
FUNCTION SPACES X
BANACH CENTER PUBLICATIONS, VOLUME 102

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 2014

BILINEAR OPERATORS
AND LIMITING REAL METHODS

FERNANDO COBOS and ALBA SEGURADO
Departamento de Análisis Matemático, Facultad de Matemáticas

Universidad Complutense de Madrid
Plaza de Ciencias 3, 28040 Madrid, Spain

E-mail: cobos@mat.ucm.es, alba.segurado@mat.ucm.es

Abstract. We investigate the behaviour of bilinear operators under limiting real methods. As
an application, we show an interpolation formula for spaces of linear operators. Some results on
norm estimates for bounded linear operators are also established.

1. Introduction. Interpolation of bilinear operators is a classical question already con-
sidered by Lions and Peetre [17] and Calderón [4] in their seminal papers on the real and
the complex interpolation methods, respectively. Bilinear results have found a variety
of interesting applications in analysis including boundedness of convolution operators,
interpolation between a Banach space and its dual, stability of Banach algebras under
interpolation or interpolation of spaces of bounded linear operators (see the articles by
Peetre [19], Mastyło [18], Cobos and Fernández-Cabrera [6, 7] and the references given
there).

In this paper we study the behaviour of bilinear operators under limiting real meth-
ods. These methods have been investigated by the present authors in [14] (see also the
papers by Cobos, Fernández-Cabrera, Kühn and Ullrich [8], Cobos, Fernández-Cabrera
and Mastyło [9] and Cobos, Fernández-Cabrera and Silvestre [10, 11]). The K-spaces
(A0, A1)q;K are very close to the sum A0 +A1, while the J-spaces (A0, A1)q;J are near to
the intersection A0 ∩ A1. We recall their definitions in Section 2. Then, in Section 3, we
show that the bilinear interpolation theorems J ×J → J and J ×K → K hold, and that
there are no similar results of the type K × J → J and K ×K → K. As an application,
we establish an interpolation formula for spaces of bounded linear operators. Finally,
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in Section 4, we compare norm estimates for bilinear operators with estimates for linear
operators. We establish two results which complement those shown in [14].

2. Preliminaries. Let A = (A0, A1) be a Banach couple, that is to say, two Banach
spaces A0, A1 which are continuously embedded in a common linear Hausdorff space.

Peetre’s K- and J-functionals are defined for t > 0 by

K(t, a) = K(t, a;A) = inf
{
‖a0‖A0 + t‖a1‖A1 : a = a0 + a1, aj ∈ Aj

}
, a ∈ A0 +A1,

and
J(t, a) = J(t, a;A) = max

{
‖a‖A0 , t‖a‖A1

}
, a ∈ A0 ∩A1.

Note that K(1, ·) and J(1, ·) are the usual norms on A0 +A1 and A0 ∩A1, respectively.
Let 0 < θ < 1 and 1 ≤ q ≤ ∞. The real interpolation space (A0, A1)θ,q is defined as

the collection of all a ∈ A0 +A1 having a finite norm

‖a‖Aθ,q =
(∫ ∞

0
(t−θK(t, a))q dt

t

)1/q

(when q =∞ the integral should be replaced by the supremum). We refer to [2, 20, 3, 1]
for full details on this construction.

The limiting space Aq;K = (A0, A1)q;K , corresponding to the value θ = 1, is formed
by all those a ∈ A0 +A1 which have a finite norm

‖a‖Aq;K
=
(∫ 1

0
K(t, a)q dt

t

)1/q
+
(∫ ∞

1
(t−1K(t, a))q dt

t

)1/q
.

Limiting spaces for θ = 0 are defined by means of the J-functional: the space Aq;J =
(A0, A1)q;J consists of all those a ∈ A0 +A1 for which there exists a strongly measurable
function u(t) with values in A0 ∩A1 such that

a =
∫ ∞

0
u(t) dt

t
(convergence in A0 +A1)

and (∫ 1

0
(t−1J(t, u(t)))q dt

t

)1/q
+
(∫ ∞

1
J(t, u(t))q dt

t

)1/q
<∞.

The norm on Aq;J is

‖a‖Aq;J
= inf

{(∫ 1

0
(t−1J(t, u(t)))q dt

t

)1/q
+
(∫ ∞

1
J(t, u(t))q dt

t

)1/q
}
.

See [14] (and also [8, 9, 10, 11] for properties of limiting spaces). We just recall that

Aq;K = (A0, A1, A1, A0)(1/2,1/2),q;K , (1)

where (·, ·, ·, ·)(α,β),q;K is the K-method of interpolation associated to the unit square (see
[15, 13]). A similar result is valid for the limiting J-space.

As usual, if A and B are Banach spaces, L(A,B) stands for the space of all bounded
linear operators from A into B.

Given two Banach couples A = (A0, A1), B = (B0, B1), by T ∈ L(A,B) we denote a
linear operator from A0 +A1 into B0 +B1 whose restriction to each Aj defines a bounded
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operator from Aj into Bj (j = 0, 1). It is not hard to check that if T ∈ L(A,B) then the
restrictions

T : Aq;K → Bq;K and T : Aq;J → Bq;J

are bounded too.
By K we denote the scalar field, K = R or C, and | · | is its usual norm. Given two

positive functions f, g, we write f ∼ g if the quotient f/g is bounded from below and
from above by positive constants.

3. Interpolation of bilinear operators. In this section we study the behaviour of
bilinear operators under limiting real methods. It will be useful to work with the following
discrete norm

‖a‖q;K =
( ∞∑
m=−∞

(
min(1, 2−m)K(2m, a)

)q)1/q
,

which is equivalent to ‖ ·‖Aq;K
. A first consequence of this discrete representation of Aq;K

is that
A1;K ↪→ Aq;K , 1 ≤ q ≤ ∞. (2)

For the J-space, we work with

‖a‖q;J = inf
{( ∞∑

m=−∞

(
max(1, 2−m)J(2m, um)

)q)1/q
}
,

where the infimum is taken over all possible representations a =
∑∞
m=−∞ um (convergence

in A0 +A1) with (um) ⊂ A0 ∩A1 satisfying( ∞∑
m=−∞

(
max(1, 2−m)J(2m, um)

)q)1/q
<∞. (3)

Remark 3.1. Note that if (um) ⊂ A0 ∩ A1 satisfies (3), then the series is absolutely
convergent in A0 +A1 because

∞∑
m=−∞

K(1, um) ≤
∞∑

m=−∞
min(1, 2−m)J(2m, um)

≤
( ∞∑
m=−∞

(max(1, 2−m)J(2m, um))q
)1/q

( ∞∑
m=−∞

(min(1, 2−m)
max(1, 2−m)

)q′)1/q′

<∞.

Here 1/q + 1/q′ = 1.

The following two theorems are a consequence of the results of [5] and the connec-
tion (1) between limiting methods and interpolation methods associated to the unit square
(see [10, 11]). However, we give here more simple direct proofs.

Theorem 3.2. Let A = (A0, A1), B = (B0, B1), C = (C0, C1) be Banach couples and let
1 ≤ p, q, r ≤ ∞ with 1/p+ 1/q = 1 + 1/r. Suppose that

R : (A0 +A1)× (B0 +B1)→ C0 + C1
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is a bounded bilinear operator whose restrictions to Aj ×Bj define bounded operators

R : Aj ×Bj → Cj

with norms Mj (j = 0, 1). Then the restriction

R : (A0, A1)p;J × (B0, B1)q;J → (C0, C1)r;J

is also bounded, with norm M ≤ max(M0,M1).

Proof. Take any a ∈ (A0, A1)p;J and b ∈ (B0, B1)q;J , and consider any J-representations
a =

∑∞
m=−∞ am, b =

∑∞
m=−∞ bm. For each k ∈ Z, put

ck =
∞∑

m=−∞
R(am, bk−m).

Then ck ∈ C0 ∩ C1 because
∞∑

m=−∞
J(2k, R(am, bk−m))

≤
∞∑

m=−∞
max

(
M0‖am‖A0‖bk−m‖B0 ,M12m‖am‖A12k−m‖bk−m‖B1

)
≤ max(M0,M1)

∞∑
m=−∞

J(2m, am)J(2k−m, bk−m)

and the last sum is finite as we will show in the course of the next paragraph. Hence,
(ck)∞k=−∞ ⊂ C0 ∩ C1 with

J(2k, ck) ≤ max(M0,M1)
∞∑

m=−∞
J(2m, am)J(2k−m, bk−m).

Next we show that the series
∑∞
k=−∞ ck is absolutely convergent in C0+C1. According

to Remark 3.1, this holds if (ck) satisfies (3). We check this last fact by using Young’s
inequality. We have( ∞∑

k=−∞
(max(1, 2−k)J(2k, ck))r

)1/r

≤ max(M0,M1)
( ∞∑
k=−∞

( ∞∑
m=−∞

max(1, 2−m)J(2m, am)

×max(1, 2−(k−m))J(2k−m, bk−m)
)r)1/r

≤ max(M0,M1)
( ∞∑
m=−∞

(
max(1, 2−m)J(2m, am)

)p)1/p

×
( ∞∑
k=−∞

(
max(1, 2−k)J(2k, bk)

)q)1/q
<∞ .

(4)
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These arguments allow us also to show that
∞∑

k=−∞

∞∑
m=−∞

K(1, R(am, bk−m)) <∞.

Indeed, since

K(1, R(am, bk−m))
≤ min

(
M0‖am‖A0‖bk−m‖B0 , 2−kM12m‖am‖A12k−m‖bk−m‖B1

)
≤ max(M0,M1) min(1, 2−k)J(2m, am)J(2k−m, bk−m),

proceeding as in Remark 3.1, we obtain with

L =
( ∞∑
k=−∞

(min(1, 2−k)
max(1, 2−k)

)r′)1/r′

the estimates
∞∑

k=−∞

∞∑
m=−∞

K(1, R(am, bk−m))

≤ max(M0,M1)
∞∑

k=−∞
min(1, 2−k)

∞∑
m=−∞

J(2m, am)J(2k−m, bk−m)

≤ Lmax(M0,M1)
( ∞∑
k=−∞

(
max(1, 2−k)

∞∑
m=−∞

J(2m, am)J(2k−m, bk−m)
)r)1/r

≤ Lmax(M0,M1)
( ∞∑
k=−∞

( ∞∑
m=−∞

max(1, 2−m)J(2m, am)

× max(1, 2−(k−m))J(2k−m, bk−m)
)r)1/r

.

Using now Young’s inequality, we get
∞∑

k=−∞

∞∑
m=−∞

K(1, R(am, bk−m))

≤ Lmax(M0,M1)
( ∞∑
m=−∞

(
max(1, 2−m)J(2m, am)

)p)1/p

×
( ∞∑
k=−∞

(
max(1, 2−k)J(2k, bk)

)q)1/q
<∞.

A change in the order of summation in the double series yields that

R(a, b) =
∞∑

k=−∞

∞∑
m=−∞

R(am, bk−m) =
∞∑

k=−∞
ck .
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Consequently, by (4), we derive

‖R(a, b)‖r;J ≤
( ∞∑
k=−∞

(max(1, 2−k)J(2k, ck))r
)1/r

≤ max(M0,M1)
( ∞∑
m=−∞

(
max(1, 2−m)J(2m, am)

)p)1/p

×
( ∞∑
k=−∞

(
max(1, 2−k)J(2k, bk)

)q)1/q
.

Now the result follows by taking the infimum over all possible J-representations of a
and b.

Theorem 3.3. Let A = (A0, A1), B = (B0, B1), C = (C0, C1) be Banach couples and let
1 ≤ p, q, r ≤ ∞ with 1/p+ 1/q = 1 + 1/r. Assume that

R : (A0 +A1)× (B0 +B1)→ C0 + C1

is a bounded bilinear operator whose restrictions to Aj ×Bj define bounded operators

R : Aj ×Bj → Cj

with norms Mj (j = 0, 1). Then the restriction

R : (A0, A1)p;J × (B0, B1)q;K → (C0, C1)r;K

is also bounded, with norm M ≤ max(M0,M1).

Proof. Take any a ∈ (A0, A1)p;J and b ∈ (B0, B1)q;K . Let (λm)∞m=−∞ be a sequence of
positive numbers such that

∞∑
m=−∞

min(1, 2−m)qλqm = 1,

and let ε > 0. For each m ∈ Z choose a representation b = b
(m)
0 + b

(m)
1 of b in B0 + B1

such that ∥∥b(m)
0
∥∥
B0

+ 2m
∥∥b(m)

1
∥∥
B1
≤ K(2m, b) + ελm.

Pick any J-representation a =
∑∞
m=−∞ am of a. Then, for each k ∈ Z, we have

K(2k, R(a, b)) ≤
∞∑

m=−∞
K(2k, R(am, b))

≤
∞∑

m=−∞

(
K(2k, R(am, b(k−m)

0 )) +K(2k, R(am, b(k−m)
1 ))

)
≤

∞∑
m=−∞

(
M0‖am‖A0

∥∥b(k−m)
0

∥∥
B0

+ 2kM1‖am‖A1

∥∥b(k−m)
1

∥∥
B1

)
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≤ max(M0,M1)
∞∑

m=−∞
J(2m, am)

(∥∥b(k−m)
0

∥∥
B0

+ 2k−m
∥∥b(k−m)

1
∥∥
B1

)
≤ max(M0,M1)

∞∑
m=−∞

J(2m, am)
(
K(2k−m, b) + ελk−m

)
.

Therefore, by Young’s inequality, we derive

‖R(a, b)‖r;K =
( ∞∑
k=−∞

(
min(1, 2−k)K(2k, R(a, b))

)r)1/r

≤ max(M0,M1)
[ ∞∑
k=−∞

( ∞∑
m=−∞

max(1, 2−m)J(2m, am)

×min(1, 2−(k−m))
(
K(2k−m, b) + ελk−m

))r]1/r

≤ max(M0,M1)
[ ∞∑
m=−∞

(
max(1, 2−m)J(2m, am)

)p]1/p

×
[ ∞∑
m=−∞

(
min(1, 2−m)(K(2m, b) + ελm)

)q]1/q

≤ max(M0,M1)
( ∞∑
m=−∞

(
max(1, 2−m)J(2m, am)

)p)1/p(
‖b‖q;K + ε

)
.

Taking the infimum over all J-representations of a and letting ε go to 0, we get

‖R(a, b)‖r;K ≤ max(M0,M1)‖a‖p;J‖b‖q;K ,

as desired.

Remark 3.4. In applications, sometimes one is only given a bounded bilinear operator
R : (A0 +A1)× (B0 ∩B1)→ C0 +C1 whose restrictions R : Aj ×

(
B0 ∩B1, ‖ · ‖Bj

)
→ Cj

are bounded for j = 0, 1, and where the couple B is such that B0 ∩B1 is dense in Bj for
j = 0, 1. The question is to show that R has a bounded extension to the interpolation
spaces. This means, for the case of Theorem 3.3, an extension from Ap;J×Bq;K into Cr;K .

This problem has a positive answer provided that q <∞. Namely, if b ∈ B0 ∩B1, the
argument in the proof of Theorem 3.3 gives

‖R(a, b)‖r;K ≤ max(M0,M1)‖a‖p;J‖b‖q;K .

Since B0 ∩ B1 is dense in Bq;K when q < ∞ (see [14, Corollary 5.5]), the bounded
extension is possible.

Next we show an application of this remark to interpolation of operator spaces.

Theorem 3.5. Let A = (A0, A1), B = (B0, B1) be Banach couples with A0 ∩ A1 dense
in Aj for j = 0, 1. Assume that 1 ≤ p, q, r ≤ ∞ with q < ∞ and 1/p + 1/q = 1 + 1/r.
Then (

L(A0, B0),L(A1, B1)
)
p;J ⊂ L(Aq;K , Br;K).
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Proof. Let R : L(A0 ∩ A1, B0 + B1) × (A0 ∩ A1) → B0 + B1 be the bounded bilinear
operator defined by R(T, a) = Ta. It is clear that R : L(Aj , Bj)×

(
A0∩A1, ‖ · ‖Aj

)
→ Bj

is also bounded for j = 0, 1. Whence, by Remark 3.4, R has a bounded extension R :(
L(A0, B0),L(A1, B1)

)
p;J × (A0, A1)q;K → (B0, B1)r;K . Therefore, the wanted inclusion

follows.

If we exchange the role of J- and K-methods in Theorem 3.3, then the corresponding
statement does not hold as the next example shows.

Counterexample 3.6. Let (A0, A1) be a Banach couple such that A0∩A1 is not closed
in A0 + A1. Put R : (A0 + A1)× (K + K)→ A0 + A1 for the bounded bilinear operator
defined by R(a, λ) = λa. It is clear that restrictions R : Aj × K → Aj are bounded for
j = 0, 1. If the bilinear theorem K × J → J were true, then for any 1 ≤ p, q, r ≤ ∞ with
1/p + 1/q = 1 + 1/r we would deduce that R : (A0, A1)p;K × (K,K)q;J → (A0, A1)r;J is
bounded. This yields that (A0, A1)p;K ↪→ (A0, A1)r;J . Take any 0 < θ < 1 and 1 ≤ s ≤ ∞.
By [14, Lemmata 3.2 and 4.2], we know that (A0, A1)r;J ↪→ (A0, A1)θ,s ↪→ (A0, A1)p;K .
Therefore, we conclude that (A0, A1)θ,s = (A0, A1)µ,s for any 0 < θ 6= µ < 1, which is
impossible (see [16, Theorem 3.1]).

Concerning Theorem 3.2, there is no similar result for K-spaces. In order to show it,
we establish first an auxiliary result. For n ∈ N, let `nq be the space Kn with the `q-norm,
and if (ωj)nj=1 is a positive n-tuple, write `nq (ωj) for the corresponding weighted `nq -space.
We put `nq (n1/q) for the space `nq (ωj) if ωj = n1/q for 1 ≤ j ≤ n.

Lemma 3.7. Let n ∈ N and 1 ≤ q ≤ ∞ . Then

`n1 (j2−j) ↪→ (`n1 , `n1 (2−j))q;K , `n∞(n1/q) ↪→ (`n∞, `n∞(2j))q;K

and the norms of the embeddings can be bounded from above with constants independent
of n.

Proof. By [14, Remark 3.3] and [8, Lemma 7.2], we have (`n1 , `n1 (2−j))1;K = `n1 (j2−j)
with equivalence of norms where the constants do not depend on n. Hence (2) implies
that `n1 (j2−j) ↪→ (`n1 , `n1 (2−j))q;K .

To prove the second embedding of the statement, note that (`n∞, `n∞(2j))q;K =
(`n∞(2j), `n∞)q;K and that

K(t, ξ; `n∞(2j), `n∞) = max
1≤j≤n

min(2j , t)|ξj | .

Hence, using again [14, Remark 3.3], we obtain

‖ξ‖q(`n∞,`n∞(2j))q;K
∼
∞∑
m=1

2−mq max
1≤j≤n

min(2jq, 2mq)|ξj |q

=
n∑

m=1
max

1≤j≤n
min(2(j−m)q, 1)|ξj |q +

∞∑
m=n+1

2−mq max
1≤j≤n

min(2jq, 2mq)|ξj |q = S1 + S2
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where the constants in the equivalence do not depend on n. Next we estimate S2. Let
k ≤ n, we obtain

S2 =
∞∑

m=n+1
2−mq max

1≤j≤n
2jq|ξj |q = 2−(n+1)q

1− 2−q max
1≤j≤n

2jq|ξj |q

∼ max
1≤j≤n

2(j−n)q|ξj |q ≤ max
1≤j≤n

min(1, 2(j−k)q)|ξj |q ≤ S1.

Consequently,

‖ξ‖q(`n∞,`n∞(2j))q;K
∼

n∑
m=1

max
1≤j≤n

min(2(j−m)q, 1)|ξj |q

≤
n∑

m=1
max

1≤j≤n
|ξj |q = max

1≤j≤n
n|ξj |q = ‖ξ‖q

`∞(n1/q).

Counterexample 3.8. Take any 1 ≤ p, q, r ≤ ∞ with 1/p + 1/q = 1 + 1/r, consider
the couples A = (`n1 , `n1 (2−j)), B = (`n∞, `n∞(2j)), C = (K,K), and let R be the bilinear
operator defined by R((ξj), (ηj)) =

∑n
j=1 ξjηj . It is easy to check that R : (A0 + A1) ×

(B0 +B1)→ C0 +C1 is bounded, and the restrictions R : Aj×Bj → Cj are also bounded,
with norm 1 for j = 0, 1. If the bilinear theorem K×K → K were true, using Lemma 3.7
there would be some M <∞ such that∥∥R : `n1 (j2−j)× `n∞(n1/q)→ K

∥∥ ≤M
for every n ∈ N. Take ξ = (0, . . . , 0, 2n/n) and η = (0, . . . , 0, n−1/q). Since ‖ξ‖`n1 (j2−j) = 1 ,
‖η‖`n∞(n1/q) = 1 and R(ξ, η) = 2n/n1+1/q, it follows that 2n/n1+1/q ≤M for every n ∈ N
which is impossible.

4. Norm estimates. In this final section we compare norm estimates for bilinear oper-
ators with the norms of linear operators interpolated by the limiting methods. We start
with an auxiliary result.

Lemma 4.1. Let E = (K,K). Then E1;J = K and ‖ · ‖1;J coincides with | · |.

Proof. If λ ∈ K, we can take the representation λ =
∑∞
m=−∞ vm with vm = 0 for

m 6= 0 and v0 = λ. It follows that ‖λ‖1;J ≤ |λ|. Conversely, given any J-representation
λ =

∑∞
m=−∞ λm of λ, we have

|λ| ≤
∞∑

m=−∞
|λm| ≤

∞∑
m=−∞

max(1, 2−m)J(2m, λm).

Hence, |λ| ≤ ‖λ‖1;J .

Let A = (A0, A1), B = (B0, B1) be Banach couples and let T ∈ L(A,B). Put E =
(K,K), and define the bilinear operator R by R(λ, a) = λTa. The operator R is bounded
from (K + K) × (A0 + A1) into B0 + B1, and restrictions R : K × Aj → Bj are also
bounded. It follows from Lemma 4.1 that for any 1 ≤ q ≤ ∞ we have

‖T‖L(Aq;K ,Bq;K) =
∥∥R : E1;J ×Aq;K → Bq;K

∥∥.
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Whence, norm estimates for interpolated bilinear operators cannot be better than corre-
sponding estimates for interpolated linear operators.

For the real method, it is well-known that if T ∈ L(A,B) then

‖T‖Aθ,q,Bθ,q ≤ ‖T‖
1−θ
A0,B0

‖T‖θA1,B1

(see, for example, [2, Theorem 3.1.2]). For limiting real methods, this estimate is no longer
true. If A0 ↪→ A1 and B0 ↪→ B1, it was proved in [8, Theorem 7.9] that

‖T‖Aq;K ,Bq;K
≤M‖T‖A1,B1

[
1 + max

{
0, log ‖T‖A1,B1

‖T‖A0,B0

}]
,

where M does not depend on T , A or B. However, for general couples, even this weaker
estimate fails as has been shown by the authors in [14, Counterexample 3.6]. Next we es-
tablish two results which complement those of [14] and illustrate the poor norm estimates
that are fulfilled for the limiting methods. Subsequently, we work with the continuous
norm ‖ · ‖Aq;K

of the limiting K-space.

Proposition 4.2. For any s, t > 0, there exist Banach couples A = (A0, A1), B =
(B0, B1) and an operator T ∈ L(A,B) such that ‖T‖A0,B0 = s, ‖T‖A1,B1 = t and

‖T‖A∞;K ,B∞;K
= max(s, t).

Proof. Let B0 = B1 = K with the usual norm | · |. Take A0 = A1 = K normed with
‖λ‖A0 = s−1|λ| and ‖λ‖A1 = t−1|λ|, respectively, and put Tλ = λ. It is clear that
‖T‖A0,B0 = s and ‖T‖A1,B1 = t. Since

‖λ‖B∞;K
= 2K(1, λ;B0, B1) = 2|λ|

and
‖λ‖A∞;K

= 2K(1, λ;A0, A1) = 2 min(s−1, t−1)|λ|,

we derive
‖T‖A∞;K ,B∞;K

= max(s, t),

as desired.

We close the paper with the case q <∞.

Theorem 4.3. Let 1 ≤ q <∞. Then

sup
{
‖T‖Aq;K ,Bq;K

: ‖T‖A0,B0 ≤ s, ‖T‖A1,B1 ≤ t
}
∼ max(s, t),

where the supremum is taken over all Banach pairs A = (A0, A1), B = (B0, B1) and all
T ∈ L(A,B) satisfying the stated conditions.

Proof. According to [12, Corollary 1.7],

sup{‖T‖Aq;K ,Bq;K
: ‖T‖A0,B0 ≤ s, ‖T‖A1,B1 ≤ t} ∼ sg(t/s),

where

g(τ) = sup
α∈(0,∞)

∥∥min(1,ατ ·)
max(1,·)

∥∥
Lq((0,∞),dt/t)∥∥min(1,α·)

max(1,·)
∥∥
Lq((0,∞),dt/t)

= sup
α∈(0,∞)

Cα,τ .
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Let us compute g. We start with the case 1/τ < 1. Then

sup
α∈(0,∞)

Cα,τ = max
(

sup
0<α<1/τ

Cα,τ , sup
1/τ≤α<1

Cα,τ , sup
α≥1

Cα,τ

)
.

Let 0 < α < 1/τ . Then(∫ ∞
0

[min(1, ατt)
max(1, t)

]q dt
t

)1/q
=
(∫ 1

0
(ατt)q dt

t
+
∫ 1/ατ

1
(ατ)q dt

t
+
∫ ∞

1/ατ
t−q

dt

t

)1/q

=
(
2/q − log(ατ)

)1/q
ατ,

and (∫ ∞
0

[min(1, αt)
max(1, t)

]q dt
t

)1/q
=
(∫ 1

0
(αt)q dt

t
+
∫ 1/α

1
αq

dt

t
+
∫ ∞

1/α
t−q

dt

t

)1/q

=
(
2/q − log(α)

)1/q
α,

so

sup
0<α<1/τ

Cα,τ = sup
0<α<1/τ

τ
[2/q − log(ατ)

2/q − logα

]1/q
= sup

0<α<1/τ
τ
[2/q − logα− log τ

2/q − logα

]1/q

= sup
0<α<1/τ

τ
[
1− log τ

2/q − logα

]1/q
= τ.

Now, let 1/τ ≤ α < 1. Then(∫ ∞
0

[min(1, ατt)
max(1, t)

]q dt
t

)1/q
=
(∫ 1/ατ

0
(ατt)q dt

t
+
∫ 1

1/ατ

dt

t
+
∫ ∞

1
t−q

dt

t

)1/q

=
(
2/q + log(ατ)

)1/q
,

so in this case

Cα,τ =
[2/q + logα+ log τ
αq(2/q − logα)

]1/q
.

We have
∂Cqα,τ
∂α

(α, τ) = 0 ⇐⇒ logα = −q log τ ±
√
q2 log2 τ + 4q log τ

2q .

Since log τ > 0, one of the roots is positive, and the other one is less than or equal to
−q log τ − q log τ

2q = log(1/τ).

This implies that the derivative does not change its sign on the interval 1/τ ≤ α < 1.
Since

∂Cqα,τ
∂α

(1, τ) = αq−1

(αq(2/q − logα))2 log 1/τ < 0,

we deduce that Cα,τ is decreasing on [1/τ, 1], and therefore,

sup
1/τ≤α<1

Cα,τ = τ
[2/q − log τ + log τ

2/q + log τ

]1/q
= τ

[
1− log τ

2/q + log τ

]1/q
.
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In the case α ≥ 1, we have(∫ ∞
0

[min(1, αt)
max(1, t)

]q dt
t

)1/q
=
(∫ 1/α

0
(αt)q dt

t
+
∫ 1

1/α

dt

t
+
∫ ∞

1
t−q

dt

t

)1/q

= (2/q + logα)1/q,

so

sup
α≥1

Cα,τ = sup
α≥1

[2/q + log(ατ)
2/q + logα

]1/q
= sup
α≥1

[
1 + log τ

2/q + logα

]1/q
=
[
1 + q log τ

2

]1/q
.

Therefore,

sup
0<α<∞

Cα,τ = max
(
τ, τ
(

1− log τ
2/q + log τ

)1/q
,
(

1 + q log τ
2

)1/q)
.

It is easy to check that the second value in the maximum is less than or equal to τ . To
compare the last term, put f(τ) = 2τ q − 2− q log τ = 2τ q − 2− log τ q for τ ≥ 1. We have
f(1) = 0 and f ′(τ) = qτ−1(2τ q − 1) > 0, so f(τ) ≥ 0, and therefore τ ≥ (1 + q log τ

2 )1/q,
that is, if 1/τ < 1, we have g(τ) = τ .

Next consider the case 1/τ ≥ 1. Then

sup
α∈(0,∞)

Cα,τ = max
(

sup
0<α≤1

Cα,τ , sup
1<α<1/τ

Cα,τ , sup
α≥1/τ

Cα,τ

)
.

If 0 < α ≤ 1, using what we already have, we get

sup
0<α≤1

Cα,τ = sup
0<α≤1

τ
[2/q − log(ατ)

2/q − logα

]1/q
= sup

0<α≤1
τ
[
1− log τ

2/q − logα

]1/q

= τ
[
1− q log τ

2

]1/q
.

If 1 < α < 1/τ , we have

sup
1<α<1/τ

Cα,τ = sup
1<α<1/τ

ατ
[2/q − log(ατ)

2/q + logα

]1/q
,

and since
∂Cqα,τ
∂α

(α, τ) = (τα)q−1τ

(2/q + logα)2

(
−q logα(logα− log(1/τ)) + log(1/τ)

)
> 0,

we obtain
sup

1<α<1/τ
Cα,τ =

[ 2/q
2/q + log(1/τ)

]1/q
=
[
1 + q log τ

2− q log τ

]1/q
.

Finally, if α ≥ 1/τ , we have

sup
α≥1/τ

Cα,τ = sup
α≥1/τ

[2/q + log(ατ)
2/q + logα

]1/q
= sup
α≥1/τ

[
1 + log τ

2/q + logα

]1/q
= 1,

and therefore

sup
0<α<∞

Cα,τ = max
(
τ
[
1− q log τ

2

]1/q
,
[
1 + q log τ

2− q log τ

]1/q
, 1
)
.

Clearly, the second term is less than or equal to 1. To estimate the first one, write
h(τ) = τ q(1− q

2 log τ)−1 for 0 < τ ≤ 1. We have h(1) = 0 and h′(τ) = q
2 (1−q log τ) > 0,
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so h(τ) ≤ 0 whenever 0 < τ ≤ 1. This yields that

sup
0<α<∞

Cα,τ = max
(
τ
[
1− q log τ

2

]1/q
,
[
1 + q log τ

2− q log τ

]1/q
, 1
)

= 1.

Consequently, g(τ) = max(1, τ), which completes the proof.

Acknowledgments. Authors have been supported in part by the Spanish Ministerio de
Economía y Competividad (MTM2010-15814). A. Segurado has been also supported by
the FPU grant AP2010-0034 of the Ministerio de Economía y Competividad.

The authors would like to thank the referee for his/her comments.

References

[1] C. Bennett, R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic
Press, Boston, 1988.

[2] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Grundlehren Math. Wiss.
223, Springer, Berlin 1976.

[3] Yu. A. Brudny̆ı, N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces, vol. 1,
North-Holland Math. Library 47, North-Holland, Amsterdam 1991.

[4] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math.
24 (1964), 113–190.

[5] F. Cobos, J. M. Cordeiro, A. Martínez, On interpolation of bilinear operators by meth-
ods associated to polygons, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 2 (1999),
319–330.

[6] F. Cobos, L. M. Fernández-Cabrera, Factoring weakly compact homomorphisms, interpo-
lation of Banach algebras and multilinear interpolation, in: Function Spaces VIII, Banach
Center Publ. 79, Polish Acad. Sci. Inst. Math., Warsaw 2008, 57–69.

[7] F. Cobos, L. M. Fernández-Cabrera, On the relationship between interpolation of Banach
algebras and interpolation of bilinear operators, Canad. Math. Bull. 53 (2010), 51–57.

[8] F. Cobos, L. M. Fernández-Cabrera, T. Kühn, T. Ullrich, On an extreme class of real
interpolation spaces, J. Funct. Anal. 256 (2009), 2321–2366.

[9] F. Cobos, L. M. Fernández-Cabrera, M. Mastyło, Abstract limit J-spaces, J. Lond. Math.
Soc. (2) 82 (2010), 501–525.

[10] F. Cobos, L. M. Fernández-Cabrera, P. Silvestre, New limiting real interpolation methods
and their connection with the methods associated to the unit square, Math. Nachr. 286
(2013), 569–578.

[11] F. Cobos, L. M. Fernández-Cabrera, P. Silvestre, Limiting J-spaces for general couples,
Z. Anal. Anwendungen 32 (2013), 83–101.

[12] F. Cobos, A. Gogatishvili, B. Opic, L. Pick, Interpolation of uniformly absolutely contin-
uous operators, Math. Nachr. 286 (2013), 579–599.

[13] F. Cobos, J. Peetre, Interpolation of compact operators: the multidimensional case, Proc.
London Math. Soc. (3) 63 (1991), 371–400.

[14] F. Cobos, A. Segurado, Limiting real interpolation methods for arbitrary Banach couples,
Studia Math. 213 (2012), 243–273.

[15] D. L. Fernandez, Interpolation of 2n Banach spaces, Studia Math. 65 (1979), 175–201.
[16] S. Janson, P. Nilsson, J. Peetre, M. Zafran, Notes on Wolff’s note on interpolation spaces,

Proc. London Math. Soc. (3) 48 (1984), 283–299.

http://dx.doi.org/10.4064/bc79-0-4
http://dx.doi.org/10.4153/CMB-2010-009-1
http://dx.doi.org/10.1016/j.jfa.2008.12.013
http://dx.doi.org/10.1112/jlms/jdq043
http://dx.doi.org/10.1002/mana.201100076
http://dx.doi.org/10.4171/ZAA/1475
http://dx.doi.org/10.1002/mana.201100205
http://dx.doi.org/10.1112/plms/s3-63.2.371
http://dx.doi.org/10.4064/sm213-3-4
http://dx.doi.org/10.1112/plms/s3-48.2.283


70 F. COBOS AND A. SEGURADO

[17] J.-L. Lions, J. Peetre, Sur une classe d’espaces d’interpolation, Inst. Hautes Études Sci.
Publ. Math. 19 (1964), 5–68.

[18] M. Mastyło, On interpolation of bilinear operators, J. Funct. Anal. 214 (2004), 260–283.
[19] J. Peetre, Paracommutators and minimal spaces, in: Operators and Function Theory (Lan-

caster, 1984), Reidel, Dordrecht 1985, 163–224.
[20] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland

Math. Library 18, North-Holland, Amsterdam 1978.

http://dx.doi.org/10.1007/BF02684796
http://dx.doi.org/10.1016/j.jfa.2003.10.004

	Introduction
	Preliminaries
	Interpolation of bilinear operators
	Norm estimates

