequality in the
nontrivial case that JCQf (u, v) < +∞. For fixed δ > 0, we can consider (un, vn) ∈
W 1,1(Ω;Rn)× Lp(Ω;Rm) with un → u strongly in L1(Ω;Rn), vn

∗
⇀ v in Lp(Ω;Rm) and

such that
JCQf (u, v) ≥ lim

n

∫
Ω
CQf

(
x, un(x), vn(x),∇un(x)

)
dx− δ.

By the results from [8] and [9], for each n there exists a sequence {(un,k, vn,k)} converging
to (un, vn) weakly in W 1,1(Ω;Rn)× Lp(Ω;Rm) such that∫

Ω
CQf

(
x, un(x), vn(x),∇un(x)

)
dx = lim

k

∫
Ω
f
(
x, un,k(x), vn,k(x),∇un,k(x)

)
dx.

Consequently

JCQf (u, v) ≥ lim
n

lim
k

∫
Ω
f
(
x, un,k(x), vn,k(x),∇un,k(x)

)
dx− δ, (12)

lim
n

lim
k
‖un,k − u‖L1 = 0,

and
vn,k

∗
⇀ v in Lp as k → +∞ and n→ +∞.

Via a diagonal argument (remind that weak Lp and weak∗ L∞-topologies are metriz-
able on bounded sets), there exists a sequence {(un,kn , vn,kn)} satisfying un,kn → u in
L1(Ω;Rn), vn,kn

∗
⇀ v in Lp(Ω;Rm) and realizing the double limit in the right hand side

of (12). Thus

JCQf (u, v) ≥ lim
n

∫
Ω
f
(
x, un,kn

(x), vn,kn
(x),∇un,kn

(x)
)
dx− δ ≥ Jp(u, v)− δ.

If we let δ go to 0 the conclusion follows.

2.3. Some results on measure theory. Let Ω be a generic open subset of RN , we
denote by M(Ω) the space of all signed Radon measures in Ω with bounded total vari-
ation. By the Riesz Representation Theorem,M(Ω) can be identified to the dual of the
separable space C0(Ω) of continuous functions on Ω vanishing on the boundary ∂Ω. The
N -dimensional Lebesgue measure in RN is designated as LN while HN−1 denotes the
(N − 1)-dimensional Hausdorff measure. If µ ∈ M(Ω) and λ ∈ M(Ω) is a nonnegative
Radon measure, we denote by dµ

dλ the Radon–Nikodým derivative of µ with respect to λ.
By a generalization of the Besicovitch Differentiation Theorem (see [2, Proposition 2.2]),
it can be proved that there exists a Borel set E ⊂ Ω such that λ(E) = 0 and

dµ

dλ
(x) = lim

ρ→0+

µ(x+ ρC)
λ(x+ ρC)

for all x ∈ Suppµ \E and any open convex set C containing the origin. (Recall that the
set E is independent of C.)
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We also recall the following generalization of Lebesgue–Besicovitch Differentiation
Theorem, as stated in [18, Theorem 2.8].

Theorem 10. If µ is a nonnegative Radon measure and if f ∈ L1
loc(Rd;µ) then

lim
ε→0+

1
µ(x+ εC)

∫
x+εC

|f(y)− f(x)| dµ(y) = 0,

for µ-a.e. x ∈ Rd and for every bounded, convex, open set C containing the origin.

In particular, if v ∈ L∞(Ω;Rm), then, for LN -a.e. x ∈ Ω

lim
ε→0

1
|Bε(x)|

∫
Bε(x)

|v(y)− v(x)| dy = 0. (13)

In the sequel we exploit the Calderón–Zygmund theorem for u ∈ BV, cf. [3, Theorem
3.83, page 176]

lim
ε→0

1
ε|Bε(x)|

∫
Bε(x)

|u(y)− u(x)−∇u(x)(y − x)| dy = 0 LN -a.e. x ∈ Ω. (14)

3. Lower semicontinuity in W 1,1 × Lp, 1 < p < +∞. This section is devoted to
provide a lower bound for the integral representation of Jp in (2) under assumptions
(H1p) and (H2p), as stated in Theorem 14. Clearly this is equivalent to proving the lower
semicontinuity with respect to the L1-strong × Lp-weak topology of∫

Ω
CQf

(
x, u(x), v(x),∇u(x)

)
dx,

when (u, v) ∈W 1,1(Ω;Rn)× Lp(Ω;Rm).
Indeed, we prove the following result

Theorem 11. Let Ω be a bounded open set of RN , and let f : Ω× Rn × Rm × Rn×N →
[0,+∞) be a continuous function. Assuming that f satisfies hypotheses (H1p) and (H2p),
and it is convex-quasiconvex, we deduce that

∫
Ω f
(
x, u(x), v(x),∇u(x)

)
dx is lower semi-

continuous in W 1,1(Ω;Rn) × Lp(Ω;Rm) with respect to the (L1-strong × Lp-weak) con-
vergence.

Proof. The proof is mostly a combination of the theorems in [18] and [14], which used
already some ideas from [17]. For convenience of the reader we present here some details,
however we may refer to some separate results in the papers mentioned above.

Let
G(u, v) =

∫
Ω
f
(
x, u(x), v(x),∇u(x)

)
dx.

It is enough to prove that for every (u, v) ∈ W 1,1(Ω;Rn) × Lp(Ω;Rm), G(u, v) ≤
lim inf J(un, vn) for any un → u in L1 with un ∈W 1,1(Ω;Rn) and vn ⇀ v in Lp.

Using the same arguments as in [1, Proof of Theorem II.4] (see also [17, Proposi-
tion 2.4]) and the density of smooth functions in Lp, we can reduce to the case where
un ∈ C∞0 (RN ;Rn) and vn ∈ C∞0 (RN ;Rm).

Moreover, we can also suppose
lim inf
n→∞

J(un, vn) = lim
n→∞

J(un, vn) < +∞.
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Then J(un, vn) is bounded and so, up to a subsequence, µn := f(x, un, vn,∇un)dx ∗
⇀ µ

in the sense of measures for some positive measure µ.
By the Radon–Nikodým theorem, µ = gLN +µs for some g ∈ L1(Ω), with µs singular

with respect to LN . It will be enough to prove the inequality
g(x) ≥ f

(
x, u(x), v(x),∇u(x)

)
, LN -a.e. x ∈ Ω. (15)

Indeed, once proved (15), since µn
∗
⇀ µ, by the lower semicontinuity of µ, and since

µs is nonnegative,

lim
n→+∞

J(un, vn) = lim
n→+∞

∫
Ω
f
(
x, un(x), vn(x),∇un(x)

)
dx

≥
∫

Ω
dµ(x) =

∫
Ω
g(x) dx+

∫
Ω
dµs(x) ≥

∫
Ω
f
(
x, u(x), v(x),∇u(x)

)
dx.

In order to prove (15), we follow the proofs of Theorem 2.1 in [17] and condition (2.3)
in [14]. We start by freezing the terms x and u. This will be achieved through Steps 1–5.

By the Besicovitch derivation theorem

g(x) = lim
ε→0

µ(Bε(x))
|Bε(x)| ∈ R LN -a.e. x ∈ Ω. (16)

Let x0 be any element of Ω satisfying (16), (14) and (13) (notice that such an x0
can be taken in Ω up to a set of Lebesgue measure zero) and prove that g(x0) ≥
f
(
x0, u(x0), v(x0),∇u(x0)

)
. First remark that, as noticed before, since vn ⇀ v in Lp,

we have ‖vn‖Lp , ‖v‖Lp ≤ C.
Step 1. Localization. This part can be reproduced in the same way as in [17], pages 1085–
1086. We present some details for the reader’s convenience. We start providing a first
estimate for g. Observe that we can choose a sequence ε→ 0+ such that µ

(
∂Bε(x0)

)
= 0.

Let B := B1(0). Applying Proposition 1.203 iii) in [16], we have

g(x0) = lim
ε→0

1
εN

µ(Bε(x0))
|B|

= lim sup
ε→0

lim
n→+∞

1
εN |B|

∫
Bε(x0)

f
(
y, un(y), vn(y),∇un(y)

)
dy

= lim sup
ε→0

lim
n→+∞

1
|B|

∫
B

f
(
x0 + εx, un(x0 + εx), vn(x0 + εx),∇un(x0 + εx)

)
dx

≥ lim sup
ε→0

lim
n→+∞

1
|B|

∫
B

f
(
x0 + εx, u(x0) + εwn,ε(x), vn(x0 + εx),∇wn,ε(x)

)
dx

where wn,ε(x) = (un(x0 + εx)− u(x0))/ε.
Step 2. Blow-up. Next we will “identify the limits” of wn,ε and vn(x0 + ε ·) in a sense to
be made precise below. Define w0 : B → Rn by w0(x) = ∇u(x0)x. Then

lim
ε→0

lim
n→+∞

‖wn,ε − w0‖L1(B) = lim
ε→0

lim
n→+∞

∫
B

∣∣∣un(x0 + εx)− u(x0)
ε

−∇u(x0)x
∣∣∣ dx

= lim
ε→0

1
εN+1

∫
Bε(x0)

|u(y)− u(x0)−∇u(x0)(y − x0)| dy = 0

where we have used (14) in the last identity.
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Let q be the Hölder conjugate exponent of p. Since Lq is separable, consider {ϕl} a
countable dense set of functions in Lq(B). Then

lim
ε→0

lim
n→+∞

∣∣∣∫
B

(
vn(x0 + εx)− v(x0)

)
ϕl(x) dx

∣∣∣ = lim
ε→0

∣∣∣∫
B

(
v(x0 + εx)− v(x0)

)
ϕl(x) dx

∣∣∣ = 0

where we have used in the last identity the fact that x0 is a Lebesgue point for v.
Step 3. Diagonalization. Arguing as in [18] and [14] we can use a diagonalization argument
to find εn ∈ R+, wn ∈ W 1,∞(RN ;Rn) and vn ∈ Lp(B;Rm) ∩ C∞0 (RN ;Rm), such that
εn → 0, wn → w0 in L1(B;Rn), vn ⇀ v(x0) in Lp(B;Rm) as n→ +∞ and

g(x0) ≥ lim
n→+∞

1
|B|

∫
B

f
(
x0 + εnx, u(x0) + εnwn(x), vn(x),∇wn(x)

)
dx.

Step 4. Truncation. We show that the sequences {wn} and {vn} constructed in the
preceding steps can be replaced by sequences {w̃n} ⊂ W 1,∞

loc (RN ;Rn) and {ṽn} ⊂
Lp(B;Rm) ∩ C∞0 (RN ;Rm) such that ‖w̃n‖W 1,1(B;Rn) ≤ C, w̃n → w0 in L∞(B;Rn),
‖ṽn‖Lp(B;Rn) ≤ C, ṽn ⇀ v(x0) in Lp(B;Rm) and

g(x0) ≥ lim
n→∞

1
|B|

∫
B

f
(
x0 + εnx, u(x0) + εnw̃n(x), ṽn(x),∇w̃n(x)

)
dx.

Let 0 < s < t < 1 and λ > 1 and define ϕs,t a cut-off function such that 0 ≤ ϕs,t ≤ 1,
ϕs,t(τ) = 1 if τ ≤ s, ϕs,t(τ) = 0 if τ ≥ t and ‖ϕ′s,t‖∞ ≤ C

t−s .
Set

ŵn(x;λ) := |wn(x)− w0(x)|+ |vn(x)|
λ

,

wn,λs,t (x) := w0(x) + ϕs,t(ŵn(x;λ))(wn(x)− w0(x)),

vn,λs,t (x) := v(x0) + ϕs,t(ŵn(x;λ))(vn(x)− v(x0)).
Clearly, ∥∥wn,λs,t − w0

∥∥
∞ ≤ t and vn,λs,t ⇀ v(x0) in Lp as n→ +∞. (17)

Define
hn(x, s, b, A) := f

(
x0 + εnx, u(x0) + εns, b, A

)
. (18)

By the growth conditions there exists n0 ∈ N such that for all n ≥ n0,
c(|b|p + |A|)− C ≤ hn(x, s, b, A) ≤ C(|b|p + |A|+ 1) (19)

for some constants c, C > 0. Consequently there exists a constant C > 0, possibly de-
pending on x0, such that

−C ≤ hn(x,w0(x), v(x0),∇w0(x)) ≤ C. (20)
Also ∫

B

hn
(
x,wn,λs,t (x), vn,λs,t (x),∇wn,λs,t (x)

)
dx

=
∫
B∩{ŵn(x;λ)≤s}

hn
(
x,wn, vn,∇wn

)
dx

+
∫
B∩{s<ŵn(x;λ)≤t}

hn
(
x,wn,λs,t , v

n,λ
s,t ,∇w

n,λ
s,t

)
dx

+
∫
B∩{ŵn(x;λ)>t}

hn
(
x,w0(x), v(x0),∇w0(x)

)
dx := I1 + I2 + I3.

(21)
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By the growth conditions and the definition of hn we have

I3 ≤ C
∣∣∣{x ∈ B : ŵn(x;λ) > t

}∣∣∣. (22)

On the other hand, if s < ŵn(x;λ) < t then

∇wn,λs,t (x) = ∇u(x0) + ϕs,t(ŵn(x;λ))
(
∇wn(x)−∇w0(x)

)
+
(
wn(x)− w0(x)

)
⊗ ϕ′s,t

(
ŵn(x;λ)

)
∇
(
ŵn(x;λ)

)
.

By (19) we have

I2 ≤ C
∫
B∩
{
s<ŵn(x;λ)≤t

} 1 + |∇wn(x)−∇w0(x)|+ |vn(x)− v(x0)|p dx

+ C

t− s

∫
B∩{s<ŵn(x;λ)≤t}

|wn(x)− w0(x)| |∇(ŵn(x;λ))| dx. (23)

We remark that for almost every t and λ

lim
s→t−

∫
{ŵn(x;λ)<t}

(
1 + |∇wn(x)−∇u(x0)|+ |vn(x)− v(x0)|p

)
dx = 0 (24)

and by the coarea formula

lim
s→t−

1
t− s

∫
B∩{s<ŵn(x;λ)≤t}

|wn(x)− w0(x)|
∣∣∇(ŵn(x;λ)

)∣∣ dx
≤ lim
s→t−

1
t− s

∫
B∩{s<ŵn(x;λ)≤t}

(
ŵn(x;λ)

) ∣∣∇(ŵn(x;λ)
)∣∣ dx

≤ tHN−1({x ∈ B : ŵn(x;λ) = t}
)
.

(25)

Due to the fact that {vn} is a C∞0 (RN ;Rm) sequence, for every C > 0, for every n there
exists λn ∈ [1,+∞) such that λn ≤ λn+1, λn → +∞ as n→ +∞ and∫

B

∣∣∇|vn|∣∣
λn

dx ≤ C. (26)

On the other hand, by (19) and (20)∫
B∩{ŵn(x;λn)≤1}

|∇(|wn(x)− w0(x)|)| dx

≤
∫
B∩{ŵn(x;λn)≤1}

(|∇wn(x)|+ C) dx

≤ C
∫
B

(
hn
(
x, un(x), vn(x),∇wn(x)

)
+ 1
)
dx ≤ C

since {wn} and {vn} are convergent.
Thus, by (26) ∫

B∩{ŵn(x;λn)≤1}

∣∣∇(ŵn(x;λn))
∣∣ dx ≤ C.

Recall that by the previous step {vn} is weakly converging in Lp, thus
∫
B
|vn|p dx ≤ C

and by Hölder inequality also
∫
B
|vn| dx ≤ C. Consequently, since λn → +∞ it follows

that
∫
B
|vn|
λn

dx→ 0 as n→ +∞. Hence, by Lemma 2.6 in [17] there exists

tn ∈
[(
‖wn − w0‖L1 +

‖vn‖L1

λn

)1/2
,
(
‖wn − w0‖L1 +

‖vn‖L1

λn

)1/3]
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such that (24) and (25) hold (with t = tn), and

tnHN−1({x ∈ B : ŵn(x;λn) = tn}
)
≤ C

ln
(
‖wn − w0‖L1 + ‖vn‖L1

λn

)−1/6 . (27)

Observe that the right hand side of (27) tends to 0 as n→ +∞ since ‖wn −w0‖L1 → 0,
and ‖vn‖L1

λn
→ 0 as n→ +∞.

According to (24) and (25) we may choose 0 < sn < tn such that∫
{sn<ŵn(x;λn)≤tn}

(
1 + |∇wn(x)−∇u(x0)|+ |vn(x)− v(x0)|p

)
dx = O(1/n), (28)

1
tn − sn

∫
B∩{sn<ŵn(x;λn)≤tn}

(
ŵn(x;λn)

)
|∇(ŵn(x;λn))| dx

≤ tnHN−1({x ∈ B : ŵn(x;λn) = tn}
)

+O
( 1
n

)
.

(29)

Set
w̃n(x) := wn,λn

sn,tn(x), ṽn(x) := vn,λn

sn,tn(x)

thus by (17)

‖w̃n − w0‖∞ ≤ tn → 0, ṽn ⇀ v(x0) in Lp as n→∞.

We get the following estimates using Step 3 in the first inequality, (18) in the second
inequality, while for the third inequality we exploit the equality defining I1, I2 and I3
in (21), and the estimates obtained for I3 in (22) and for I2 in (23), together with (27),
(28) and (29):

g(x0) ≥ lim
n→∞

1
|B|

∫
B

f
(
x0 + εnx, u(x0) + εnwn(x), vn(x),∇wn(x)

)
dx

≥ lim inf
n→∞

1
|B|

∫
B∩{ŵn(x;λn)≤s}

hn
(
x,wn(x), vn(x),∇wn(x)

)
dx

≥ lim inf
n→∞

1
|B|

∫
B

hn
(
x, w̃n(x), ṽn(x),∇w̃n(x)

)
dx−O

( 1
n

)
− C

ln
(
‖wn − w0‖L1(B) + ‖vn‖L1(B′)

λn

)−1/6 − C |{x ∈ B : ŵn(x;λn) > tn}|

= lim inf
n→∞

1
|B|

∫
B

hn
(
x, w̃n(x), ṽn(x),∇w̃n(x)

)
dx,

since

tn ≥
(
‖wn − w0‖L1(B) +

‖vn‖L1(B)

λn

)1/2

and thus

|{x ∈ B : ŵn(x;λn) > tn}| ≤
1
tn

(
‖wn − w0‖L1(B) +

‖vn‖L1(B)

λn

)
≤
(
‖wn − w0‖L1(B) +

‖vn‖L1(B)

λn

)1/2
→ 0.

The bound of {‖∇w̃n‖L1} follows from (19).
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Step 5. Fixing x0 and u(x0).We now fix in f the value of x and u. Indeed, using hypothesis
(H2p) and the fact that ∇w̃n and |ṽn|p have bounded L1 norm, one gets

g(x0) ≥ lim sup
n→+∞

1
|B|

∫
B

f
(
x0 + εnx, u(x0) + εnw̃n(x), ṽn(x),∇w̃n(x)

)
dx

≥ lim sup
n→+∞

1
|B|

∫
B

f
(
x0, u(x0), ṽn(x),∇w̃n(x)

)
dx.

Step 6. Slicing. At this point we are in an analogous context to [14] and the desired
inequality follows in the same way. It relies on the slicing method in order to modify
the sequences {ṽn} and {w̃n} obtained in the previous steps, and exploit the convex-
quasiconvexity of f . Namely it is possible to find new sequences, denoted by {v̄j} ⊂
Lp(B;Rm) ∩ C∞0 (RN ;Rm) and {w̄j} such that

1
|B|

∫
B

v̄j(z) dz = v(x0) and w̄j ∈ w0 +W 1,∞
0 (B;Rn).

Let, for each k ∈ N, Lk = {z ∈ B : dist(z, ∂B) < 1/k} that we call a layer. Consider
the layer L2 and recall that, by construction of ṽj and w̃j made in Step 4, there exists
c ∈ R+ such that supj∈N ‖ṽj‖Lp(B) + supj∈N ‖∇w̃j‖L1(B) ≤ c. Then if we divide L2 in
two sublayers, say S1

2 and S2
2 , we have

∀j ∈ N
∫
S1

2

(
|ṽj(z)|p + |∇w̃j(z)|

)
dz ≤ c

2 or
∫
S2

2

(
|ṽj(z)|p + |∇w̃j(z)|

)
dz ≤ c

2 .

Thus for some subsequences of ṽj and w̃j , say ṽj2 and w̃j2 , and one of the sublayers
S1

2 or S2
2 , say S2, we have

∀j2 ∈ N
∫
S2

(
|ṽj2(z)|p + |∇w̃j2(z)|

)
dz ≤ c

2 .

Note that for some 0 ≤ α2 < β2 ≤ 1/2 we can write

S2 = {z ∈ B : α2 < dist(z, ∂B) < β2}.

Define then a cutoff function η2 : B → [0, 1] such that η2 = 0 in ∂B ∪ {z ∈ B :
dist(z, ∂B) ≤ α2}, and η2 = 1 in {z ∈ B : dist(z, ∂B) ≥ β2} and ‖∇η2‖ ≤ c

β2−α2
.

Since

lim
j2→+∞

∣∣∣v(x0)− 1
|B|

∫
B

η2(z)ṽj2(z) dz
∣∣∣ = |v(x0)|

∣∣∣1− 1
|B|

∫
B

η2(z) dz
∣∣∣,

for j(2) ∈ {j2} sufficiently large we have∣∣∣v(x0)− 1
|B|
∫
B
η2(z)ṽj(2)(z) dz

∣∣∣∣∣∣1− 1
|B|
∫
B
η2(z) dz

∣∣∣ ≤ |v(x0)|+ 1

and
1
|S2|

∫
S2

∣∣w̃j(2)(z)− w0(z)
∣∣ dz ≤ 1

2 .
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Repeating the procedure in the layer L3 (now working with three sublayers) and
so on for the next layers, we get j(k) ∈ N increasing with k, Sk := {z ∈ B : αk <

dist(z, ∂B) < βk} layer of diameter 1
k2 , and ηk cutoff function on B such that ηk = 0 in

∂B ∪ {z ∈ B : dist(z, ∂B) ≤ αk}, and ηk = 1 in {z ∈ B : dist(z, ∂B) ≥ βk}∣∣∣v(x0)− 1
|B|
∫
B
ηk(z)ṽj(k)(z) dz

∣∣∣∣∣∣1− 1
|B|
∫
B
ηk(z) dz

∣∣∣ ≤ |v(x0)|+ 1, (30)

∫
Sk

(
|ṽj(k)(z)|p +

∣∣∇w̃j(k)(z)
∣∣) dz ≤ c

k
(31)

and
1
|Sk|

∫
Sk

∣∣w̃j(k)(z)− w0(z)
∣∣ dz ≤ 1

k
. (32)

Then, defining

v̄k(z) := (1− ηk(z))
v(x0)− 1

|B|
∫
B
ηk(z)ṽj(k)(z) dz

1− 1
|B|
∫
B
ηk(z) dz

+ ηk(z)ṽj(k)(z) (33)

and

w̄k(z) := (1− ηk(z))w0(z) + ηk(z)w̃j(k)(z) (34)

we have v̄k ∈ Lp(B;Rm) ∩ C∞0 (B;Rm) with

1
|B|

∫
B

v̄k(z) dz = v(x0)

and w̄k ∈ w0 +W 1,∞
0 (B;Rn). Therefore, since∫

B

f
(
x0, u(x0), v̄k(z),∇w̄k(z)

)
dz

=
∫
{z∈B:dist(z,∂B)≥βk}

f
(
x0, u(x0), ṽj(k)(z),∇w̃j(k)(z)

)
dz

+
∫
Sk

f
(
x0, u(x0), v̄k(z),∇w̄k(z)

)
dz

+
∫
{z∈B:dist(z,∂B)≤αk}

f
(
x0, u(x0), v̄k(z),∇w̄k(z)

)
dz

≤
∫
B

f
(
x0, u(x0), ṽj(k)(z),∇w̃j(k)(z)

)
dz +

∫
Sk

f
(
x0, u(x0), v̄k(z),∇w̄k(z)

)
dz

+
∫
{z∈B:dist(z,∂B)≤αk}

f
(
x0, u(x0), v̄k(z),∇w̄k(z)

)
dz,
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from Step 5, using the convex-quasiconvexity of f , assumption (H1p), the definition of ηk,
(30), (31), (32), (33) and (34),

g(x0) ≥ lim sup
k→+∞

1
|B|

∫
B

f
(
x0, u(x0), ṽj(k)(z),∇w̃j(k)(z)

)
dz

≥ lim sup
k→+∞

1
|B|

[∫
B

f
(
x0, u(x0), v̄k(z),∇w̄k(z)

)
dz

−
∫
Sk

f
(
x0, u(x0), v̄k(z),∇w̄k(z)

)
dz

−
∫
{z∈B:dist(z,∂B)≤αk}

f
(
x0, u(x0), v̄k(z),∇w̄k(z)

)
dz

]
≥ lim sup

k→+∞

1
|B|

[
|B|f

(
x0, u(x0), v(x0),∇u(x0)

)
−
∫
Sk

C(1 + |ṽk|p + |v(x0)|p + |∇w̄k(z)|) dz

−
∫
{z∈B:dist(z,∂B)≤αk}

C(1 + |v(x0)|p + |∇u(x0)|) dz
]

= f
(
x0, u(x0), v(x0),∇u(x0)

)
.

In this way we achieved the desired inequality.

4. Relaxation in W 1,1 × L∞. This section is devoted to characterizing the relaxed
functional J∞ introduced in (3). Indeed we prove the following relaxation result

Theorem 12. Let Ω be a bounded open set of RN , and let f : Ω×Rn ×Rm ×Rn×N →
[0,+∞) be a continuous function. If f and CQf satisfy hypotheses (H1∞) and (H2∞)
then

J∞(u, v) =
∫

Ω
CQf

(
x, u(x), v(x),∇u(x)

)
dx,

for every (u, v) ∈W 1,1(Ω;Rn)× L∞(Ω;Rm).

Remark 13.
1) We recall that if the hypotheses (H1∞) and (H2∞) are replaced by (8)–(10), Propo-

sitions 6 and 8 guarantee the validity of Theorem 12 under the assumption that only f
satisfies (8)–(10).

2) We also observe that Theorem 12 can be proven also imposing (H1∞) and (H2∞)
only on the function f but with the further requirement that f satisfies (5).

To see this it is enough to argue as in [5] in analogy with the proof of formula (6.1)
therein, namely one can reproduce the proof of Theorem 12 until the introduction of the
Yosida transform in page 202. Then, recalling that standard arguments (as those exploited
in [10]) allow to replace test functions in (7), by periodic ones, with 0 average. Thus in
order to estimate as in (39) one replaces the sequence un by wn := u ∗ %n + ϕn (as in
formula (6.11) in [5]), where ϕ is a periodic function almost realizing the infimum in (39)
(say with an error η > 0, where clearly ϕ depends on η), and ϕn(x) := rnϕ( xrn

), with
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rn → 0. Clearly also wn → u in L1(Ω;Rn). Then the integral in (39) can be estimated in
an analogous way to Theorem 12.

3) We also stress that if f satisfies (H1p) and (H2p) then clearly Jp(u, v) ≤ J∞(u, v)
for every (u, v) ∈ BV(Ω;Rn)×L∞(Ω;Rm), where the extension to L1(Ω;Rn)×L∞(Ω;Rm)
of Jp and J∞ can be defined as in the first part of Remark 9.

Proof of Theorem 12. The assertion will be achieved by double inequality. Clearly the
lower bound can be proven as for the case W 1,1 × Lp, with a proof easier than that of
Theorem 11, since it is not necessary to ‘truncate’ the {vn} which are already bounded
in L∞. For what concerns the upper bound, we divide the proof into several steps after
having observed that, by virtue of Lemma 8, there is no loss of generality in assuming f
already convex-quasiconvex.
Step 1. Localization. In order to provide an upper bound for J∞ we start by localizing
our functional. The following procedure is entirely similar to [4, Theorem 4.3]. We define
for every open set A ⊂ Ω and for any (u, v) ∈ BV(Ω;Rn) × L∞(Ω;Rm) (see Remark 9
for the definition of BV spaces)

F∞(u, v,A) := inf
{

lim inf
n

F (un, vn, A) : un → u in L1(A;Rn), un ∈ L1(A;Rn),

vn
∗
⇀ v in L∞(A;Rm), vn ∈ L∞(A;Rm)

}
where

F (u, v,A) =
{∫

A
f
(
x, u(x), v(x),∇u(x)

)
dx if (u, v) ∈W 1,1(A;Rn)× L∞(A;Rm),

+∞ if (u, v) ∈ (L1(A;Rn) \W 1,1(A;Rn))× L∞(A;Rm).

We start by remarking that (H1∞) implies that for every u ∈ BV(Ω;Rn) and for
every v ∈ L∞(Ω;Rm) such that ‖v‖L∞ ≤ M , there exists a constant CM such that
F∞(u, v,A) ≤ CM (|A|+ |Du|(A)). Moreover, one has

1) F∞ is local, i.e. F∞(u, v,A) = F∞(u′, v′, A), for every A ⊂ Ω open, (u, v), (u′, v′) ∈
L1(A;Rn)× L∞(A;Rm), such that (u, v) = (u′, v′) a.e. in A.

2) F∞ is sequentially lower semi-continuous, i.e. F∞(u, v,A) ≤ lim inf F∞(un, vn, A)
for all A ⊂ Ω open, for all un → u in L1(A;Rn) and vn

∗
⇀ v in L∞(A;Rm);

3) F∞(u, v, ·) is the restriction to A(Ω) := {A ⊂ Ω : A is open} of a Borel measure in
B(Ω) (the Borelians of Ω).

Condition 1) follows from the fact that the adopted convergence does not see sets
of null Lebesgue measure. Condition 2) follows by a diagonalization argument, entirely
similar to the proof of (ii) in [14]. Condition 3) follows applying De Giorgi–Letta criterion
(cf. [12]) and indeed proving that for any fixed (u, v) ∈ BV(Ω;Rn)× L∞(Ω;Rm),

F∞(u, v,A) ≤ F∞(u, v,B) + F∞(u, v,A \ C) ∀A,B,C ∈ A(Ω), A b B b C.

We omit the details, since they are very similar to the proof of Theorem 4.3 in [4]. The
only difference consists of the fact that one has to deal with both u’s and v’s and exploit
the growth condition (H1∞).
Step 2. Blow-up. Since J∞(u, v) = F∞(u, v,Ω) and F∞(u, v, ·) is the restriction of a
Radon measure on the open subsets of Ω (i.e. A(Ω)) absolutely continuous with respect
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to |Du|+ LN , it will be enough to prove the inequality

dF∞(u, v, ·)
dLN

(x) ≤ f
(
x, u(x), v(x),∇u(x)

)
, LN -a.e. x ∈ Ω.

The proof of this inequality follows closely [18], [4] and [5].
Assume first that (u, v) ∈ (W 1,1(Ω;Rn)∩L∞(Ω;Rn))×L∞(Ω;Rm). Fix a point x0 ∈ Ω

such that
dF∞(u, v, ·)

dLN
(x0) (35)

exists and is finite, which is also a Lebesgue point of u, v and ∇u and a point of approx-
imate differentiability for u. Clearly LN -a.e. x0 ∈ Ω satisfy all the above requirements.

As in [18] (see formula (5.6) therein) we may also assume that

lim
ε→0

1
|Q(x0, ε)|

∫
Q(x0,ε)

|u(x)− u(x0)|(1 + |∇u(x)|) dx = 0, (36)

lim
ε→0

1
|Q(x0, ε)|

∫
Q(x0,ε)

|v(x)− v(x0)| |∇u(x)| dx = 0, (37)

(where we used Theorem 10 since v ∈ L1
loc(Ω;Rm) with respect to the measure |∇u|LN ).

Choose a sequence of numbers ε ∈ (0,dist(x0, ∂Ω)). Then, clearly for any sequences {un},
un → u in L1 , {vn}, vn

∗
⇀ v in L∞,

dF∞(u, v, ·)
dLN

(x0) = lim
ε→0+

F∞(u, v,Bε(x0))
|Bε(x0)|

≤ lim inf
ε→0+

lim inf
n→+∞

1
|Bε(x0)|

∫
Bε(x0)

f
(
x, un(x), vn(x),∇un(x)

)
dx. (38)

By virtue of Proposition 2.2 in [2] we can replace the ball Bε(x0) in (38) by a cube
of side length ε, and in fact from now on we consider such cubes.

As in Proposition 4.6 of [4] (see also [18] and [15]), we consider the Yosida transforms
of f , defined as

fλ(x, u, v, ξ) := sup
(x′,u′)∈Ω×Rn

{
f(x′, u′, v, ξ)− λ[|x− x′|+ |u− u′|](1 + |ξ|+ |v|)

}
for every λ > 0. Then

(i) fλ(x, u, v, ξ) ≥ f(x, u, v, ξ) and fλ(x, u, v, ξ) decreases to f(x, u, v, ξ) as λ→ +∞.
(ii) fλ(x, u, v, ξ) ≥ fη(x, u, v, ξ) if λ ≤ η for every (x, u, v, ξ) ∈ Ω× Rn × Rm × Rn×N .
(iii) |fλ(x, u, v, ξ)−fλ(x′, u′, v, ξ)| ≤ λ(|x−x′|+ |u−u′|)(1+ |ξ|+ |v|) for every (x, u, v, ξ),

(x′, u′, v, ξ) ∈ Ω× Rn × Rm × Rn×N .
(iv) The approximation is uniform on compact sets. Precisely, let K be a compact subset

of Ω× Rn and let δ > 0. There exists λ > 0 such that

f(x, u, v, ξ) ≤ fλ(x, u, v, ξ) ≤ f(x, u, v, ξ) + δ(1 + |v|+ |ξ|)
for every (x, u, v, ξ) ∈ K × Rm × Rn×N .
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Let x0 be such that (35) and (36) hold, let {%n} be a sequence of standard symmetric
mollifiers and set un := u ∗ %n, vn := v. Then un → u in L1(Q(x0, ε);Rn), vn

∗
⇀ v in

L∞(Q(x0, ε);Rm). Fix δ > 0 and let K := B(x0,
dist(x0,∂Ω)

2 )×B(0, ‖u‖∞). By (i)–(iv),

f
(
x, un(x), v(x),∇un(x)

)
≤ fλ(x, un(x), v(x),∇un(x))

≤ fλ(x0, u(x0), v(x),∇un(x)) + λ(|x− x0|+ |un(x)− u(x0)|)(1 + |v|+ |∇un(x)|)
≤ f

(
x0, u(x0), v(x),∇un(x)

)
+ δ(1 + |∇un(x)|+ |v(x)|)

+ λ
(
|x− x0|+ |un(x)− u(x0)|

)(
1 + |∇un(x)|+ |v(x)|

)
.

Since ∇un(x) = (∇u ∗ %n)(x),

F∞(u, v,Q(x0, ε)) ≤ lim inf
n→+∞

∫
Q(x0,ε)

f
(
x, un(x), v(x),∇un(x)

)
dx

≤ lim inf
n→+∞

∫
Q(x0,ε)

f
(
x0, u(x0), v(x),∇un(x)

)
dx

+ lim sup
n→+∞

∫
Q(x0,ε)

δ
(
1 + |∇un(x)|+ |v(x)|

)
+ λ
(
|x− x0|+ |un(x)− u(x0)|

)(
1 + |∇un(x)|+ |v(x)|

)
dx

≤ lim inf
n→+∞

∫
Q(x0,ε)

f (x0, u(x0), v(x0),∇u(x0)) dx

+ lim sup
n→+∞

∫
Q(x0,ε)

β
(
1 + |∇u(x0)|+ |(∇u ∗ %n)(x)|

)
|v(x)− v(x0)| dx

+ lim sup
n→+∞

∫
Q(x0,ε)

β |(∇u ∗ %n)(x)−∇u(x0)| dx

+ lim sup
n→+∞

∫
Q(x0,ε)

δ
(
1 + |∇un(x)|+ |v(x)|

)
+ λ
(
|x− x0|+ |un(x)− u(x0)|

)(
1 + |∇un(x)|+ |v(x)|

)
dx

(39)

(where the constant β, depending on ‖v‖L∞ , is the constant appearing in (5)).
Since ∇u ∗ %n → ∇u ∈ L1

loc(Ω;Rn×N ), we obtain

lim sup
n→+∞

∫
Q(x0,ε)

β |(∇u ∗ %n)(x)−∇u(x0)| dx ≤ β
∫
Q(x0,ε)

|∇u(x)−∇u(x0)| dx. (40)

Passing to the limit on the right hand side of (39), exploiting (40), we get

F∞
(
u, v,Q(x0, ε)

)
≤ |Q(x0, ε)| f

(
x0, u(x0), v(x0),∇u(x0)

)
+ β(1 + |∇u(x0)|)

∫
Q(x0,ε)

|v(x)− v(x0)| dx

+ lim sup
n→+∞

β

∫
Q(x0,ε)

|∇u ∗ %n| |v(x)− v(x0)| dx+ β

∫
Q(x0,ε)

|∇u(x)−∇u(x0)| dx

+ (λε+ δ)
[
(1 + C)|Q(x0, ε)|

]
+ λ lim sup

n→+∞

∫
Q(x0,ε)

|un − u(x0)|(1 + C + |∇un|) dx.
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Recalling that x0 is a Lebesgue point for v, ∇u and that (35) holds, we have

lim sup
ε→0+

1
|Q(x0, ε)|

β
(
1 + |∇u(x0)|

) ∫
Q(x0,ε)

|v(x)− v(x0)| dx = 0,

lim sup
ε→0+

1
|Q(x0, ε)|

∫
Q(x0,ε)

|∇u(x)−∇u(x0)| dx = 0.

Moreover, by virtue of (36) and arguing as in the estimate of formula (5.11) of [18]
we can conclude that

lim sup
ε→0+

λ

|Q(x0, ε)|
lim sup
n→+∞

∫
Q(x0,ε)

|un − u(x0)|
(
1 + C + |∇un|

)
dx = 0.

Then we can exploit (37) and argue again as for (5.11) in [18] in order to evaluate

lim sup
ε→0+

β

|Q(x0, ε)|
lim sup
n→+∞

∫
Q(x0,ε)

|∇u ∗ %n| |v(x)− v(x0)| dx.

We will apply [18, Lemma 2.5] and the dominated convergence theorem with respect to
the measure |∇u| dx, obtaining

lim sup
n→+∞

∫
Q(x0,ε)

|v(x)− v(x0)| |∇un(x)| dx

≤ lim sup
n→+∞

∫
Q(x0,ε+1/n)

(
|v− v(x0)| ∗ %n

)
|∇u(x)| dx ≤

∫
Q(x0,ε)

|v(x)− v(x0)| |∇u(x)| dx.

One obtains from (37) that

lim sup
ε→0+

lim sup
n→+∞

1
|Q(x0, ε)|

∫
Q(x0,ε)

|v(x)− v(x0)| |∇un(x)| dx = 0.

Consequently,

g(x0) = dF∞(u, v)(x0)
dLN

≤ f
(
x0, u(x0), v(x0),∇u(x0)

)
+ (1 + C)δ

Finally, sending δ to 0 we conclude the proof when (u, v) ∈ (W 1,1(Ω;Rn)∩L∞(Ω;Rn))×
L∞(Ω;Rm).
Step 3. Passage from W 1,1(Ω;Rn) ∩ L∞(Ω;Rn) to W 1,1(Ω;Rn). To conclude the proof,
we can argue as in [18, Theorem 2.16, Step 4], in turn inspired by [4], introducing the
following approximation.

Let φn ∈ C1
0 (Rn;Rn) be such that φn(y) = y if y ∈ Bn(0), ‖∇φn‖L∞ ≤ 1, where

Bn(0) is the ball centered at 0 with radius n. By [3, Theorem 3.96] φn(u) ∈W 1,1(Ω;Rn)∩
L∞(Ω;Rn) for every n ∈ N. Since φn(u) → u in L1, by the lower semicontinuity of J∞
we get

J∞(u, v) ≤ lim inf
n→+∞

∫
Ω
f
(
x, φn(u), v,∇φn(u)

)
dx.

Arguing in analogy with [4, Theorem 4.9] one can prove that

lim sup
n→+∞

∫
Ω
f
(
x, φn(u), v,∇φn(u)

)
dx ≤

∫
Ω
f(x, u, v,∇u) dx,

which concludes the proof.
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5. Relaxation in W 1,1 × Lp. This section is devoted to the proof of the following
theorem. It relies on Theorem 12 and on some approximation results (see [4]).

Theorem 14. Let 1 < p < +∞. Let Ω be a bounded open set of RN , and let f :
Ω × Rn × Rm × Rn×N → [0,+∞) be a continuous function. If f satisfies (H1p) and
(H2p), then

Jp(u, v) =
∫

Ω
CQf

(
x, u(x), v(x),∇u(x)

)
dx,

for every (u, v) ∈W 1,1(Ω;Rn)× Lp(Ω;Rm).

Proof. The lower bound follows from Theorem 11. For what concerns the upper bound,
without loss of generality, by virtue of Lemma 8 and Proposition 5 we may assume that
f is convex-quasiconvex.

Observe first that since f fulfils (H1p) and (H2p), then it satisfies (H1∞) and (H2∞)
in the strong form (8)–(10). Consequently, up to the extension to L1(Ω;RN )×L∞(Ω;Rm)
of Jp and J∞ proposed in Remark 9,

Jp(u, v,Ω) ≤ J∞(u, v,Ω) (41)

for every (u, v) ∈ BV(Ω;Rn)× L∞(Ω;Rm).
For every positive real number λ, let τλ : [0,+∞)→ [0,+∞) be defined as

τλ(t) =
{
t if 0 ≤ t ≤ λ,
0 if t ≥ λ.

For every v ∈ Lp(Ω;Rm), define vλ := τλ(|v|)v. Clearly
∫

Ω |vλ|
p dx ≤

∫
Ω |v|

p dx and vλ →
v in Lp(Ω;Rm), as λ → +∞. By the lower semicontinuity of Jp, (41), and Theorem 12,
for every sequence {λ} such that λ→ +∞ we have

Jp(u, v) ≤ lim inf
λ→∞

Jp(u, vλ) = lim inf
λ→+∞

∫
Ω
f
(
x, u(x), vλ(x),∇u(x)

)
dx.

Lebesgue’s dominated convergence theorem entails that

Jp(u, v,Ω) =
∫

Ω
f
(
x, u(x), v(x),∇u(x)

)
dx,

for every (u, v) ∈W 1,1(Ω;Rn)× Lp(Ω;Rm), and this concludes the proof.

Acknowledgments. The work of A. M. Ribeiro was partially supported by the Fun-
dação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technol-
ogy) through PEst-OE/MAT/UI0297/2011 (CMA), UTA-CMU/MAT/0005/2009 and
PTDC/MAT109973/2009.

The research of E. Zappale was partially supported by GNAMPA through the projects
‘Problemi variazionali e misure di Young nella meccanica dei materiali complessi’ and
UTA-CMU/MAT/0005/2009, and by Università del Sannio. The authors thank Irene
Fonseca for suggesting the problem and the referee for his/her comments which improved
our manuscript.



206 A. M. RIBEIRO AND E. ZAPPALE

References

[1] E. Acerbi, N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational
Mech. Anal. 86 (1984), 125–145.

[2] L. Ambrosio, G. Dal Maso, On the relaxation in BV(Ω;Rm) of quasi-convex integrals,
J. Funct. Anal. 109 (1992), 76–97.

[3] L. Ambrosio, N. Fusco, D. Pallara, Function of Bounded Variation and Free Discontinuity
Problems, Oxford Math. Monogr., Oxford Univ. Press, New York, 2000.

[4] L. Ambrosio, S. Mortola, V. M. Tortorelli, Functionals with linear growth defined on vector
valued BV functions, J. Math. Pures Appl. (9) 70 (1991), 269–323.

[5] J. F. Babadjian, E. Zappale, H. Zorgati, Dimensional reduction for energies with linear
growth involving the bending moment, J. Math. Pures Appl. (9) 90 (2008), 520–549.

[6] G. Bouchitté, I. Fonseca, M. L. Mascarenhas, The Cosserat vector in membrane theory: a
variational approach, J. Convex Anal. 16 (2009), 351–365.

[7] A. Braides, I. Fonseca, G. Leoni, A-quasiconvexity: relaxation and homogenization, ESAIM
Control Optim. Calc. Var. 5 (2000), 539–577.

[8] G. Carita, A. M. Ribeiro, E. Zappale, Relaxation for some integral functionals in W 1,p
w ×

Lq
w, Bol. Soc. Port. Mat. (2010), Special Issue, 47–53.

[9] G. Carita, A. M. Ribeiro, E. Zappale, An homogenization result in W 1,p ×Lq, J. Convex
Anal. 18 (2011), 1093–1126.

[10] B. Dacorogna, Direct Methods in the Calculus of Variations, 2nd ed., Appl. Math. Sci. 78,
Springer, New York, 2008.

[11] G. Dal Maso, I. Fonseca, G. Leoni, M. Morini, Higher order quasiconvexity reduces to
quasiconvexity, Arch. Ration. Mech. Anal. 171 (2004), 55–81.

[12] E. De Giorgi, G. Letta, Une notion générale de convergence faible pour des fonctions
croissantes d’ensemble, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), 61–99.

[13] I. Fonseca, G. Francfort, G. Leoni, Thin elastic films: the impact of higher order pertur-
bations, Quart. Appl. Math. 65 (2007), 69–98.

[14] I. Fonseca, D. Kinderlehrer, P. Pedregal, Relaxation in BV×L∞ of functionals depending
on strain and composition, in: Boundary Value Problems for Partial Differential Equations
and Applications, Res. Notes Appl. Math. 29, Masson, Paris, 1993, 113–152.

[15] I. Fonseca, D. Kinderlehrer, P. Pedregal, Energy functionals depending on elastic strain
and chemical composition, Calc. Var. Partial Differential Equations 2 (1994), 283–313.

[16] I. Fonseca, G. Leoni, Modern Methods in the Calculus of Variations: Lp Spaces, Springer
Monogr. Math., Springer, New York, 2007.

[17] I. Fonseca, S. Müller, Quasi-convex integrands and lower semicontinuity in L1, SIAM J.
Math. Anal. 23 (1992), 1081–1098.

[18] I. Fonseca, S. Müller, Relaxation of quasiconvex functionals in BV(Ω;Rp) for integrands
f(x, u,∇u), Arch. Rational Mech. Anal. 123 (1993), 1–49.

[19] H. Le Dret, A. Raoult, Variational convergence for nonlinear shell models with directors
and related semicontinuity and relaxation results, Arch. Ration. Mech. Anal. 154 (2000),
101–134.

[20] P. Marcellini, Approximation of quasiconvex functions and lower semicontinuity of multi-
ple integrals, Manuscripta Math. 51 (1985), 1–28.

[21] A. M. Ribeiro, E. Zappale, Relaxation of certain integral functionals depending on strain
and chemical composition, Chin. Ann. Math. Series B 34 (2013), 491–514.

http://dx.doi.org/10.1007/BF00275731
http://dx.doi.org/10.1016/0022-1236(92)90012-8
http://dx.doi.org/10.1016/j.matpur.2008.07.003
http://dx.doi.org/10.1051/cocv:2000121
http://dx.doi.org/10.1007/s00205-003-0278-1
http://dx.doi.org/10.1007/BF01235532
http://dx.doi.org/10.1137/0523060
http://dx.doi.org/10.1007/BF00386367
http://dx.doi.org/10.1007/s002050000100
http://dx.doi.org/10.1007/BF01168345
http://dx.doi.org/10.1007/s11401-013-0784-x


CALCULUS OF VARIATIONS AND PDEs
BANACH CENTER PUBLICATIONS, VOLUME 101

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 2014

ERRATUM TO
“LOWER SEMICONTINUOUS ENVELOPES IN W 1,1 × Lp”

ANA MARGARIDA RIBEIRO
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In this note, we correct a mistake present in [2]. The theorems stated remain valid
but the proof of Theorem 11 should be slightly modified. Namely, in Step 4, the sequence
vn,λs,t has to be defined in a different way to obtain the weak convergence in Lp stated in
condition (17).

In detail, in the proof of Theorem 11 define

vn,λs,t (x) := τLn
(vn)(x) + ϕs,t (ŵn(x;λ)) (vn (x)− τLn

(vn(x))),

thus ensuring the second convergence in formula (17). Replace also formula (20) by

−C + 1
C
|τLn

(vn)(x)|p ≤ hn(x,w0(x), τLn
(vn(x)),∇w0(x)) ≤ C(1 + |τLn

(vn(x))|p).

Here the sequence τLn
(vn) is obtained from vn according to the Decomposition Lemma

below, whose proof can be found in [1, Lemma 8.13].

Lemma 1. Let 1 < p < +∞, and let {vn} be a bounded sequence in Lp(Ω;Rd). For L > 0
consider the truncation τL : Rd → Rd given by

τL(z) :=

z if |z| ≤ L,
L
z

|z|
if |z| > L.
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Then there exists a subsequence of {vn} (not relabeled) and an increasing sequence {Ln},
with Ln → +∞, such that the truncated sequence {τLn

◦ vn} is p-equi-integrable and
‖τLn ◦ vn − vn‖Lq(Ω) → 0 for all 1 ≤ q < p.
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