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Abstract. Some basic theorems and formulae (equations and inequalities) of several areas of
mathematics that hold in Bernstein spaces Bp

σ are no longer valid in larger spaces. However,
when a function f is in some sense close to a Bernstein space, then the corresponding relation
holds with a remainder or error term. This paper presents a new, unified approach to these errors
in terms of the distance of f from Bp

σ. The difficult situation of derivative-free error estimates
is also covered.

This paper1 is first concerned with several basic theorems which hold in Bernstein
spaces B2

σ, but are no longer valid in larger function spaces. These include the Whittaker–
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Kotel’nikov–Shannon sampling theorem, the Valiron–Tschakaloff interpolation formula,
Poisson’s summation formula (special case), the general Parseval formula and the repro-
ducing kernel formula.

Bernstein’s inequality and Boas type formulae for higher order derivatives are treated
as well.

Now if a function belongs to a space which is in some sense close to B2
σ, such as

Sobolev, Lipschitz, modulation or Hardy spaces, it is to be expected that the foregoing
theorems are not violated drastically, but that their extensions to these spaces should be
valid with a remainder which involves the distance of f in the wider space from B2

σ.
The second part is devoted to the introduction of an appropriate metric for describ-

ing the distance between a function belonging to such a space from B2
σ. A number of

propositions and corollaries are presented involving estimates for this distance in case of
the spaces mentioned. An innovation of this lecture are derivative free error estimates.
Rates of convergence are also covered in detail.

In the third part this new unified theoretical approach is applied to estimate the
remainders occurring in the extended versions of the theorems mentioned, including the
approximate sampling theorem, the generalized Parseval decomposition formula, and the
approximate reproducing kernel formula.

The four formulae for B2
σ presented in Section 1 are all equivalent to each other in

the sense that each is a corollary of the others. Likewise the six formulae of Section 2
for the space F 2, the largest space in which the Fourier transform, our basic tool, can
be applied effectively, are also equivalent to each other. What is surprising is that all ten
formulae are even equivalent. Proofs of the results not given here or in [7] will follow in
later papers.

1. Motivation: Basic theorems for bandlimited functions. Let Bpσ for σ > 0,
1 ≤ p ≤ ∞, be the Bernstein space comprising all entire functions f : C→ C that belong
to Lp(R) when restricted to the real axis and are as well of exponential type σ, so that
they satisfy the inequality f(z) = Of

(
exp(σ |Im z|

)
as |z| → ∞.

According to the Paley–Wiener theorem, the (distributional) Fourier transform of
those functions has compact support contained in [−σ, σ], where the Fourier transform
is normalized by f̂(v) := 1√

2π

∫
R f(u)e−ivu du.

There exist numerous relations (equations or inequalities) of the form

U(f) = Vσ(f) or U(f) ≤ Vσ(f) (f ∈ B2
σ), (1)

where U and Vσ are functionals; see [3]. Relations of this type are no longer valid out-
side B2

σ. But if f belongs to a larger space, close to B2
σ, then they should hold with an

additional remainder Rσf , such that

U(f) = Vσ(f) +Rσf or U(f) ≤ Vσ(f) +Rσf (2)

with Rσf depending on the distance of f from B2
σ.

An example of an inequality is Bernstein’s inequality:

‖f (s)‖L2(R) ≤ σs‖f‖L2(R) (f ∈ B2
σ; s ∈ N), (3)
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with U(f) = ‖f (s)‖L2(R) and Vσ(f) = σs‖f‖L2(R). If f belongs to the larger space, f ∈ F 2

(see below), and vsf̂(v) ∈ L1(R)∩L2(R), then (3) holds only with an additional remainder
Rσf = RBern

σ,s f , i.e., we have the approximate Bernstein inequality

‖f (s)‖L2(R) ≤ σs‖f‖L2(R) +RBern
σ,s f,

where the remainder can be estimated by∣∣RBern
σ,s f

∣∣ ≤ {∫
|v|>σ

∣∣vsf̂(v)
∣∣2 dv}1/2

.

Now the integral on the right can be expressed in terms of the so-called distance
functional dist2(f (s), B2

σ) (see (21)), measuring the distance of the function f (s) ∈ F 2

from B2
σ. Furthermore, this functional can be estimated in terms of the modulus of

smoothness giving (see Proposition 4.2, Corollary 4.3),∣∣RBern
σ,s f

∣∣ ≤ dist2(f (s), B2
σ) ≤ c

{∫ ∞
σ

v−1[ωr(f (s), v−1, L2(R))
]2
dv
}1/2

= O
(
σ−α

)
(σ →∞), (4)

the latter O-estimate holding if additionally f (s) ∈ Lipr(α,L2(R)), 0 < α ≤ r.
The distance functional itself as well as various estimates for it, one given e.g. in (4),

are the new basic concepts of this paper; see Section 4.
Let us now consider some examples of equalities in (1). The classical sampling theorem

of signal analysis, connected with the names of C. Shannon (1948/49), V. A. Kotel’nikov
(1933), E. T. Whittaker (1915), and many others, states that a function f ∈ B2

σ has the
following representation:

Classical Sampling Theorem (CST). For f ∈ B2
σ with some σ > 0 we have

f(z) =
∑
k∈Z

f
(kπ
σ

)
sinc σ

π

(
z − kπ

σ

)
(z ∈ C), (5)

the convergence being absolute and uniform on compact subsets of C.

The sinc-function is given by sinc z := sin(πz)/(πz) for z 6= 0, and sinc z := 1 for
z = 0. In the words of the motivation

U(f) = f(z), Vσ(f) =
∑
k∈Z

f
(kπ
σ

)
sinc σ

π

(
z − kπ

σ

)
.

Let us first emphasize that this formula is equivalent to several other striking formulae
of mathematical analysis (see [3]) such as:

Poisson’s summation formula (PSF, particular case). For f ∈ B1
σ∫

R
f(t) dt = 2π

σ

∑
k∈Z

f
(2kπ
σ

)
. (6)

General Parseval formula (GPF). For f, g ∈ B2
σ with σ > 0∫

R
f(t) g(t) dt = π

σ

∑
k∈Z

f
(kπ
σ

)
g
(kπ
σ

)
. (7)
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Reproducing kernel formula (RKF). For f ∈ B2
σ with σ > 0

f(z) = σ

π

∫
R
f(t) sinc

(σ
π

(z − t)
)
dt (z ∈ C). (8)

This means that B2
σ is a reproducing kernel Hilbert space, i.e., there exists a kernel

function k(·, z) which belongs to B2
σ for each z ∈ C, such that

f(z) =
〈
f(·), k(·, z)

〉
(z ∈ C).

Valiron’s or Tschakaloff’s sampling/interpolation formula (VSF). For
f ∈ B∞σ with σ > 0, we have for all z ∈ C:

f(z) =
(
f ′(0)z + f(0)

)
sinc

(σz
π

)
+

∑
k∈Z\{0}

f
(kπ
σ

)σz
kπ

sinc
(σz
π
− k
)
, (9)

the convergence being absolute and uniform on compact subsets of C.

2. Extensions to non-bandlimited functions. We now weaken the assumption of
f ∈ B2

σ, i.e., the Fourier transform f̂ has support contained in [−σ, σ], to f̂ ∈ L1(R). In
this respect we introduce the Fourier inversion class for p ∈ [1, 2],

F p :=
{
f : R→ C : f ∈ Lp(R) ∩ C(R), f̂ ∈ L1(R)

}
,

as well as the `p summability class for step size h > 0

Sph :=
{
f : R→ C :

(
f(hk)

)
k∈Z ∈ `

p(Z)
}
.

In the frame of these spaces all the formulae mentioned above hold only approximately
in the sense that they have to be equipped with (additional) remainder terms. More
precisely, the classical sampling theorem (5) is replaced by the

Approximate/extended sampling theorem (AST). For f ∈ F 2 ∩ S1
π/σ:

f(t) =
∑
k∈Z

f
(kπ
σ

)
sinc σ

π

(
t− kπ

σ

)
+ (RWKS

σ f)(t) (t ∈ R),

(RWKS
σ f)(t) := 1√

2π

∑
k∈Z

(
1− e−i2kσt

)∫ (2k+1)σ

(2k−1)σ
f̂(v)eivt dv, (10)

the series converging absolutely and uniformly on R. Moreover, the remainder RWKS
σ f

can be estimated by∣∣(RWKS
σ f)(t)

∣∣ ≤√ 2
π

∫
|v|≥σ

|f̂(u)| du = o(1) (σ →∞), (11)

which yields

lim
σ→∞

∑
k∈Z

f
(kπ
σ

)
sinc σ

π

(
t− kπ

σ

)
= f(t) (uniformly for t ∈ R).

This theorem is associated with the names of Weiss (1963), Brown (1967) and Butzer–
Splettstößer (1977).

The particular case of Poisson’s summation formula for f ∈ B1
σ, thus (6), is generalized

to the classical form:
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Poisson’s summation formula (PSF). For f ∈ F 1 with f̂ ∈ S1
π/σ

√
2π σ

π

∑
k∈Z

f
(
x+ 2kσ

π

)
=
∑
k∈Z

f̂
(kπ
σ

)
eikπx/σ (a. e.). (12)

In case of the general Parseval formula (7) one has even to add two remainder terms,
leading to

Generalized Parseval decomposition formula (GPDF). For f ∈ F 2 ∩ S1
π/σ,

σ > 0, and g ∈ F 2, there holds RWKS
σ f ∈ L2(R) and∫

R
f(u)g(u) du = π

σ

∑
k∈Z

f
(kπ
σ

)
g
(kπ
σ

)
+Rσ(f, g) (13)

with

Rσ(f, g) :=
∫
R

(RWKS
σ f)(u)g(u) du+

√
π

2
1
σ

∑
k∈Z

f
(kπ
σ

)∫
|v|≥σ

ĝ(v) eikπv/σ dv,

where RWKS
σ f is given by (2).

This extended Parseval decomposition formula is due to Butzer–Gessinger [4].
Similarly, the reproducing kernel formula (8) is equipped with two additional terms:

Approximate reproducing kernel formula (ARKF). For f ∈ F 2:

f(t) = σ

π

∫
R
f(u) sinc

(σ
π

(t− u)
)
du+ (RRKF

σ f)(t) (14)

with

(RRKF
σ f)(t) := (RWKS

σ f)(t)− σ

π

∫
R
(RWKS

σ f)(u) sinc
(σ
π

(t− u)
)
du

= 1√
2π

∫
|v|≥σ

f̂(v)eivt dv.

Furthermore, ∣∣(RRKF
σ f)(t)

∣∣ ≤ 1√
2π

∫
|v|≥σ

|f̂(u)| du .

The extension of the Valiron–Tschakaloff sampling formula (VSF) to non-bandlimited
functions reads:

Approximate Valiron–Tschakaloff sampling formula (AVSF). Let f ∈ F 2 and
let vf̂(v) be absolutely integrable. Then for σ > 0 and t ∈ R, we have

f(t) =
(
f ′(0)t+ f(0)

)
sinc

(σt
π

)
+

∑
k∈Z\{0}

f
(kπ
σ

) σt
kπ

sinc
(σt
π
− k
)

+ (RVT
σ f)(t),

where the series converges absolutely and uniformly on compact subsets of R and

(RVT
σ f)(t) = (RWKS

σ f)(t)− i sin(σt)
∑
k∈Z

2k√
2π

∫ (2k+1)σ

(2k−1)σ
f̂(v) dv (15)
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with RWKS
σ f again given by (2). Furthermore,∣∣(RVT
σ f)(t)

∣∣ ≤ 3√
2π

∫
|v|≥σ

∣∣f̂(v)
∣∣ dv + 1√

2π σ

∫
|v|≥σ

∣∣vf̂(v)
∣∣ dv = o(1) (σ →∞).

Clearly, if the functions involved belong to the (particular) Bernstein space B2
σ, then,

according to the Paley–Wiener theorem, the remainder terms in (11), (13), (14) and (15)
vanish, and one obtains the particular versions (5), (7), (8) and (9). Similarly, for f ∈ B1

σ

and x = 0, Poisson’s summation formula (12) reduces to the particular case (6).

3. Boas-type formulae for higher derivatives. The following differentiation formula
is due to Boas [1], who used it to give an elementary proof of Bernstein’s inequality (3)
for f ∈ B∞σ .

Let f ∈ B∞π/h, where h > 0. Then, for h = π/σ, we have

f ′(t) = 1
h

∑
k∈Z

(−1)k+1

π(k − 1/2)2 f(t+ h(k − 1/2)) . (16)

As usual in numerical analysis, we have replaced the step size parameter σ by π/h.
Formula (16) can be generalized to higher order derivatives (see [16, 6]):

Theorem 3.1. Let f ∈ B∞π/h for some h > 0. Then for s ∈ N,

f (2s−1)(t) = 1
h2s−1

∞∑
k=−∞

(−1)k+1As,k f
(
t+ h

(
k − 1

2

))
(t ∈ R), (17)

where

As,k := (2s− 1)!
π(k − 1/2)2s

s−1∑
j=0

(−1)j

(2j)!

[
π
(
k − 1

2

)]2j
(k ∈ Z).

The extension to non-bandlimited functions reads [6]:

Theorem 3.2. Let s ∈ N, f ∈ F 2 and let v2s−1f(v) be absolutely integrable. Then f (2s−1)

exists and for h > 0 formula (17) extends to

f (2s−1)(t) = 1
h2s−1

∑
k∈Z

(−1)k+1As,kf
(
t+ h

(
k − 1

2

))
+ (RBoas

2s−1,hf)(t) , (18)

where

(RBoas
2s−1,hf)(t) = i(−1)s−1

√
2π h2s−1

∫
|v|≥π/h

[
(hv)2s−1 − φ2s−1(hv)

]
f̂(v)eivt dv

with φ2s−1 being the 4π-periodic function defined by

φ2s−1(v) =
{
v2s−1, −π ≤ v ≤ π,
(2π − v)2s−1, π < v ≤ 3π.

In particular,∣∣(RBoas
2s−1,hf)(t)

∣∣ ≤√ 2
π

∫
|v|≥π/h

|v|2s−1∣∣f̂(v)
∣∣ dv = o(1) (h→ 0).

Similar results hold for even order derivatives.
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4. Foundations for a unified approach to extensions: A hierarchy of wider
spaces and estimates for the distance of f from B2

σ. We have seen that there
exist formulae for functions in Bpσ that hold for f ∈ F p (or a subspace of it) with a
remainder Rσf tending to zero as σ → ∞. Now we aim at a unified approach to such
extensions with error estimates presented in terms of the distance of f from Bpσ.

A hierarchy of spaces. In our approach, the Fourier inversion class F p for p ∈ [1, 2] is
the largest space beyond Bpσ for which the remainder Rσf in the representation (2) can
be evaluated and estimated effectively. However, if we want Rσf to converge rapidly to
zero as σ → ∞, we should rather consider a subspace of F p. It is therefore desirable to
know a hierarchy of spaces lying between Bpσ and F p. Our considerations include:

• The modulation space M2,1 comprising all functions f ∈ L2(R) such that

‖f‖M2,1 :=
∑
n∈Z

{∫ n+1

n

∣∣f̂(v)
∣∣2 dv}1/2

<∞. (19)

• The subspace M2,1
∗ comprising all functions f ∈M2,1 such that the series∑

n∈Z

1
h

{∫ n+1

n

∣∣∣f̂( v
h

)∣∣∣2 dv}1/2

converges uniformly with respect to h on bounded subintervals of (0,∞).
• The Lipschitz spaces for r ∈ N and 0 < α ≤ r,

Lipr(α;L2(R)) :=
{
f ∈ L2(R) : ωr(f ; δ;L2(R)) = O

(
δα
)
, δ → 0+

}
,

where
ωr(f ; δ;L2(R)) := sup

|h|≤δ
‖∆r

hf‖L2(R)

is the modulus of smoothness of order r with respect to the L2(R) norm, and
(∆r

hf)(u) is the forward difference of order r, defined by

(∆r
hf)(u) :=

r∑
j=0

(−1)r−j
(
r

j

)
f(u+ jh).

• The Sobolev spaces

W r,p(R) :=
{
f ∈ Lp(R) : vr f̂(v) = ĝ(v), g ∈ Lp(R)

}
,

‖f‖W r,p(R) :=
{ r∑
k=0

∥∥f (k)∥∥p
Lp(R)

}1/p
.

• The Hardy spaces of functions f analytic in the strip

Sd :=
{
z ∈ C : |=z| < d

}
such that

‖f‖Hp(Sd) :=
[

sup
0<y<d

∫
R

|f(t− iy)|p + |f(t+ iy)|p

2 dt
]1/p

<∞.
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Let us observe that modulation spaces are connected with the well-known Wiener
amalgam spaces W (Lp, `q) which comprise all measurable functions f : R→ C such that

‖f‖p,q :=
{∑
n∈Z

{∫ n+1

n

|f(t)|p dt
}q/p}1/q

=
∥∥∥‖f‖Lp(n,n+1)

∥∥∥
`q
<∞

with the usual convention applying when p or q is infinite. Note that Lp(R) = W (Lp, `p).
In fact, the elements f of M2,1 are exactly the Fourier transforms of the elements g in
the amalgam spaceW (L2, `1); this gives the norm in (19). Whereas amalgam spaces were
introduced by N. Wiener [17], and first studied systematically by F. Holland [14] (based
on earlier work by J. L. B. Cooper [10] on positive definite functions), modulation spaces
were first presented by H. G. Feichtinger at Oberwolfach [11, 12].

For the spaces above, we have the following inclusions

Bpσ|R $ Hp(Sd)|R $W r,p(R) ∩ C(R) $ F p ∩ Sph $ F p $ Lp(R). (20)

Here |R means that the functions of the corresponding space are restricted to R. For p = 2
these inclusions can be further refined by invoking the Lipschitz and the modulation
spaces. We have

W r,2(R) ∩ C(R) $M2,1
∗ $M2,1 $ F 2 ∩ S2

h

and
M2,1
∗ $ Lipr( 1

2 , L
2(R)) ∩ F 2.

The strict inclusion relation M2,1 $ F 2 ∩ S2
h will be proven in Section 6.

Norms and distances. In order to measure the distance of a function f belonging to
F 2 (or to one of its subspaces) from B2

σ, we need to introduce a metric in F 2. For q ∈ [1, 2]
and f ∈ F 2, we define fq :=

{∫
R
|f̂(v)|q dv

}1/q
≡ ‖f̂‖Lq(R),

which endows F 2 with a norm. It induces a metricf − gq =: distq(f, g) (f, g ∈ F 2),

which allows us to define the distance of f ∈ F 2 from B2
σ as

distq(f,B2
σ) := inf

g∈B2
σ

f − gq ≡ inf
g∈B2

σ

‖f̂ − ĝ‖Lq(R). (21)

For q = 2, dist2(f, g) = ‖f − g‖L2(R), by the isometry of the L2(R)-Fourier transform.
Classical Banach space norms are generally too strong for measuring distances in our

problems. Indeed, an example in the instance of Sobolev spaces with p = 2 is given in

Proposition 4.1. There exists f ∈ B2
σ and a sequence fn ∈ W r,2(R), n ∈ N, such that

limn→∞ dist2(fn, f) = 0, but limn→∞‖fn − f‖W r,2(R) =∞.

In fact for the sequence

fn(t) :=
√

2
π

eiπn
2t

n
sinc

( t

nπ

)
(n ∈ N),
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f̂n(v) = rect(nπv − n2π) =


1 if |v − n| < 1

n ,
1
2 if |v − n| = 1

n ,

0 if |v − n| > 1
n .

Using the isometry of the Fourier transform, we see that

‖fn‖2
L2(R) = 2

n

and, for k ∈ N,∥∥f (k)
n

∥∥2
L2(R) =

∫
R
|vkf̂n(v)|2 dv =

∫ n+1/n

n−1/n
v2k dv > 2n2k−1.

Thus, for r ∈ N, we have
‖fn‖W r,2(R) ≥

√
2n .

This yields the desired result.
The following fundamental results hold, the first certainly being a derivative free error

estimate. It is always assumed that 1 ≤ q ≤ 2.

Proposition 4.2.
a) If f ∈ F 2, then

distq(f,B2
σ) =

{∫
|v|>σ

∣∣f̂(v)
∣∣qdv}1/q

≤ c
{∫ ∞

σ

v−q/2[ωr(f, v−1, L2(R))
]q
dv
}1/q

.

b) If f ∈W s,2(R) ∩ C(R) with vsf̂(v) ∈ L1(R) for some s ∈ N, then f (s) exists and

distq(f (s), B2
σ) =

{∫
|v|>σ

∣∣vsf̂(v)
∣∣q dv}1/q

≤ c
{∫ ∞

σ

v−q/2[ωr(f (s), v−1, L2(R))
]q
dv
}1/q

.

These estimates enable us to determine the rates of convergence as σ → ∞ for the
subspaces of F 2 listed above.

Corollary 4.3.
a) If f ∈ Lipr(α,L2(R)) ∩ F 2 and 1/q − 1/2 < α ≤ r, then

distq(f,B2
σ) = O

(
σ−α−1/2+1/q) (σ →∞).

b) If f ∈ F 2 and f (s) ∈ Lipr(α,L2(R)), s ∈ N, 0 < α ≤ r, then

distq(f,B2
σ) = O

(
σ−α−s−1/2+1/q) (σ →∞).

Corollary 4.4. If f ∈W r,2(R) ∩ C(R) and f (r) ∈M2,1
? for some r ∈ N, then

distq(f,B2
σ) = O

(
σ−r−1+1/q) (σ →∞),

and for s ≤ r,

distq(f (s), B2
σ) = O

(
σ−r−1+s+1/q) (σ →∞).

In Sobolev spaces the distances also converge to zero like a power of 1/σ and in Hardy
spaces they converge to zero exponentially. Indeed, we have:
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Corollary 4.5.
a) Let f ∈W r,2(R) ∩ C(R), r ∈ N. Then for s ∈ N,

distq(f,B2
σ) = O

(
σ−r−1/2+1/q) (σ →∞),

distq(f (s), B2
σ) = O

(
σ−r−1/2+s+1/q) (r > s+ 1/q − 1/2; σ →∞).

b) Let f ∈ H2(Sd), s ∈ N, and q ∈ [1, 2]. Then

distq(f,B2
σ) = O

(
e−dσ

)
(σ →∞),

distq(f (s), B2
σ) = O

(
σse−dσ

)
(σ →∞).

Since dist2 is the euclidean distance, the characterization of Lip-functions due to
Junggeburth–Scherer–Trebels [15] gives

Proposition 4.6. Let f ∈ F 2, r ∈ N, and 0 < α ≤ r. Then

f ∈ Lipr(α,L2(R)) ⇐⇒ dist2(f,B2
σ) = O

(
σ−α

)
(σ →∞).

5. Applications of the distance approach to the remainders of the formulae
under discussion. After these preparations we turn to the errors involved under the
extensions to larger spaces. The new results include:

Theorem 5.1 (AST, [8, 9]). For f ∈ F 2 ∩ S2
π/σ:∣∣∣f(t)−

∑
k∈Z

f
(kπ
σ

)
sinc σ

π

(
t− kπ

σ

)∣∣∣ =
∣∣(RWKS

σ f)(t)
∣∣

≤
√

2
π

dist1(f,B2
σ) ≤ c

∫ ∞
σ

v−1/2ωr(f, v−1, L2(R)) dv (t ∈ R; σ > 0).

Observe that the integral may be infinite, but under the assumptions of Corollaries 4.3,
4.5 it is finite, and we also have the following rates of convergence for σ →∞:

Corollary 5.2.
a) (Lipschitz space) If f ∈ Lipr(α,L2(R)) ∩ F 2 ∩ S2

π/σ, r ∈ N, 1/2 < α ≤ r, then

(RWKS
σ f)(t) = O

(
σ−α+1/2) (σ →∞).

b) (Sobolev space) If f ∈W r,2 ∩ C(R) for some r ∈ N, then

(RWKS
σ f)(t) = O

(
σ−r+1/2) (σ →∞).

c) (Hardy space) If f ∈ H2(Sd), then

(RWKS
σ f)(t) = O

(
e−dσ

)
(σ →∞).

d) (Modulation space) If f ∈W r,2 ∩ C(R) and f (r) ∈M2,1
? for some r ∈ N, then

(RWKS
σ f)(t) = O

(
σ−r

)
(σ →∞).
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Theorem 5.3 (GPDF, [4, 2]). If f ∈ F 2∩S1
π/σ, σ > 0, and g ∈ F 1, then RWKS

σ f ∈ L2(R)
and∣∣∣∫

R
f(u)g(u) du− π

σ

∑
k∈Z

f
(kπ
σ

)
g
(kπ
σ

)∣∣∣ =
∣∣Rσ(f, g)

∣∣
≤
√

2
π
‖g‖L1(R) dist1(f,B2

σ) + σ

√
π

2 dist1(g,B2
σ)
∑
k∈Z

∣∣∣f(kπ
σ

)∣∣∣.
If, in addition, f, g ∈W 1,2(R) ∩ C(R), then

Rσ(f, g) ≤ C

σ

{
dist2(f ′, B2

σ) + dist2(g′, B2
σ) + π

σ
dist2(f ′, B2

σ) dist2(g′, B2
σ)
}
.

This theorem leads to the following corollary.

Corollary 5.4.
a) Let f, g ∈ W 1,2(R) ∩ C(R) such that vf̂(v) and v ĝ(v) are absolutely integrable. If
f ′, g′ ∈ Lipr(α,L2(R)), 0 < α ≤ r, then

Rσ(f, g)(t) = O
(
σ−α−1) (σ →∞).

b) Let f, g ∈W r,2(R)∩C(R), r ∈ N, such that vf̂(v) and v ĝ(v) are absolutely integrable.
Then

Rσ(f, g)(t) = O
(
σ−r

)
(σ →∞).

c) If f, g ∈ H2(Sd), then

Rσ(f, g)(t) = O
(
e−dσ

)
(σ →∞).

d) Let f, g ∈W r,2(R) ∩ C(R), r ∈ N. If f (r) and g(r) both belong to M2,1
? , then

Rσ(f, g)(t) = O
(
σ−r−1/2) (σ →∞).

Theorem 5.5 (ARKF, [7]). For f ∈ F 2∣∣∣∣f(t)− σ

π

∫
R
f(u) sinc

(σ
π

(t− u)
)
du

∣∣∣∣ =
∣∣(RRKF

σ f)(t)
∣∣ ≤ 1√

2π
dist1(f,B2

σ).

Comparing Theorems 5.5 and 5.1 shows that Corollary 5.2 remains valid, if RWKS
σ f

is replaced by RRKF
σ f .

Next we turn to the approximate Valiron sampling formula.

Theorem 5.6 (AVSF, [7]). Let f ∈ F 2 with vf̂(v) ∈ L1(R). Then for σ > 0,∣∣∣∣f(t)−
{(
f ′(0)t+ f(0)

)
sinc

(σt
π

)
+

∑
k∈Z\{0}

f
(kπ
σ

) σt
kπ

sinc
(σt
π
− k
)}∣∣∣∣

=
∣∣(RVT

σ f)(t)
∣∣ ≤ 3√

2π
dist1(f,B2

σ) + 1√
2π σ

dist1(f ′, B2
σ) ≤ 2

σ

√
2
π

dist1(f ′, B2
σ).

The following corollaries result.
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Corollary 5.7.
a) Let f ∈ W 1,2(R) ∩ C(R) be such that vf̂(v) ∈ L1(R). If 1/2 < α ≤ r and
f ′ ∈ Lipr(α,L2(R)), then

(RVT
σ f)(t) = O

(
σ−α−1/2) (σ →∞).

b) Let f ∈W r,2(R) ∩ C(R), r ≥ 2. Then
(RVT

σ f)(t) = O
(
σ−r+1/2) (σ →∞).

c) If f ∈ H2(Sd), then
(RVT

σ f)(t) = O
(
e−dσ

)
(σ →∞).

d) If f ∈W r,2(R) ∩ C(R) and f (r) ∈M2,1
? , then

(RVT
σ f)(t) = O

(
σ−r

)
(σ →∞).

Next to the extended version of Boas’ formula for higher order derivatives (18):

Theorem 5.8 ((16), [16, 6, 7]). Let s ∈ N, f ∈ F 2, and let v2s−1f(v) be absolutely
integrable. Then∣∣∣∣f (2s−1)(t)− 1

h2s−1

∑
k∈Z

(−1)k+1As,kf
(
t+ h

(
k − 1

2

))∣∣∣∣
=
∣∣(RBoas

2s−1,hf)(t)
∣∣ ≤√ 2

π
dist1(f (2s−1), B2

π/h) (h > 0).

Corollary 5.9.
a) Let s ∈ N, f ∈ W 2s−1,2(R) ∩ C(R), and let v2s−1f(v) be absolutely integrable. If
f (2s−1) ∈ Lipr(α,L2(R)), 1/2 < α ≤ r, then

(RBoas
2s−1,hf)(t) = O

(
hα−1/2) (h→ 0).

b) Let r, s ∈ N, r ≥ 2s, and f ∈W r,2(R) ∩ C(R). Then
(RBoas

2s−1,hf)(t) = O
(
hr+1/2−2s) (h→ 0).

c) If f ∈ H2(Sd), then
(RBoas

2s−1,hf)(t) = O
(
h−2s+1e−dπ/h

)
(h→ 0).

d) Let r, s ∈ N, r ≥ 2s, and f ∈W r,2(R) ∩ C(R). If f (r) belongs to M2,1
? , then

(RBoas
2s−1,hf)(t) = O

(
hr+1−2s) (h→ 0).

We finally turn to Bernstein’s inequality, already discussed in the “motivation” of
Section 1. Returning to the estimate (4) for the remainder, we have the following corollary
concerning the rates of convergence.

Corollary 5.10.
a) Let f ∈ W s,2(R) with vsf̂(v) ∈ L1(R) for some s ∈ N. If f (s) ∈ Lipr(α,L2(R)),
0 < α ≤ r, then

RBern
σ,s f = O

(
σ−α

)
(σ →∞).

b) Let r, s ∈ N, r > s, and f ∈W r,2(R). Then
RBern
σ,s f = O

(
σ−r+s) (σ →∞).
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c) If f ∈ H2(Sd), then
RBern
σ,s f = O

(
σse−dσ

)
(σ →∞).

d) Let r, s ∈ N, r ≥ s, and f ∈W r,2(R). If f (r) belongs to M2,1
? , then

RBern
σ,s f = O

(
σ−r−1/2+s) (σ →∞).

6. The modulation space and F 2. We here return to the inclusion chain (20) of
Section 4.

Proposition 6.1. The following strict inclusion relation is true:
M2,1 $ F 2 ∩ S2

1 .

Proof. If f ∈ M2,1, then f = ĝ with g ∈ W (L2, `1). In view of two standard inclusion
relations for Wiener amalgam spaces [13, (2.3), (2.4)],

W (L2, `1) ⊂W (L2, `2) = L2(R), W (L2, `1) ⊂W (L1, `1) = L1(R) ,
one has that f = ĝ ∈ L2(R) ∩ C(R), noting [5, Prop. 5.1.2, Prop. 5.2.1]. Furthermore
f̂(v) = ̂̂g(v) = g(−v) ∈ L1(R). Altogether we see that f belongs to F 2.

But M2,1 is also a subset of S2
1 . Indeed, by a basic result on Fourier transforms in

Wiener amalgam spaces [14, Theorem 2], [13, Theorem 2.8], it follows that g ∈W (L2, `1)
implies ĝ ∈W (L∞, `2). Thus M2,1 is a subset of W (L∞, `2), which is obviously a subset
of S2

1 .
It remains to show that M2,1 6= F 2 ∩ S2

1 , thus that there exists a function f ∈
(F 2 ∩ S2

1) \M2,1. We here reproduce such a fitting example, sketched and provided by
Przemysław Wojtaszczyk.2

Let ϕ ∈ C5(R) such that ϕ(t) > 0 for t ∈ (− 1
2 ,

1
2 ) and zero outside. Define

g(t) :=
∞∑
n=3

1
n1/2 lnn

ϕ
(
n(t− n− 1

2 )
)

(t ∈ R), (22)

and f := ĝ, which is the example in question. Then∑
n∈Z

{∫ n+1

n

|g(t)|2 dt
}1/2

= ‖ϕ‖L2[−1/2,1/2]

∞∑
n=3

1
n lnn =∞

and so g 6∈W (L2, `1), or equivalently, f 6∈M2,1.
On the other hand,

‖g‖2
L2(R) = ‖ϕ‖2

L2[−1/2,1/2]

∞∑
n=3

1
n2 ln2 n

<∞,

‖g‖L1(R) = ‖ϕ‖L1[−1/2,1/2]

∞∑
n=3

1
n3/2 lnn

< ∞ ,

which implies that f ∈ F 2.

2In private conversation at the workshop From Abstract to Computational Harmonic Analysis
held at Strobl, June 2011, Hans Feichtinger mentioned properties of amalgam and modulation
spaces for supporting the opinion that M2,1 and F 2∩S2

1 cannot be equal while Prof. Wojtaszczyk
(Warsaw) kindly came up with the example reproduced here.
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Using (22), one finds that for t ∈ R,

|f(t)| =
∣∣∣∣ ∞∑
n=3

1
n3/2 lnn

ϕ̂
( t
n

)
e−it(n+1/2)

∣∣∣∣ ≤ ∞∑
n=3

1
n3/2 lnn

∣∣∣ϕ̂( t
n

)∣∣∣. (23)

Since ϕ ∈ C5(R), one has for some constant c0 depending only on ϕ,

|ϕ̂(t)| ≤ c0 min
{

1, 1
|t|5
}
. (24)

Now let k be an integer outside the interval [−3, 3]. Splitting the summation in (23)
into the ranges 3 ≤ n ≤ |k| and |k|+ 1 ≤ n <∞, and using (24), one may estimate

|f(k)| ≤ c0

|k|5
Σk + c0Σ′k, (25)

where

Σk :=
|k|∑
n=3

n7/2

lnn and Σ′k :=
∞∑

n=|k|+1

1
n3/2 lnn

.

Clearly,

Σ′k <
1

ln |k|

∞∑
n=|k|+1

1
n3/2 <

1
ln |k|

∫ ∞
|k|

dx

x3/2 = 2
|k|1/2 ln |k|

. (26)

As regards Σk, one notes that n7/2/ lnn is increasing for n ≥ 3 and so, by integral
comparison and subsequent integration by parts one finds that

Σk <
∫ |k|+1

e

x7/2

ln x dx = 2
9 ·

x9/2

ln x

∣∣∣∣|k|+1

e

+ 2
9

∫ |k|+1

e

x7/2

ln2 x
dx

<
2
9 ·

x9/2

ln x

∣∣∣∣|k|+1

e

+ 2
9

∫ |k|+1

e

x7/2

ln x dx .

From this, one deduces that

Σk <
2
7 ·

x9/2

ln x

∣∣∣∣|k|+1

e

≤ c1
|k|9/2

ln |k| (27)

with a constant c1. Combining (25)–(27), one arrives at

|f(k)| < c0(2 + c1)
|k|1/2 ln |k|

(k ∈ Z \ [−3, 3]).

This shows that f ∈ S2
1 . This completes the proof of the proposition.
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