RELATIONS BETWEEN SOME CLASSES OF FUNCTIONS OF GENERALIZED BOUNDED VARIATION

AMIRAN GOGATISHVILI
Institute of Mathematics of the Academy of Sciences of the Czech Republic Žitná 25, 11567 Praha 1, Czech Republic
E-mail: gogatish@math.cas.cz
USHANGI GOGINAVA and GEORGE TEPHNADZE
Department of Mathematics, Faculty of Exact and Natural Sciences
Iv. Javakhishvili Tbilisi State University, Chavchavadze str. 1, Tbilisi 0128, Georgia
E-mail: zazagoginava@gmail.com, giorgitephnadze@gmail.com

Abstract

We prove inclusion relations between generalizing Waterman's and generalized Wiener's classes for functions of two variable.

The notion of function of bounded variation was introduced by C. Jordan [16]. Generalizing this notion N . Wiener [30] has considered the class $B V_{p}$ of functions. L. Young [31] introduced the notion of functions of Φ-variation. In [26] D. Waterman has introduced the following concept of generalized bounded variation.
Definition 1. Let $\Lambda=\left\{\lambda_{n}: n \geq 1\right\}$ be an increasing sequence of positive numbers such that $\sum_{n=1}^{\infty}\left(1 / \lambda_{n}\right)=\infty$. A function f is said to be of Λ-bounded variation $(f \in \Lambda B V)$, if for every choice of nonoverlapping intervals $\left\{I_{n}: n \geq 1\right\}$, we have

$$
\sum_{n=1}^{\infty} \frac{\left|f\left(I_{n}\right)\right|}{\lambda_{n}}<\infty
$$

where $I_{n}=\left[a_{n}, b_{n}\right] \subset[0,1]$ and $f\left(I_{n}\right)=f\left(b_{n}\right)-f\left(a_{n}\right)$. If $f \in \Lambda B V$, then Λ-variation of f is defined to be the supremum of such sums, denoted by $V_{\Lambda}(f)$.

2010 Mathematics Subject Classification: 42C10.

Key words and phrases: Waterman's class, generalized Wiener's class.
The research was supported by Shota Rustaveli National Science Foundation grant no.13/06 (Geometry of function spaces, interpolation and embedding theorems).
The research of A. Gogatishvili was partly supported by the grants 201/08/0383 and 13-14743S of the Grant agency of the Czech Republic.
The paper is in final form and no version of it will be published elsewhere.

Properties of functions of the class $\Lambda B V$ as well as the convergence and summability properties of their Fourier series have been investigated in [22]-[29].

For everywhere bounded 1-periodic functions, Z. Chanturia [6] has introduced the concept of the modulus of variation.
H. Kita and K. Yoneda [18] studied generalized Wiener classes $B V(p(n) \uparrow p)$. They introduced
Definition 2. Let f be a finite 1-periodic function defined on the interval $(-\infty,+\infty)$. $\Delta=\left\{t_{i}: i=0, \pm 1, \pm 2, \ldots\right\}$ is said to be a partition with period 1 if

$$
\begin{equation*}
\ldots<t_{-1}<t_{0}<t_{1}<t_{2}<\ldots<t_{m}<t_{m+1}<\ldots \tag{1}
\end{equation*}
$$

and $t_{k+m}=t_{k}+1$ when $k=0, \pm 1, \pm 2, \ldots$, where m is a natural number. Let $p(n)$ be an increasing sequence such that $1 \leq p(n) \uparrow p, n \rightarrow \infty$, where $1 \leq p \leq+\infty$. We say that a function f belongs to the class $B V(p(n) \uparrow p)$ if

$$
V(f, p(n) \uparrow p) \equiv \sup _{n \geq 1} \sup _{\Delta}\left\{\left(\sum_{k=1}^{m}\left|f\left(I_{k}\right)\right|^{p(n)}\right)^{1 / p(n)}: \inf _{k}\left|I_{k}\right| \geq \frac{1}{2^{n}}\right\}<+\infty
$$

We note that if $p(n)=p$ for each natural number, where $1 \leq p<+\infty$, then the class $B V(p(n) \uparrow p)$ coincides with the Wiener class V_{p}.

Properties of functions of the class $B V(p(n) \uparrow p)$ as well as the uniform convergence and divergence at point of their Fourier series with respect to trigonometric and Walsh system have been investigated in [9], [12], [17].

Generalizing the class $B V(p(n) \uparrow p)$ T. Akhobadze (see [1, 2]) has considered the classes of functions $B V(p(n) \uparrow p, \varphi)$ and $B \Lambda(p(n) \uparrow p, \varphi)$.

The relation between different classes of generalized bounded variation was taken into account in the works of M. Avdispahić [4, A. Kováčik [19], A. Belov [5], Z. Chanturia [7], T. Akhobadze [3], M. Medvedeva [21] and U. Goginava [11, 13].

Let f be a real and measurable function of two variables of period 1 with respect to each variable. Given intervals $J_{1}=(a, b), J_{2}=(c, d)$ and points x, y from $I:=[0,1]$, we define

$$
f\left(J_{1}, y\right):=f(b, y)-f(a, y), \quad f\left(x, J_{2}\right):=f(x, d)-f(x, c)
$$

and for the rectangle $A=(a, b) \times(c, d)$, we set

$$
f(A)=f\left(J_{1}, J_{2}\right):=f(a, c)-f(a, d)-f(b, c)+f(b, d)
$$

Let $E=\left\{I_{i}\right\}$ be a collection of nonoverlapping intervals from I ordered in an arbitrary way and let Ω be the set of all such collections E.

For the sequence of positive numbers $\Lambda=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ we define

$$
\begin{aligned}
\Lambda V_{1}(f) & =\sup _{y \in I} \sup _{\left\{I_{i}\right\} \in \Omega} \sum_{i} \frac{\left|f\left(I_{i}, y\right)\right|}{\lambda_{i}}, \\
\Lambda V_{2}(f) & =\sup _{x \in I} \sup _{\left\{J_{j}\right\} \in \Omega} \sum_{j} \frac{\left|f\left(x, J_{j}\right)\right|}{\lambda_{j}}, \\
\Lambda V_{1,2}(f) & =\sup _{\left\{I_{i}\right\},\left\{J_{j}\right\} \in \Omega} \sum_{i} \sum_{j} \frac{\left|f\left(I_{i}, J_{j}\right)\right|}{\lambda_{i} \lambda_{j}} .
\end{aligned}
$$

Definition 3. We say that the function f has bounded Λ-variation on $I^{2}:=[0,1] \times[0,1]$ and write $f \in \Lambda B V$, if

$$
\Lambda V(f):=\Lambda V_{1}(f)+\Lambda V_{2}(f)+\Lambda V_{1,2}(f)<\infty
$$

We say that the function f has bounded partial Λ-variation and write $f \in P \Lambda B V$ if

$$
P \Lambda V(f):=\Lambda V_{1}(f)+\Lambda V_{2}(f)<\infty .
$$

If $\lambda_{n} \equiv 1$ (or if $0<c<\lambda_{n}<C<\infty, n=1,2, \ldots$) the classes $\Lambda B V$ and $P \Lambda B V$ coincide with the Hardy class $B V$ and $P B V$ respectively. Hence it is reasonable to assume that $\lambda_{n} \rightarrow \infty$ and since the intervals in $E=\left\{I_{i}\right\}$ are ordered arbitrarily, we will suppose, without loss of generality, that the sequence $\left\{\lambda_{n}\right\}$ is increasing. Thus, in what follows we suppose that

$$
\begin{equation*}
1<\lambda_{1} \leq \lambda_{2} \leq \ldots, \quad \lim _{n \rightarrow \infty} \lambda_{n}=\infty, \quad \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}=\infty . \tag{2}
\end{equation*}
$$

In the case when $\lambda_{n}=n, n=1,2, \ldots$, we say Harmonic Variation instead of Λ-variation and write H instead of $\Lambda(H B V, P H B V, H V(f)$, etc.).

The notion of Λ-variation was introduced by Waterman [26] in one-dimensional case and Sahakian [24] in two-dimensional case. The notion of bounded partial variation (class $P B V$) was introduced by Goginava [10]. These classes of functions of generalized bounded variation play an important role in the theory of Fourier series.

We have proved in [14] the following theorem.
Theorem 4 (Goginava, Sahakian). Let $\Lambda=\left\{\lambda_{n}=n \gamma_{n}\right\}$ and $\gamma_{n} \geq \gamma_{n+1}>0$, where $n=1,2, \ldots$.

1) If

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\gamma_{n}}{n}<\infty \tag{3}
\end{equation*}
$$

then $P \Lambda B V \subset H B V$.
2) If for some $\delta>0$

$$
\begin{equation*}
\gamma_{n}=O\left(\gamma_{n}[1+\delta]\right) \quad \text { as } \quad n \rightarrow \infty \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\gamma_{n}}{n}=\infty \tag{5}
\end{equation*}
$$

then $P \Lambda B V \not \subset H B V$.
Dyachenko and Waterman [8] introduced another class of functions of generalized bounded variation. Denoting by Γ the the set of finite collections of nonoverlapping rectangles $A_{k}:=\left[\alpha_{k}, \beta_{k}\right] \times\left[\gamma_{k}, \delta_{k}\right] \subset T^{2}$ we define

$$
\Lambda^{*} V(f):=\sup _{\left\{A_{k}\right\} \in \Gamma} \sum_{k} \frac{\left|f\left(A_{k}\right)\right|}{\lambda_{k}} .
$$

Definition 5 (Dyachenko, Waterman). Let f be a real function on I^{2}. We say that $f \in \Lambda^{*} B V$ if

$$
\Lambda V(f):=\Lambda V_{1}(f)+\Lambda V_{2}(f)+\Lambda^{*} V(f)<\infty
$$

In [15] Goginava and Sahakian introduced a new class of functions of generalized bounded variation and investigated the convergence of Fourier series of function of this class.

For the sequence $\Lambda=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ we put

$$
\begin{aligned}
& \Lambda^{\#} V_{1}(f)=\sup _{\left\{y_{i}\right\} \subset T} \sup _{\left\{I_{i}\right\} \in \Omega} \sum_{i} \frac{\left|f\left(I_{i}, y_{i}\right)\right|}{\lambda_{i}}, \\
& \Lambda^{\#} V_{2}(f)=\sup _{\left\{x_{j}\right\} \subset T} \sup _{\left\{J_{j}\right\} \in \Omega} \sum_{j} \frac{\mid f\left(x_{j}, J_{j} \mid\right.}{\lambda_{j}} .
\end{aligned}
$$

Definition 6 (Goginava, Sahakian). We say that the function f belongs to the class $\Lambda^{\#} B V$, if

$$
\Lambda^{\#} V(f):=\Lambda^{\#} V_{1}(f)+\Lambda^{\#} V_{2}(f)<\infty
$$

The following theorem was proved in [15].

Theorem 7.

a) If

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \frac{\lambda_{n} \log (n+1)}{n}<\infty \tag{6}
\end{equation*}
$$

then

$$
\Lambda^{\#} B V \subset H B V
$$

b) If $\frac{\lambda_{n}}{n} \downarrow 0$ and

$$
\varlimsup_{n \rightarrow \infty} \frac{\lambda_{n} \log (n+1)}{n}=+\infty
$$

then

$$
\Lambda^{\#} B V \not \subset H B V
$$

In this paper we introduce new classes of bounded generalized variation.
Let f be a function defined on R^{2} and 1-periodic with respect to each variable. Δ_{1} and Δ_{2} are said to be partitions with period 1, if

$$
\Delta_{i}: \quad \ldots<t_{-1}^{(i)}<t_{0}^{(i)}<t_{1}^{(i)}<\ldots<t_{m_{i}}^{(i)}<t_{m_{i}+1}^{(i)}<\ldots, \quad i=1,2
$$

satisfies $t_{k+m_{i}}^{(i)}=t_{k}^{(i)}+1$ for $k=0, \pm 1, \pm 2, \ldots$, where $m_{i}, i=1,2$, are positive integers.
Definition 8 . Let $p(n)$ be an increasing sequence such that $1 \leq p(n) \uparrow p, n \rightarrow \infty$, where $1 \leq p \leq+\infty$. We say that a function f belongs to the class $B V^{\#}(p(n) \uparrow p)$ if

$$
V_{1}^{\#}(f, p(n) \uparrow p):=\sup _{\left\{y_{i}\right\} \subset I} \sup _{n \geq 1} \sup _{\Delta_{1}}\left\{\left(\sum_{i=1}^{m_{1}}\left|f\left(I_{i}, y_{i}\right)\right|^{p(n)}\right)^{1 / p(n)}: \inf _{i}\left|I_{i}\right| \geq \frac{1}{2^{n}}\right\}<+\infty
$$

and

$$
V_{2}^{\#}(f, p(n) \uparrow p):=\sup _{\left\{x_{j}\right\} \subset I} \sup _{n \geq 1} \sup _{\Delta_{2}}\left\{\left(\sum_{j=1}^{m_{2}}\left|f\left(x_{j}, J_{j}\right)\right|^{p(n)}\right)^{1 / p(n)}: \inf _{j}\left|J_{j}\right| \geq \frac{1}{2^{n}}\right\}<+\infty
$$

where

$$
I_{i}:=\left(t_{i-1}^{(1)}, t_{i}^{(1)}\right), \quad J_{j}:=\left(t_{j-1}^{(2)}, t_{j}^{(2)}\right)
$$

$C\left(I^{2}\right)$ and $B\left(I^{2}\right)$ are the spaces of continuous and bounded functions given on I^{2}, respectively.

In this paper we prove inclusion relations between $\Lambda^{\#} B V$ and $B V^{\#}(p(n) \uparrow \infty)$ classes. Theorem 9. $\Lambda^{\#} B V \subset B V^{\#}(p(n) \uparrow \infty)$ if and only if

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \sup _{1 \leq m \leq 2^{n}} \frac{m^{1 / p(n)}}{\sum_{j=1}^{m}\left(1 / \lambda_{j}\right)}<\infty \tag{7}
\end{equation*}
$$

Theorem 10. Suppose that $\sum_{n=1}^{\infty}\left(1 / \lambda_{n}\right)=+\infty$. Then there exists a function $f \in B V^{\#}(p(n) \uparrow \infty) \cap C\left(I^{2}\right)$ such that $f \notin \Lambda B V^{\#}$.
Corollary 11. $B V^{\#}(p(n) \uparrow \infty) \subset \Lambda^{\#} B V$ if and only if $\Lambda^{\#} B V=B\left(I^{2}\right)$.
Proof of Theorem 9. Let us take an arbitrary $f \in \Lambda^{\#} B V$. Following the method of Kuprikov [20], we can prove that

$$
\left(\sum_{k=1}^{m_{1}}\left|f\left(I_{k}, y_{k}\right)\right|^{p(n)}\right)^{1 / p(n)} \leq \Lambda^{\#} V_{1}(f) \sup _{1 \leq m \leq 2^{n}} \frac{m^{1 / p(n)}}{\sum_{i=1}^{m}\left(1 / \lambda_{i}\right)}<\infty
$$

and

$$
\left(\sum_{k=1}^{m_{2}}\left|f\left(x_{k}, J_{k}\right)\right|^{p(n)}\right)^{1 / p(n)} \leq \Lambda^{\#} V_{2}(f) \sup _{1 \leq m \leq 2^{n}} \frac{m^{1 / p(n)}}{\sum_{i=1}^{m}\left(1 / \lambda_{i}\right)}<\infty
$$

Therefore, $f \in \Lambda^{\#} B V(p(n) \uparrow \infty)$.
Next, we suppose that the condition (7) does not hold. As an example we construct a function from $\Lambda^{\#} B V$ which is not in $B V^{\#}(p(n) \uparrow \infty)$.

Since

$$
\varlimsup_{n \rightarrow \infty} \sup _{1 \leq m \leq 2^{n}} \frac{m^{1 / p(n)}}{\sum_{j=1}^{m}\left(1 / \lambda_{j}\right)}=+\infty
$$

there exists a sequence of integers $\left\{n_{k}^{\prime}: k \geq 1\right\}$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{m\left(n_{k}^{\prime}\right)^{1 / p\left(n_{k}^{\prime}\right)}}{\sum_{j=1}^{m\left(n_{k}^{\prime}\right)}\left(1 / \lambda_{j}\right)}=+\infty \tag{8}
\end{equation*}
$$

where

$$
\sup _{1 \leq m \leq 2^{n}} \frac{m^{1 / p(n)}}{\sum_{j=1}^{m}\left(1 / \lambda_{j}\right)}=\frac{m(n)^{1 / p(n)}}{\sum_{j=1}^{m(n)}\left(1 / \lambda_{j}\right)} .
$$

We choose an increasing sequence of positive integers $\left\{n_{k}: k \geq 1\right\} \subset\left\{n_{k}^{\prime}: k \geq 1\right\}$ such that

$$
\begin{gather*}
\frac{m\left(n_{k}\right)^{1 / p\left(n_{k}\right)}}{\sum_{j=1}^{m\left(n_{k}\right)}\left(1 / \lambda_{j}\right)} \geq 4^{k}, \tag{9}\\
p\left(n_{k}\right) \geq n_{k-1}, \tag{10}\\
n_{k}>3 n_{k-1}+1 \quad \text { for all } k \geq 2 \tag{11}
\end{gather*}
$$

If $m\left(n_{k}\right) \leq 2^{2 n_{k-1}}$ then by 10 condition (8) does not hold. Hence without lost of generality we can suppose that $2^{2 n_{k-1}}<m\left(n_{k}\right) \leq 2^{n_{k}}$ for every k.

Two cases are possible:
a) There exists a monotone sequence of positive integers $\left\{s_{k}: k \geq 1\right\} \subset\left\{n_{k}: k \geq 1\right\}$ such that

$$
\begin{equation*}
2^{2 s_{k-1}}<m\left(s_{k}\right) \leq 2^{s_{k}-s_{k-1}-1} \tag{12}
\end{equation*}
$$

Consider the function f_{k} defined by

$$
f_{k}(x)= \begin{cases}h_{k}\left(2^{s_{k}} x-2 j+1\right), & x \in\left[(2 j-1) / 2^{s_{k}}, 2 j / 2^{s_{k}}\right) \\ -h_{k}\left(2^{s_{k}} x-2 j-1\right), & x \in\left[2 j / 2^{s_{k}},(2 j+1) / 2^{s_{k}}\right) \\ & \text { for } j=m\left(s_{k-1}\right), \ldots, m\left(s_{k}\right)-1 \\ 0, & \text { otherwise }\end{cases}
$$

where

$$
h_{k}=\left(2^{k} \sum_{j=1}^{m\left(s_{k}\right)}\left(1 / \lambda_{j}\right)\right)^{-1 / 2}
$$

Let

$$
f(x, y)=\sum_{k=2}^{\infty} f_{k}(x) f_{k}(y)
$$

where

$$
f(x+l, y+s)=f(x, y), \quad l, s=0, \pm 1, \pm 2, \ldots
$$

First we prove that $f \in \Lambda^{\#} B V$. For every choice of nonoverlapping intervals $\left\{I_{n}: n \geq 1\right\}$, we get

$$
\Lambda^{\#} V_{1}(f ; p(n) \uparrow \infty) \leq \sum_{j=1}^{\infty} \frac{\left|f\left(I_{j}, y_{j}\right)\right|}{\lambda_{j}} \leq 4 \sum_{i=1}^{\infty} h_{i}^{2} \sum_{j=1}^{m\left(s_{i}\right)} \frac{1}{\lambda_{j}}=4 \sum_{i=1}^{\infty} \frac{1}{2^{i}}=4
$$

Analogously, we can prove that

$$
\Lambda^{\#} V_{2}(f ; p(n) \uparrow \infty) \leq 4
$$

Next, we shall prove that $f \notin B V^{\#}(p(n) \uparrow \infty)$. By 11, ,12 and from the construction of the function we get

$$
\begin{aligned}
V_{1}(f ; p(n) \uparrow \infty) & \geq\left\{\sum_{j=m\left(s_{k-1}\right)}^{m\left(s_{k}\right)-1}\left|f\left(\frac{2 j-1}{2^{s_{k}}}, \frac{2 j}{2^{s_{k}}}\right)-f\left(\frac{2 j}{2^{s_{k}}}, \frac{2 j}{2^{s_{k}}}\right)\right|^{p\left(s_{k}\right)}\right\}^{1 / p\left(s_{k}\right)} \\
& =\left\{\sum_{j=m\left(s_{k-1}\right)}^{m\left(s_{k}\right)-1}\left|\left(f_{k}\left(\frac{2 j-1}{2^{s_{k}}}\right)-f_{k}\left(\frac{2 j}{2^{s_{k}}}\right)\right) f_{k}\left(\frac{2 j}{2^{s_{k}}}\right)\right|^{p\left(s_{k}\right)}\right\}^{1 / p\left(s_{k}\right)} \\
& =h_{k}^{2}\left(m\left(s_{k}\right)-m\left(s_{k-1}\right)\right)^{1 / p\left(s_{k}\right)} \\
& \geq c \frac{m\left(s_{k}\right)^{1 / p\left(s_{k}\right)}}{2^{k} \sum_{j=1}^{m\left(s_{k}\right)}\left(1 / \lambda_{j}\right)} \geq c 2^{k} \rightarrow \infty \quad \text { as } k \rightarrow \infty .
\end{aligned}
$$

Therefore, we get $f \notin B V^{\#}(p(n) \uparrow \infty)$.
b) Without lost of generality we can suppose that

$$
2^{n_{k}-n_{k-1}-1}<m\left(n_{k}\right) \leq 2^{n_{k}} \quad \text { for all } k>k_{0}
$$

Consider the function g_{k} defined by

$$
g_{k}(x)= \begin{cases}d_{k}\left(2^{n_{k}} x-2 j+1\right), & x \in\left[(2 j-1) / 2^{n_{k}}, 2 j / 2^{n_{k}}\right) \\ -d_{k}\left(2^{n_{k}} x-2 j-1\right), & x \in\left[2 j / 2^{n_{k}},(2 j+1) / 2^{n_{k}}\right) \\ & \text { for } j=2^{n_{k-1}-n_{k-2}}, \ldots, 2^{n_{k}-n_{k-1}-1}-1 \\ 0, & \text { otherwise }\end{cases}
$$

where

$$
d_{k}=\left(2^{k} \sum_{j=1}^{m\left(n_{k}\right)}\left(1 / \lambda_{j}\right)\right)^{-1 / 2}
$$

Let

$$
g(x, y)=\sum_{k=k_{0}+2}^{\infty} g_{k}(x) g_{k}(y)
$$

where

$$
g(x+l, y+s)=g(x, y), \quad l, s=0, \pm 1, \pm 2, \ldots
$$

For every choice of nonoverlapping intervals $\left\{I_{n}: n \geq 1\right\}$ we get

$$
\begin{aligned}
\sum_{j=1}^{\infty} \frac{\left|f\left(I_{j}, y_{j}\right)\right|}{\lambda_{j}} & \leq 4 \sum_{i=k_{0}+1}^{\infty} d_{i}^{2} \sum_{j=1}^{2^{n_{i}-n_{i-1}-1}} \frac{1}{\lambda_{j}} \\
& \leq 4 \sum_{i=k_{0}+1}^{\infty} d_{i}^{2} \sum_{j=1}^{m\left(n_{i}\right)} \frac{1}{\lambda_{j}}<\infty
\end{aligned}
$$

Analogously, we can prove that

$$
\sum_{j=1}^{\infty} \frac{\left|f\left(x_{j}, J_{j}\right)\right|}{\lambda_{j}}<\infty
$$

Hence $g \in \Lambda^{\#} B V$.
Next we shall prove that $g \notin B V^{\#}(p(n) \uparrow \infty)$. By 8, 10, 11, and from the construction of the function we get

$$
\begin{aligned}
V_{1}^{\#}(g ; p(n) \uparrow \infty) & \geq\left\{\sum_{j=2^{n_{k-1}-n_{k-2}}}^{2^{n_{k}-n_{k-1}-1}-1}\left|g\left(\frac{2 j-1}{2^{n_{k}}}, \frac{2 j}{2^{n_{k}}}\right)-g\left(\frac{2 j}{2^{n_{k}}}, \frac{2 j}{2^{n_{k}}}\right)\right|^{p\left(n_{k}\right)}\right\}^{1 / p\left(n_{k}\right)} \\
& =\left\{\sum_{j=2^{n_{k-1}-n_{k-2}}}^{2^{n_{k}-n_{k-1}-1}-1}\left|\left(g_{k}\left(\frac{2 j-1}{2^{n_{k}}}\right)-g_{k}\left(\frac{2 j}{2^{n_{k}}}\right)\right) g_{k}\left(\frac{2 j}{2^{n_{k}}}\right)\right|^{p\left(n_{k}\right)}\right\}^{1 / p\left(n_{k}\right)} \\
& =d_{k}^{2}\left(2^{n_{k}-n_{k-1}-1}-2^{n_{k-1}-n_{k-2}}\right)^{1 / p\left(n_{k}\right)} \geq \frac{1}{4} d_{k}^{2} 2^{\left(n_{k}-n_{k-1}\right) / p\left(n_{k}\right)} \\
& \geq \frac{c 2^{n_{k} / p\left(n_{k}\right)}}{2^{k+2} \sum_{j=1}^{m\left(n_{k}\right)}\left(1 / \lambda_{j}\right)} \geq c \frac{m\left(n_{k}\right)^{1 / p\left(n_{k}\right)}}{2^{k} \sum_{j=1}^{m\left(n_{k}\right)}\left(1 / \lambda_{j}\right)} \geq c 2^{k} \rightarrow \infty \quad \text { as } k \rightarrow \infty
\end{aligned}
$$

Therefore, we get $g \notin B V^{\#}(p(n) \uparrow \infty)$ and the proof of Theorem 1 is complete.

Proof of Theorem 10. We choose an increasing sequence of positive integers $\left\{l_{k}: k \geq 1\right\}$ such that $l_{1}=1$ and

$$
\begin{equation*}
p\left(l_{k-1}\right) \geq \ln k \quad \text { for all } k \geq 2 \tag{13}
\end{equation*}
$$

Set for $k=1,2, \ldots$

$$
r_{k}(x)= \begin{cases}2^{l_{k}+1} c_{k}\left(x-1 / 2^{l_{k}}\right), & \text { if } 1 / 2^{l_{k}} \leq x \leq 3 / 2^{l_{k}+1} \\ -2^{l_{k}+1} c_{k}\left(x-1 / 2^{l_{k}-1}\right), & \text { if } 3 / 2^{l_{k}+1} \leq x \leq 1 / 2^{l_{k}-1} \\ 0, & \text { otherwise }\end{cases}
$$

where

$$
c_{k}=\left(\sum_{j=1}^{k} \frac{1}{\lambda_{j}}\right)^{-1 / 4}
$$

and

$$
r(x, y)=\sum_{k=1}^{\infty} r_{k}(x) r_{k}(y)
$$

where

$$
r(x+l, y+s)=r(x, y), \quad l, s=0, \pm 1, \pm 2, \ldots
$$

It is easy to show that $r \in C\left(I^{2}\right)$.
First we show that $r \in B V^{\#}(p(n) \uparrow \infty)$. Let $\left\{I_{i}\right\}$ be an arbitrary partition of the interval I such that $\inf _{i}\left|I_{i}\right| \geq 1 / 2^{l}$. For this fixed l, we can choose integers l_{k-1} and l_{k} for which $l_{k-1} \leq l<l_{k}$ holds. Then it follows that $p\left(l_{k-1}\right) \leq p(l) \leq p\left(l_{k}\right)$ and $1 / 2^{l_{k}}<1 / 2^{l} \leq 1 / 2^{l_{k-1}}$.

By (13) and from the construction of the function r we obtain

$$
\begin{aligned}
& \left\{\sum_{j=1}^{m}\left|r\left(I_{i}, y_{i}\right)\right|^{p(l)}\right\}^{1 / p(l)}=\left\{\sum_{j=1}^{k} \sum_{\left\{i: 2^{-l_{j}} \leq y_{i}<2^{-l_{j}+1}\right\}}\left|r\left(I_{i}, y_{i}\right)\right|^{p(l)}\right\}^{1 / p(l)} \\
& \leq\left\{\sum_{j=1}^{k}\left(\sum_{\substack{I_{i} \cap\left(2^{-l_{j}}, 2^{-l_{j}+1}\right) \neq \varnothing \\
\left\{i: 2^{-l_{j}} \leq y_{i}<2^{-l_{j}+1}\right\}}}\left|r\left(I_{i}, y_{i}\right)\right|\right)^{p(l)}\right\}^{1 / p(l)} \\
& \leq\left\{\sum_{j=1}^{k}\left(\sum_{\left\{i: I_{i} \cap\left(2^{\left.\left.-l_{j}, 2^{-l_{j}+1}\right) \neq \varnothing\right\}}\right.\right.}\left|r\left(I_{i}, \frac{3}{2^{l_{j}+1}}\right)\right|\right)^{p(l)}\right\}^{1 / p(l)} \\
& \leq\left\{\sum_{j=1}^{k}\left(\left|r\left(\left(\frac{1}{2^{l_{j}}}, \frac{3}{2^{l_{j}+1}}\right), \frac{3}{2^{l_{j}+1}}\right)\right|+\left|r\left(\left(\frac{3}{2^{l_{j}+1}}, \frac{1}{2^{l_{j}-1}}\right), \frac{3}{2^{l_{j}+1}}\right)\right|\right)^{p(l)}\right\}^{1 / p(l)} \\
& \leq\left\{\sum_{j=1}^{k}\left(2 c_{j}^{2}\right)^{p(l)}\right\}^{1 / p(l)} \leq 2 k^{1 / p\left(l_{k-1}\right)} \leq 4 k^{1 / \ln k}=4 e .
\end{aligned}
$$

Therefore $r \in B V^{\#}(p(n) \uparrow \infty)$.

Finally, we prove that $r \notin \Lambda B V^{\#}$. Since $c_{n} \downarrow 0$, we get

$$
\begin{aligned}
\sum_{j=1}^{k} & \frac{\left|r\left(1 / 2^{l_{j}}, 3 / 2^{l_{j}+1}\right)-r\left(3 / 2^{l_{j}+1}, 3 / 2^{l_{j}+1}\right)\right|}{\lambda_{j}} \\
& =\sum_{j=1}^{k} \frac{\left|\left(r_{j}\left(1 / 2^{l_{j}}\right)-r_{j}\left(3 / 2^{l_{j}+1}\right)\right) r_{j}\left(3 / 2^{l_{j}+1}\right)\right|}{\lambda_{j}} \\
& =\sum_{j=1}^{k} \frac{c_{j}^{2}}{\lambda_{j}} \geq c_{k}^{2} \sum_{j=1}^{k} \frac{1}{\lambda_{j}}=\left(\sum_{j=1}^{k} \frac{1}{\lambda_{j}}\right)^{1 / 2} \rightarrow \infty \quad \text { as } k \rightarrow \infty .
\end{aligned}
$$

Therefore, we get $r \notin \Lambda B V^{\#}$ and the proof of Theorem 10 is complete.
Since $\Lambda B V^{\#}=B\left(I^{2}\right)$ if and only if $\sum_{j=1}^{\infty}\left(1 / \lambda_{j}\right)<\infty$ the validity of Corollary 11 follows from Theorem 10 .

Acknowledgements. We thank the anonymous referee for his/her remarks which have improved the final version of this paper.

References

[1] T. Akhobadze, Functions of generalized Wiener classes $B V(p(n) \uparrow \infty, \varphi)$ and their Fourier coefficients, Georgian Math. J. 7 (2000), 401-416.
[2] T. Akhobadze, $B \Lambda(p(n) \uparrow \infty, \varphi)$ classes of functions of bounded variation, Bull. Georgian Acad. Sci. 164 (2001), 18-20.
[3] T. Akhobadze, Relations between $H^{\omega}, V[\nu]$ and $B \Lambda(p(n) \uparrow \infty, \varphi)$ classes of functions, Bull. Georgian Acad. Sci. 164 (2001), 433-435.
[4] M. Avdispahić, On the classes $\Lambda B V$ and $V[\nu]$, Proc. Amer. Math. Soc. 95 (1985), 230-234.
[5] A. S. Belov, Relations between some classes of generalized variation, in: Reports of enlarged sessions of the seminar of I. Vekua Institute of Applied Mathematics 3 (1988), 11-13 (Russian).
[6] Z. A. Chanturia, The modulus of variation and its application in the theory of Fourier series, Dokl. Akad. Nauk SSSR 214 (1974), 63-66 (Russian).
[7] Z. A. Chanturia, On the uniform convergence of Fourier series, Mat. Sb. 100 (1976), 534-554 (Russian).
[8] M. I. Dyachenko, D. Waterman, Convergence of double Fourier series and W-classes, Trans. Amer. Math. Soc. 357 (2005), 397-407.
[9] U. Goginava, On the divergence of trigonometric Fourier series of the class $H^{\omega} \cap B V(p(n) \uparrow \infty)$, Proc. A. Razmadze Math. Inst. 121 (1999), 63-70.
[10] U. Goginava, On the uniform convergence of multiple trigonometric Fourier series, East J. Approx. 3 (1999), 253-266.
[11] U. Goginava, Relations between some classes of functions, Sci. Math. Jpn. 53 (2001), 223-232.
[12] U. Goginava, On the uniform convergence of Walsh-Fourier series, Acta Math. Hungar. 93 (2001), 59-70.
[13] U. Goginava, Relations between $\Lambda B V$ and $B V(p(n) \uparrow \infty)$ classes of functions, Acta Math. Hungar. 101 (2003), 264-272.
[14] U. Goginava, A. Sahakian, On the convergence of double Fourier series of functions of bounded partial generalized variation, East J. Approx. 16 (2010), 153-165.
[15] U. Goginava, A. Sahakian, Convergence of double Fourier series and generalized Λ-variation, Georgian Math. J. 19 (2012), 497-509.
[16] C. Jordan, Sur la series de Fourier, C. R. Acad. Sci. Paris 92 (1881), 228-230.
[17] H. Kita, Convergence of Fourier series of a function on generalized Wiener's class $B V(p(n) \uparrow \infty)$, Acta Math. Hungar. 57 (1991), 233-243.
[18] H. Kita, K. Yoneda, A generalization of bounded variation, Acta Math. Hungar. 56 (1990), 229-238.
[19] O. Kováčik, On the embedding $H^{\omega} \subset V_{p}$, Math. Slovaca 43 (1993), 573-578.
[20] Yu. E. Kuprikov, On moduli of continuity of functions in Waterman classes (Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1997, no. 5, 59-62; English transl.: Moscow Univ. Math. Bull. 52 (1997), no. 5, 46-49.
[21] M. V. Medvedeva, On the embedding of classes H^{ω}, Mat. Zametki 64 (1998), 713-719 (Russian); English transl.: Math. Notes 64 (1998), 616-621.
[22] S. Perlman, Functions of generalized variation, Fund. Math. 105 (1980), 199-211.
[23] S. Perlman, D. Waterman, Some remarks of functions of Λ-bounded variation, Proc. Amer. Math. Soc. 74 (1979), 113-118.
[24] A. A. Sahakian, On the convergence of double Fourier series of functions of bounded harmonic variation (Russian), Izv. Akad. Nauk Armyan. SSR Ser. Mat. 21 (1986), 517-529; English transl.: Soviet J. Contemp. Math. Anal. 21, no. 6 (1986), 1-13.
[25] S. Wang, Some properties of the functions of Λ-bounded variation, Sci. Sinica Ser. A 25 (1982), 149-160.
[26] D. Waterman, On convergence of Fourier series of functions of generalized bounded variation, Studia Math. 44 (1972), 107-117.
[27] D. Waterman, On the summability of Fourier series of functions of Λ-bounded variation, Studia Math. 55 (1976), 87-95.
[28] D. Waterman, On Λ-bounded variation, Studia Math. 57 (1976), 33-45.
[29] D. Waterman, Fourier series of functions of Λ-bounded variation, Proc. Amer. Math. Soc. 74 (1979), 119-123.
[30] N. Wiener, The quadratic variation of a function and its Fourier coefficients, Massachusetts J. of Math. 3 (1924), 72-94.
[31] L. C. Young, Sur un généralisation de la notion de variation de puissance p ${ }^{i e ̀ m e}$ bornée de M. Wiener, et sur la convergence des séries de Fourier, C. R. Acad. Sci. Paris 204 (1937), 470-472.

