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Abstract. In this paper we give a brief overview on the state of art of developments of Geometric
Measure Theory in infinite-dimensional Banach spaces. The framework is given by an abstract
Wiener space, that is a separable Banach space endowed with a centered Gaussian measure.
The focus of the paper is on the theory of sets with finite perimeter and on their properties;
this choice was motivated by the fact that most of the good properties of functions of bounded
variation can be obtained, thanks to coarea formula, from the geometric properties of sets with
finite perimeter.

1. Introduction. The aim of this paper is to give an overview of recent developments
of some Geometric Measure Theory in infinite-dimensional spaces; a systematic approach
to this kind of problems, after the definition given by Malliavin, can be dated from the
paper of Fukushima [14], where the author characterized sets with finite perimeter and
functions of bounded variation in the Euclidean setting in terms of Dirichlet forms. The
idea of this paper was that if we define the Dirichlet form

E(u, v) =
∫

Rm

∇u(x) · ∇v(x)%(x) dx,

then the function % has bounded variation if and only if the distorted Brownian path
(X%

t )t associated to the Dirichlet form admits a decomposition
X%
t −X

%
0 = Bt +N%

t ,

with Bt the m-dimensional Brownian motion and N%
t has bounded variation with

lim
t→0

1
t
E%

[∫ t

0
χK(X%

s ) d|Ns|
]
< +∞

for every compact set K.
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The ideas of this work were then used by the author in Fukushima [15] and in
Fukushima, Hino [16] in order to give the definition of functions with bounded variation
in the infinite-dimensional setting. Essentially, the idea is that each time some integra-
tion by parts formula holds in the space, then functions with bounded variations can be
defined in a distributional way. The approach of these papers was essentially based on
ideas coming from probability theory.

Subsequently, a different approach has been investigated in Ambrosio et al. [4, 5],
much more in the language of the calculus of variations. With this kind of techniques,
a fundamental role is played by the theory of sets of finite perimeter, since properties
of functions with bounded of variation, particularly on points of discontinuity, can be
deduced by using coarea formula. For this reason, in the last years a particular attention
has been given in the study of fine properties of sets of finite perimeter; for instance,
in Hino [17], it has been proved that the perimeter measure can be characterized as an
Hausdorff measure concentrated on the cylindrical essential boundary. Here the notion
of Hausdorff measures is based on the work of Feyel, De la Pradelle [13].

In Ambrosio et al. [6], this characterization has been reconsidered, where instead
of Hausdorff measure the authors have considered the spherical Hausdorff measure; in
addition, a rectifiability result has been proved, in a weaker sense if compared to the
Euclidean case.

Finally, recently Ambrosio et al. [3] have considered also the definition of a reduced
boundary, proving a blow-up property of sets with finite perimeter.

The study of functions with bounded variations in the infinite-dimensional setting is
mainly motivated on stochastic basis; for instance, the theory of Sobolev spaces defined
on the whole Banach space is pretty well understood, whether the definition on domains
is less clear. In particular, the possibility of studying stochastic differential equations
on domains with Dirichlet or Neumann boundary conditions is strictly related on the
possibility to define traces on boundaries of regular enough domains; such facts can be
achieved if a good notion of reduced boundary has been given. Finally, a probabilistic
motivation has recently been given by Pratelli, Trevisan [19], where it has been proved
that

Mt = sup
0≤s≤t

Ws

has second Malliavin derivatives given by finite measures, that is the Malliavin derivatives
of Mt have bounded variation.

Also the possibility of considering functionals with linear growth in infinite-dimen-
sional spaces can be a good motivation for developing the theory.

2. Some functional preliminary. Our framework is given by an infinite-dimensional
Banach space X endowed with a centered Gaussian measure γ; by this we mean that
on X a Borel measure γ is defined such that for every x∗ ∈ X∗, the topological dual
of X, the measure x∗#γ defined by

x∗#γ(A) = γ
(
{x : 〈x, x∗〉 ∈ A}

)
,
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is a centered Gaussian measure on R. Equivalently, a measure γ is Gaussian if its Fourier
transform

γ̂(x∗) =
∫
X

ei〈x,x
∗〉 dγ(x)

is Gaussian. The Banach space is not necessarily assumed to be separable, nevertheless
the Gaussian measure is concentrated on a separable Banach space contained in X. By
a result of Fernique [12], if γ is a Gaussian measure, then there exists α ∈ R such that∫

X

eα‖x‖
2
dγ(x) < +∞;

this in particular implies that for any x∗ ∈ X∗, the map x 7→ 〈x, x∗〉 belongs to Lp(X, γ)
for any p ∈ [1,+∞), so we can embed R∗ : X∗ → L2(X, γ) and define the space H to
be the closure of R∗X∗ in L2(X, γ). Such a space plays a fundamental role in the theory
and is called the reproducing kernel of the measure γ. This space can be embedded into
X via the map R : L2(X, γ)→ X,

Rĥ :=
∫
X

ĥ(x)x dγ(x), ĥ ∈ L2(X, γ);

such a map is compact. The space H = RH is a Hilbert space with the inner product

[h1, h2]H :=
∫
X

ĥ1(x)ĥ2(x) dγ(x), hi = Rĥi, i = 1, 2.

The notation R and R∗ is motivated by the fact that

[R∗x∗, ĥ]H =
∫
X

〈x, x∗〉ĥ(x) dγ(x) =
〈∫

X

ĥ(x)x dγ(x), x∗
〉

= 〈Rĥ, x∗〉,

that is, R∗ is the adjoint of R. In addition, the operator Q = RR∗ is the covariance
associated to γ since

〈Qx∗, y∗〉 = 〈RR∗x∗, y∗〉 = [R∗x∗, R∗y∗]H =
∫
X

〈x, x∗〉〈x, y∗〉 dγ(x) ∀x∗, y∗ ∈ X∗.

The non-degeneracy condition of γ is equivalent to the injectivity of the covariance opera-
tor Q; the space H is called the Cameron–Martin space. If the measure γ is not degenerate
in X, H is dense and separable, the map R : H → X is compact and γ(H) = 0. The
importance of this space relies in the integration by parts formula. Indeed, the measure

γv(B) = γ(B − v), v ∈ X,

is absolutely continuous with respect to γ if and only if v = h ∈ H, and the density can
be explicitly written, if h = Rĥ, as

dγh
dγ

(x) = exp
(
−1

2 |h|
2
H + ĥ(x)

)
.

This density is even differentiable, so we can integrate by parts; if we define, for functions
f ∈ C1

b (X), the derivative in direction h, as

∂hf(x) = lim
ε→0

f(x+ εh)− f(x)
ε

,
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we get, for any g ∈ C1
b (X),∫

X

∂hf(x)g(x) dγ(x) = d

dε

∫
X

f(x+ εh)g(x) dγ(x)|ε=0

= d

dε

∫
X

f(x)g(x− εh) dγεh(x)|ε=0

= d

dε

∫
X

f(x)g(x− εh) exp
(
−ε

2|h|2H
2 + εĥ(x)

)
dγ(x)|ε=0

= −
∫
X

f(x)∂hg(x)dγ(x) +
∫
X

f(x)g(x)ĥ(x) dγ(x).

This means that the adjoint of ∂h in L2(X, γ) is given, up to the sign, by

∂∗hg(x) = ∂hg(x)− g(x)ĥ(x).

The separability of H allows for the definition of a gradient for functions f ∈ C1
b (X), by

fixing an orthonormal basis {hj} in H and setting

∇Hf(x) =
∑
j∈N

∂jf(x)hj ,

where we have written ∂j for ∂hj ; also a divergence is defined for fields g ∈ C1
b (X,H) as

divHg(x) =
∑
j∈N

∂∗j [g(x), hj ]H .

It can be proved that ∇H is a closable operator in Lp(X, γ) for any p ∈ [1,+∞]; the do-
main of its closure is the Sobolev spaceW 1,p(X, γ). For p > 1,W 1,p(X, γ) embeds continu-
ously in Lp(X, γ); the case p = 1 is particular, since W 1,1(X, γ) embeds in L lnL1/2(X, γ),
the Orlicz space LΦ(X, γ) defined by the function Φ(t) = ln1/2(1 + t), where

LΦ(X, γ) =
{
u : X → R : ∃t s.t.

∫
X

Φ
( |u(x)|

t

)
dγ(x) < +∞

}
.

3. BV functions. Once a gradient and a divergence is defined, it is possible to give the
definition of functions with bounded variation. By the formula∫

X

u(x)∂∗hg(x) dγ(x) =
∫
X

u(x)∂hg(x) dγ(x)−
∫
X

u(x)g(x)ĥ(x) dγ(x),

it is clear that the last integral is not well defined if we only require u to belong to
L1(X, γ) and g ∈ C1

b (X); this is because ĥ(x) has a linear growth in x. This motivates
why to give the definition of functions with bounded variation we have to start from
L lnL1/2(X, γ).

Definition 3.1. Let u ∈ L lnL1/2(X, γ); u is said to have bounded variation, u ∈
BV (X, γ), if

|Dγu|(X) = sup
{∫

X

u(x) divHg(x) dγ(x) : g ∈ C1
b (X,H), |g(x)|H ≤ 1

}
< +∞.

A set E ⊂ X is said to have finite perimeter if u = χE ∈ BV (X, γ); in this case the
variation |DγχE |(X) = Pγ(E,X) is called the perimeter of E in X.
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An important link between the theory of BV functions and sets with finite perimeter
is given by the coarea formula; it states that a function u has bounded variation if and
only if almost every level set {u > t} has finite perimeter and

|Dγu|(X) =
∫

R
Pγ
(
{u > t}, X

)
dt < +∞.

A large amount of properties of BV functions can be derived using coarea formula starting
from fine properties of sets with finite perimeter; especially the properties of the jump
part of u are related to properties of sets with finite perimeter.

We briefly give some example of sets with finite perimeter.

Example 3.2.

1. As already stated, almost every level set of a function with bounded variation has
finite perimeter; examples of functions with bounded variation are Sobolev functions
in W 1,1(X, γ) and, in particular, Lipschitz functions can be used to construct sets
with finite perimeter. There are two important classes of Lipschitz functions; the
first class is given by the functions that are Lipschitz with respect to the norm of
X, the second and wider class is the class of H-Lipschitz functions, that is functions
f : X → R such that there exists c > 0 with

|f(x+ h)− f(x)| ≤ c|h|H ∀h ∈ H ∀x ∈ X.

The compact embedding of H into X implies the existence of a constant c > 0 such
that

‖h‖X ≤ c|h|H ∀h ∈ H;

then any Lipschitz function is H-Lipschitz. The definition of H-Lipschitz func-
tions give a control only in directions belonging to H, so such functions can also
be discontinuous as functions on X; nevertheless, H-Lipschitz functions belong to
W 1,p(X, γ) for any p ∈ [1,+∞].

2. If we fix a point x0 ∈ X, we can use the map f(x) = ‖x − x0‖X to conclude
that almost every ball Br(x0) has finite perimeter. To prove that every ball has
finite perimeter is a delicate matter; it is true, but is based on a Brunn–Minkowski
argument and was proved by Caselles et al. [7]. In that paper it is proved that any
convex set with non-empty interior has finite perimeter, so any open ball has finite
perimeter; in the same paper it is proved that the condition on non-empty interior
is important, since an example of a convex set with empty interior and infinite
perimeter is constructed. Finally, we point out that it makes no sense to use the
distance induced by the norm of H; indeed, the map f(x) = |x−x0|H is γ-a.e. equal
to infinity. On the other hand, since γ(H) = 0, the balls in the Cameron–Martin
space have null measure, then also perimeter equals to 0.

3. Hino and Uchida [18] gave an example of a set with finite perimeter in classical
Wiener space using the reflecting Brownian motion. They proved that if Ω ⊂ Rd is
an open set satisfying the exterior ball condition and

X =
{
w ∈ C([0,+∞),Rd) : w(0) = 0

}
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is the Wiener space endowed with the Wiener measure γ, then the set

EΩ =
{
w ∈ X : w(t) ∈ Ω ∀t ≥ 0

}
,

has finite perimeter in X.
4. Airault and Malliavin [1] constructed a surface measure on boundaries of regular

level sets; more precisely, given a function

f ∈W∞(X, γ) =
⋂

p>1,r∈N

W r,p(X, γ),

where W r,p(X, γ) is the Sobolev space of order r with p-integrability, such that
1

|∇Hf |H
∈
⋂
p≥1

Lp(X, γ),

then the set {f > 0} has finite perimeter. In details, Airault and Malliavin con-
structed for such functions a surface measure on the set {f = 0}; in [7] it is proved
that such a measure, under the additional assumption that f is continuous, coin-
cides with the perimeter measure of {f > 0}.

There is another way to construct example of BV functions and sets with finite
perimeter, and is based on the finite-dimensional case by a cylindrical construction.

If we fix a finite-dimensional subspace F ≤ QX∗, dimF = m < +∞, we may consider
the orthogonal decomposition H = F ⊗ F⊥. Assuming F generated by the m-vectors
h1, . . . hm with hj = Qx∗j , it is possible to define the projection ΠF : X → F

ΠF (x) =
m∑
j=1
〈x, x∗j 〉hj ;

it is then possible to decompose X = F ⊕Ker(ΠF ). The spaces F and Ker(ΠF ) are still
Gaussian spaces with Gaussian measures given by γF and γ⊥F respectively; such measures
have F and F⊥ as Cameron–Martin spaces and the original measure is decomposed as
γ = γF⊗γ⊥F . So, if v ∈ BV (F, γF ) is a finite-dimensional function with bounded variation,
the map u = v ◦ΠF ∈ BV (X, γ). We shall use this factorization property of the measure
to characterize sets of finite perimeter. In the next section we give a short overview of the
finite-dimensional theory of sets with finite perimeter, recalling some basic properties.

4. Finite-dimensional sets with finite perimeter. For sets with finite perimeter
the topological boundary is not the right notion in order to obtain a representation of
the perimeter measure; as a classical example, one may consider the enlarged rational
numbers

E =
⋃
j∈N

B%j
(xj),

where {xj}j∈N is a dense set in Rm and (%j)j∈N is a sequence of positive numbers such
that ∑

j∈N

%m−1
j < +∞.
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E is an example of a set with finite perimeter but with infinite full measure of the
boundary Lm(∂E) = +∞.

For this reason, a different notion of boundary have been introduced; for instance,
De Giorgi [9] (see also [10]) defined the reduced boundary of E as the set

FE =
{
x ∈ spt|DχE | : ∃ lim

%→0

DχE(B%(x))
|DχE |(B%(x)) = νE(x), |νE(x)| = 1

}
;

De Giorgi proved that such a set is Hm−1-rectifiable, in the sense that it is contained, up
to Hm−1-negligible sets, into a countable union of Lipschitz graph,

Hm−1
(
FE \

⋃
j∈N

Γj
)

= 0,

with Γj = fj(Rm−1), fj : Rm−1 → Rm Lipschitz. In addition, the following representa-
tion for the perimeter measure is true

DχE = νEHm−1 FE, (1)
in the sense that for any B ⊂ Rm Borel set

DχE(B) =
∫
B∩FE

νE(x) dHm−1(x).

It is also possible to define the points of density for E as

E(α) =
{
x ∈ Rm : ∃ lim

%→0

Lm(E ∩B%(x))
Lm(B%(x)) = α

}
and define the essential boundary of E as

∂∗E = Rm \ (E(0) ∪ E(1)).
The following inclusions are immediate

FE ⊂ E(1/2) ⊂ ∂∗E;
in addition, Federer [11] proved that

Hm−1(∂∗E \ FE) = 0,
and so the fact that the perimeter measure is concentrated either on the essential bound-
ary, or on the reduced boundary or again on the set of points with density 1/2.

It can be pointed out that, in the Euclidean case, points of density may also be defined
using the heat semigroup; indeed, if (Ht)t≥0 denotes the heat semigroup defined pointwise
by formula

Htu(x) = 1
(2πt)m/2

∫
Rm

u(y)e−|x−y|
2/(2t) dy,

then, for points x ∈ E(α) of density α, we have that
∃ lim
t↘0+

HtχE(x) = α.

Such a property goes back to the original definition of functions with bounded variation
given by De Giorgi; indeed, in [8] (see also [10]) it was shown that for a given function
u ∈ L1(Rm) the map

t 7→
∫

Rm

|∇Htu(x)| dx
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is monotone decreasing and that u has bounded variation if and only if

I(u) := sup
t≥0

∫
Rm

|∇Htu(x)| dx < +∞

and the quantity I(u) coincides with the total variation |Du|(Rm).

5. The infinite-dimensional case. In the infinite-dimensional case things do not work
the same; Preiss [20] gave an example of a Gaussian measure γ on a Hilbert space X and
of a measurable set E ⊂ X with 0 < γ(E) < 1 such that

lim
%→0

γ(E ∩B%(x))
γ(B%(x)) = 1, ∀x ∈ X.

So the notion of points of density is not good in this setting. Also the characterization (1)
is intrinsically finite-dimensional, since based on the Besicovitch Theorem on derivation
of measures.

In the infinite-dimensional setting, the idea is to use the factorization of γ = γF ⊗ γ⊥F
and finite-dimensional slicing; for more details on this part, we refer to Hino [17] and to
Ambrosio et al. [6]. By writing X = F ⊕ Ker(ΠF ) and x = y + z, y ∈ F , z ∈ Ker(ΠF ),
we may define the finite-dimensional slice of E at z as

Ez = {y ∈ F : y + z ∈ E} ⊂ F ;
so it is possible to define the essential boundary of E relative to F as

∂∗FE = {x = y + z : y ∈ ∂∗(Ez)}.
In the same spirit, we can also define the codimension one spherical Hausdorff measure
relative to F as

S∞−1
F (B) =

∫
Ker(ΠF )

dγ⊥F (z)
∫
Bz

1
(2π)m/2

e−|y|
2/2 dSm−1(y).

Here the measure is the spherical Hausdorff measure, i.e. the Hausdorff measure defined
using coverings done only by balls

Sk(B) = lim
δ→0
Skδ (B)

with
Skδ (B) = inf

{∑
i∈N

ωkr
k
i : B ⊂

⋃
i∈N

Bri
(xi), ri < δ

}
.

It is important to use spherical rather than classical Hausdorff measure for the following
relevant monotonicity formula

S∞−1
F (B) ≤ S∞−1

G (B) ∀B ∈ B(X),
whenever F ≤ G ≤ H are finite-dimensional subspaces of H. In this way the codimension
one spherical Hausdorff measure is well defined:

S∞−1(B) = sup
F≤H

S∞−1
F (B),

where the supremum is taken among all finite-dimensional subspaces F of H.
Another important fact is the following almost monotonicity

S∞−1
G (∂∗GE \ ∂∗FE) = 0,
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that is monotonicity up to negligible sets. So, if we fix a countable family F of finite-
dimensional subspaces Fj ≤ H such that

H =
⋃
j∈N

Fj ,

we can define the cylindrical essential boundary relative to F as
∂∗FE = lim inf

j→+∞
∂∗Fj

E =
⋃
h∈N

⋂
j≥h

∂∗Fj
E.

If we define the cylindrical spherical Hausdorff measure
S∞−1
F (B) = sup

Fj∈F
S∞−1
Fj

(B),

in Hino [17] and with a simplified proof in Ambrosio et al. [6] it is proved that
|DγχE | = S∞−1

F ∂∗FE.

In [6] it is also showed that ∂∗FE is Sobolev rectifiable, in the sense that it is contained, up
to negligible sets, in a countable union of graphs of Sobolev functions fj ∈W 1,1(X ′, γ′),
where X ′ is a codimension one Banach sub-space in X.

Ambrosio and Figalli [2] used the Ornstein–Uhlenbeck semigroup defined by the
Mehler formula

Ttu(x) =
∫
X

u
(
e−tx+

√
1− e−2t y

)
dγ(y)

to define points with density. More precisely, they proved that if E has finite perimeter,
then

lim
t→0

∫
X

∣∣∣TtχE(x)− 1
2

∣∣∣2 d|DγχE |(x) = 0;

in particular, there exists a sequence of times tj ↘ 0+ for which

lim
j→+∞

TtjχE(x) = 1
2 , |DγχE |-a.e. x ∈ X.

In some sense the points of density are defined in terms of the Ornstein–Uhlenbeck
semigroup as

E(α) =
{
x ∈ X : ∃tj ↘ 0+ such that lim

j→+∞
TtjχE(x) = α

}
.

The sequence tj in the Ambrosio and Figalli result depends of the set E itself, and so at
the moment it is not possible to give a clean definition of points with density.

Concerning the definition of reduced boundary, miming the construction done for the
essential boundary, Ambrosio, Figalli and Runa [3] have defined the reduced boundary
relative to F as

FFE = {x = y + z : y ∈ F(Ez)}
and for a fixed family of countable many finite-dimensional subspaces F , the cylindrical
reduced boundary

FFE = lim inf
j→+∞

FFj
E =

⋃
h∈N

⋂
j≥h

FFj
E.

If for x ∈ FFE, recalling that νE(x) = R ̂νE(x) with ̂νE(x) ∈ H, we define

S(x) = SνE(x) = {y ∈ X : ̂νE(x)(y) > 0},
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then in Ambrosio, Figalli, Runa it is proved that

lim
t→0

∫
X

d|DγχE |(x)
∫
X

|χE(e−tx+
√

1− e−2t y)− χS(x)(y)| dγ(y) = 0,

that is, since

χE(e−tx+
√

1− e−2t y) = χEx,t(y), Ex,t = E − e−tx√
1− e−2t

,

the fact that χEx,t → χS(x) in L1(X, γ) for |DγχE |-a.e. x ∈ X.

6. Open problems. We list here some open problems in the theory.

1. To pass from Sobolev rectifiability to Lipschitz rectifiability of ∂∗FE is a big problem;
indeed, also prove a Lusin type result is an open question, that is, it is not known if
a Sobolev map in X coincides in a set with positive measure with a Lipschitz map.

2. Give a definition of points with density or, elsewhere, prove that, without passing
to subsequences,

∃ lim
t→0

TtχE(x) = 1
2 , |DγχE |-a.e. x ∈ X.

3. Referring to Example 3.2.3, Hino and Uchida in [18] proved that the perimeter
measure of EΩ concentrates on the set

∂′EΩ =
{
w ∈ X : w(t) ∈ Ω and there exists one and only one t > 0

such that w(t) ∈ ∂Ω
}

;

it would be interesting to compare this set with E
(1/2)
Ω .

4. Show the following decomposition, up to S∞−1 negligible sets:

X = E(1) ∪ E(1/2) ∪ E(0).

5. Give an intrinsic notion of reduced and essential boundary; for the latter, once
points of density are well defined, it could be simply defined as in the Euclidean
case as

X \ (E(1) ∪ E(0)).

For the reduced boundary, a possible definition could be given in terms of the
Ornstein–Uhlenbeck semigroup as the set of points for which

∃ lim
t→0

Tt

( dT ∗t DγχE
dT ∗t |DγχE |

)
(x) = νE(x)

and |νE(x)|H = 1, where T ∗t is the dual semigroup of Tt defined on the set of finite
measures.

6. Study fine properties of BV functions, together with functional properties (traces,
jump set, etc.).
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[12] X. Fernique, Intégrabilitè des vecteurs gaussiens, C. R. Acad. Sci. Paris Sér. A-B 270

(1970), A1698–A1699.
[13] D. Feyel, A. de La Pradelle, Hausdorff measures on the Wiener space, Potential Anal. 1

(1992), 177–189.
[14] M. Fukushima, On semi-martingale characterizations of functionals of symmetric Markov

processes, Electron. J. Prob. 4 (1999), no. 18.
[15] M. Fukushima, BV functions and distorted Ornstein–Uhlenbeck processes over the abstract

Wiener space, J. Funct. Anal. 174 (2000), 227–249.
[16] M. Fukushima, M. Hino, On the space of BV functions and a related stochastic calculus

in infinite dimensions, J. Funct. Anal. 183 (2001), 245–268.
[17] M. Hino, Sets of finite perimeter and the Hausdorff–Gauss measure on the Wiener space,

J. Funct. Anal. 258 (2010), 1656–1681.
[18] M. Hino, H. Uchida, Reflecting Ornstein–Uhlenbeck processes on pinned path spaces, in:

Proceedings of RIMS Workshop on Stochastic Analysis and Applications, RIMS
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