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1. Introduction. The purpose of this paper is to give an introduction to virtual knot
theory and to record a collection of research problems that the authors have found fasci-
nating. The second section of the paper introduces the theory and discusses some prob-
lems in that context. Starting from the third section, we present specific problems. This
paper is an expanded and revised version of our earlier paper on the subject of problems
in virtual knot theory (see [52]). Here we include a wider selection of problems, including
some problems of a combinatorial flavor in classical knot theory and other problems in
extensions and variants of the theory of knots and links.

We would like to take this opportunity to acknowledge the many people who have
worked on the theory of virtual knots and links.

Researchers in this area explicitly mentioned or referenced in this paper are:
R. S. Avdeev, V. G. Bardakov, A. Bartholomew, D. Bar-Natan, S. Budden, S. Carter,
K. Chu, M. W. Chrisman, H. Dye, R. Fenn, R. Furmaniak, M. Goussarov, J. Green,
A. Henrich, D. Hrencecin, D. P. Ilyutko, D. Jelsovsky, M. Jordan, T. Kadokami, A. Kaest-
ner, N. Kamada, S. Kamada, L. Kauffman, T. Kishino, G. Kuperberg, S. Lambropoulou,
V. O. Manturov, S. Nelson, I. M. Nikonov, M. Polyak, D. E. Radford, S. Satoh, J. Sawollek,
M. Saito, W. Schellhorn, D. Silver, V. Turaev, V. V. Vershinin, O. Viro, S. Williams,
P. Zinn-Justin and J. B. Zuber. See [1, 2, 4, 6, 8, 11, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 65, 70, 71, 73, 74, 75, 76, 77, 79, 78, 80, 85, 87, 88, 89, 90, 91, 99, 101, 102, 104,
105, 106, 107, 108, 110, 112, 115, 116, 117, 118, 119, 120, 125, 126, 130, 131, 138, 139, 140,
143, 144, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170,
171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189,
190, 191, 198, 199, 212, 213, 214, 215, 216, 217, 218, 219, 223, 224, 226, 230, 234, 235].
We apologize to anyone who was left out of this list of participant researchers, and we
hope that the problems described herein will stimulate people on and off this list to enjoy
the beauty of virtual knot theory!

Acknowledgments. The second and fourth authors were partially supported by grants
of the Russian Government 11.G34.31.0053, RF President NSh – 1410.2012.1, RFBR
12-01-31432, 13-01-00664-a, 13-01-00830-a, 14-01-91161 and 14-01-31288. The fourth au-
thor is also partially supported by Laboratory of Quantum Topology of Chelyabinsk State
University (Russian Federation government grant 14.Z50.31.0020). It gives the third au-
thor great pleasure to acknowledge support from NSF Grant DMS–0245588.
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2. Knot theories

2.1. Virtual knot theory. Knot theory studies the embeddings of curves in three-
dimensional space. Virtual knot theory studies the embeddings of curves in thickened
surfaces of arbitrary genus, up to the addition and removal of empty handles from the
surface. Virtual knots have a special diagrammatic theory that makes handling them
very similar to the handling of classical knot diagrams. In fact, this diagrammatic theory
simply involves adding a new type of crossing to the knot diagrams, a virtual crossing
that is neither under nor over. From a combinatorial point of view, the virtual crossings
are artifacts of the representation of the virtual knot or link in the plane. The extension
of the Reidemeister moves that takes care of them respects this viewpoint. A virtual
crossing (see Fig. 1) is represented by two crossing arcs with a small circle placed around
the crossing point.

A

B

C
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RII

RIII
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vRIII
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  RIII

planar
isotopy

Fig. 1. Generalized Reidemeister moves for virtual knots

Moves on virtual diagrams generalize the Reidemeister moves for classical knot and
link diagrams, see Fig. 1. One can summarize the moves on virtual diagrams by saying
that the classical crossings interact with one another according to the usual Reidemeister
moves. One adds the detour moves for consecutive sequences of virtual crossings and this
completes the description of the moves on virtual diagrams. It is a consequence of moves
(B) and (C) in Fig. 1 that an arc going through any consecutive sequence of virtual
crossings can be moved anywhere in the diagram keeping the endpoints fixed; the places
where the moved arc crosses the diagram become new virtual crossings. This replacement
is the detour move, see Fig. 2.

One can generalize many structures in classical knot theory to the virtual domain,
and use the virtual knots to test the limits of classical problems such as the question
whether the Jones polynomial [82, 83, 84, 87, 88, 93, 95, 124, 193, 197, 233] detects
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knots and other classical problems. Counterexamples often exist in the virtual domain,
and it is an open problem whether these counterexamples are equivalent (by addition
and subtraction of empty handles) to classical knots and links. Virtual knot theory is a
significant domain to be investigated for its own sake and for a deeper understanding of
classical knot theory.

Fig. 2. Detour move

Another way to understand the meaning of virtual diagrams is to regard them as
representatives for oriented Gauss codes (Gauss diagrams) [65, 97, 99]. Such codes do
not always have planar realizations and an attempt to embed such a code in the plane
leads to the production of the virtual crossings. The detour move makes the particular
choice of virtual crossings irrelevant. Virtual equivalence is the same as the equivalence
relation generated on the collection of oriented Gauss codes modulo an abstract set of
Reidemeister moves on the codes.

2.2. Flat virtual knots and links. Every classical knot or link diagram can be re-
garded as a 4-regular plane graph with extra structure at the nodes. This extra structure
is usually indicated by the over and under crossing conventions that give instructions
for constructing an embedding of the link in three-dimensional space from the diagram.
If we take the diagram without this extra structure, it is the shadow of some link in
three-dimensional space, but the weaving of that link is not specified. It is well known
that if one is allowed to apply the Reidemeister moves to such a shadow (without regard
to the types of crossing since they are not specified) then the shadow can be reduced to a
disjoint union of circles. This reduction is no longer true for virtual links. More precisely,
let a flat virtual diagram be a diagram with virtual crossings as we have described them
and flat crossings consisting in undecorated nodes of the 4-regular plane graph. Virtual
crossings are flat crossings that have been decorated by a small circle. Two flat virtual
diagrams are equivalent if there is a sequence of generalized flat Reidemeister moves (as
illustrated in Fig. 1) taking one to the other. A generalized flat Reidemeister move is any
move as shown in Fig. 1, but one can ignore the over or under crossing structure. Note
that in studying flat virtual knots the rules for changing virtual crossings among them-
selves and the rules for changing flat crossings among themselves are identical. However,
detour moves as in Fig. 1C are available for virtual crossings with respect to flat crossings
and not the other way around.

We shall say that a virtual diagram overlies a flat diagram if the virtual diagram is
obtained from the flat diagram by choosing a crossing type for each flat crossing in the
virtual diagram. To each virtual diagram K there is an associated flat diagram F (K)
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that is obtained by forgetting the extra structure at the classical crossings in K. Note
that if K is equivalent to K ′ as virtual diagrams, then F (K) is equivalent to F (K ′) as
flat virtual diagrams. Thus, if we can show that F (K) is not reducible to a disjoint union
of circles, then it will follow that K is a non-trivial virtual link.

Fig. 3 illustrates an example of a flat virtual link H. This link cannot be undone
in the flat category because it has an odd number of virtual crossings between its two
components and each generalized Reidemeister move preserves the parity of the number
of virtual crossings between components. Also illustrated in Fig. 3 is a flat diagram D

and a virtual knot K that overlies it. This example is given in [99]. The knot shown is
undetectable by many invariants (fundamental group, Jones polynomial) but it is knotted.
The flat virtual diagrams present a challenge for the construction of new invariants. It is
important to understand the structure of flat virtual knots and links. This structure lies at
the heart of the comparison of classical and virtual links. Simpler and more fundamental
than flat virtual knots and links are the free knots and links [182, 183] corresponding to
Gauss diagrams with no signs and no arrows. We will list a number of problems about
free knots below.

H

K

D

Fig. 3. Flats H and D, and the knot K

2.3. Interpretation of virtual knots as stable classes of links in thickened sur-
faces. There is a useful topological interpretation for this virtual theory in terms of
embeddings of links in thickened surfaces, see [99, 102, 144]. Regard each virtual crossing
as a shorthand for a detour of one of the arcs in the crossing through a 1-handle that
has been attached to the 2-sphere of the original diagram. By interpreting each virtual
crossing in this way, we obtain an embedding of a collection of circles into a thickened
surface Sg × R, where g is the number of virtual crossings in the original diagram L, Sg
is a compact oriented surface of genus g and R denotes the real line. We say that two
such surface embeddings are stably equivalent if one can be obtained from another by
isotopy in the thickened surfaces, homeomorphisms of the surfaces and the addition or
subtraction of empty handles. Then we have the following theorem.
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Theorem 2.1 (see [99, 114, 144]). Two virtual link diagrams are equivalent if and only
if their correspondent surface embeddings are stably equivalent.

Here long knots (or, equivalently 1 − 1 tangles) come into play. Having a knot, we
can break it at some point and take its ends to infinity (say, in a way that they coincide
with the horizontal axis line in the plane). One can study isotopy classes of such knots.
A well-known theorem says that in the classical case, knot theory coincides with long knot
theory. However, this is not the case for virtual knots. By breaking the same virtual knot
at different points, one can obtain non-isotopic long knots [10, 170]. Furthermore, even
if the initial knot is trivial, the resulting long knot may not be trivial. A connected sum
of two trivial virtual diagrams may not be trivial in the compact case. The phenomenon
occurs because these two knot diagrams may be non-trivial in the long category. It is
sometimes more convenient to consider long virtual knots rather than compact virtual
knots, since connected sum is well-defined for long knots.

Unlike classical knots, the connected sum of long virtual knots is not commutative [10,
169, 170]. Thus, if we show that two long knots K1 and K2 do not commute, then we see
that they are different and both non-classical.

A typical example of such knots is the two parts of the Kishino knot, see Fig. 4.
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Fig. 4. Kishino and parts

We have a natural map
〈Long virtual knots〉 → 〈Oriented compact virtual knots〉,

obtained by taking two infinite ends of the long knots together to make a compact knot.
This map is obviously well defined.

Note that when the parts of the Kishino knot are closed they become unknots.
This map allows one to construct long virtual knot invariants from classical invariants,

i.e., just to regard compact knot invariants as long knot invariants. There is no well-
defined inverse for this map. The long category can also be applied for the case of flat
virtual knots, where all problems formulated above occur as well.



UNSOLVED PROBLEMS IN KNOT THEORY 15

3. Switching and virtualizing. Given a crossing i in a link diagram, we define s(i)
to be the result of switching that crossing so that the undercrossing arc becomes an
overcrossing arc and vice versa. We also define the virtualization v(i) of the crossing
by the local replacement indicated in Fig. 5. In this figure we illustrate how in the
virtualization of the crossing the original crossing is replaced by a crossing that is flanked
by two virtual crossings.

s(i)

v(i)

i

l l

Fig. 5. Switching and virtualizing a crossing

Suppose that K is a (virtual or classical) diagram with a classical crossing labeled i.
Let Kv(i) be the diagram obtained from K by virtualizing the crossing i while leaving
the rest of the diagram just as before. Let Ks(i) be the diagram obtained from K by
switching the crossing i while leaving the rest of the diagram just as before. Then it
follows directly from the definition of the Jones polynomial that

VKs(i)(t) = VKv(i)(t).

As far as the Jones polynomial is concerned, switching a crossing and virtualizing a cross-
ing look the same.

b

c =c = ab

bb

a

ab

b

a

n n

Fig. 6. IQ(V irt(K)) = IQ(K)

The involutory quandle [96] is an algebraic invariant equivalent to the fundamental
group of the double branched cover of a knot or link in the classical case. In this algebraic
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system one associates a generator of the algebra IQ(K) to each arc of the diagram K

and there is a relation of the form c = ab at each crossing, where ab denotes the (non-
associative) algebra product of a and b in IQ(K). See Fig. 6. In this figure we have
illustrated through the local relations the fact that

IQ(Kv(i)) = IQ(K).
As far the involutory quandle is concerned, the original crossing and the virtualized
crossing look the same.

If a classical knot is actually knotted, then its involutory quandle is non-trivial [232].
Hence if we start with a non-trivial classical knot, we can virtualize any subset of its
crossings to obtain a virtual knot that is still non-trivial. There is a subset A of the cross-
ings of a classical knot K such that the knot SK obtained by switching these crossings
is an unknot. Let V irt(K) denote the virtual diagram obtained from A by virtualizing
the crossings in the subset A. By the above discussion the Jones polynomial of V irt(K)
is the same as the Jones polynomial of SK, and this is 1 since SK is unknotted. On the
other hand, the IQ of V irt(K) is the same as the IQ of K, and hence if K is knotted,
then so is V irt(K). We have shown that V irt(K) is a non-trivial virtual knot with unit
Jones polynomial. This completes the proof of the theorem.

If there exists a classical knot with unit Jones polynomial, then one of the knots
V irt(K) produced by this theorem may be equivalent to a classical knot. It is an intricate
task to verify that specific examples of V irt(K) are not classical.

A very fruitful line of new invariants comes about by examining a generalization of
the fundamental group or quandle that we call the biquandle of the virtual knot. The
biquandle is discussed in the next section. Invariants of flat knots (when one has them)
are useful in this regard. If we can verify that the flat knot F (V irt(K)) is non-trivial,
then V irt(K) is non-classical. In this way the search for classical knots with unit Jones
polynomial (see [223] for links) expands to the exploration of the structure of the infinite
collection of virtual knots with unit Jones polynomial.

Another way of putting this theorem is as follows: In the arena of knots in thickened
surfaces there are many examples of knots with unit Jones polynomial. Might one of these
be equivalent via handle stabilization to a classical knot? In [144] Kuperberg shows the
uniqueness of the embedding of minimal genus in the stable class for a given virtual link.
The minimal embedding genus can be strictly less than the number of virtual crossings
in a diagram for the link. There are many problems associated with this phenomenon.

There is a construction that produces infinitely many non-trivial virtual knot dia-
grams that have unit Jones polynomial. We shall prove here that all of these examples of
knots with unit Jones polynomial are non-classical. This settles a question raised in [99]
and [110].

We say that a classical crossing has been virtualized if it is replaced by a crossing with
the opposite orientation that is flanked by two virtual crossings. See the illustrations
for this construction in [99] and [110] and Fig. 5 in this paper. In the Gauss diagram,
a crossing is virtualized by reversing its sign and leaving its arrow unchanged. The reader
should note this very specific convention for the term virtualization. One checks that the
Jones polynomial (via the bracket model [93]) of a knot with a virtualized crossing is
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the same as the Jones polynomial of that same knot with the crossing switched (a switch
interchanges over and under-crossing lines at the site of the crossing). Thus, given a
classical knot diagram K, one can choose a subset S of the crossings so that switching
all of them gives an unknot diagram U = S(K) where S(K) denotes the diagram that
results from the diagram K by switching all the crossings in the subset S. Instead of
switching, we virtualize all the crossings in S to form a virtual knot diagram V irt(K).
It then follows that V irt(K) has unit Jones polynomial, and is a non-trivial knot due to
the fact that its un-oriented Gauss code has not been changed (see [99] for the proof of
non-triviality).

Theorem 3.1. If K is a non-trivial classical knot diagram and V irt(K) is the virtual
diagram described above with unit Jones polynomial, then V irt(K) is a non-trivial and
non-classical virtual diagram.

Proof. The proof follows a suggestion of Adam Lowrance to examine the Virtual Kho-
vanov homology of V irt(K): We know that V irt(K) is a non-trivial knot. We also know
using the description of Virtual Integral Khovanov homology of Dye–Kaestner–Kauffman
[38] (see also [176]) that the Khovanov homology of V irt(K) is isomorphic to the Kho-
vanov homology of S(K) = U where S(K) is the classical unknot obtained by switching
crossings in K from the subset S of crossings used to virtualize K to V irt(K). That is,
Khovanov homology of a knot with a virtualized crossing is the same as the Khovanov
homology of the corresponding knot with that crossing switched. Thus V irt(K) has the
Khovanov homology of the unknot. If V irt(K) were equivalent to a classical knot K ′,
then K ′ would have the Khovanov homology of the unknot. Since by Kronheimer and
Mrowka [143], Khovanov homology detects the classical unknot, it would follow that K ′
and hence V irt(K), is unknotted. Since we know that V irt(K) is not trivial, we know
that V irt(K) is not classical. This completes the proof.

This argument shows that all examples of virtual diagrams with unit Jones polyno-
mial, obtained by the virtualization construction are non-classical. There are diagrams
to which the argument in the Theorem does not apply. These are virtual diagrams with
unit Jones polynomial that are not Z-equivalent to the unknot. See [110] for such an
example and for references to previous constructions of this type due to V. O. Manturov.
Previous attempts to prove such results involve using other invariants of virtual knots
and have gone on a case-by-case basis. In [39, 218] it was previously shown that V irtK is
non-classical for classical knots K of unknotting number one. Knowing that all the vir-
tualization examples are definitely non-trivial and non-classical provides a big challenge
for the search for combinatorial proofs of these properties.

4. Atoms. An atom is a pair: (M2,Γ) where M2 is a closed 2-manifold and Γ is a
4-valent graph in M2 dividing M2 into cells such that these cells admit a checkerboard
coloring (the coloring is also fixed). Γ is called the frame of the atom, see [61, 62, 63, 64,
152, 153, 169, 171].

Atoms are considered up to natural equivalence, that is, up to homeomorphisms of
the underlying manifold M2 mapping the frame to the frame and black cells to black
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cells. From this point of view, an atom can be recovered from the frame together with
the following combinatorial structure:

1. A-structure: This indicates which edges for each vertex are opposite edges. That is,
it indicates the cyclic structure at the vertex.

2. B-structure: This indicates pairs of “black angles”. That is, one divides the four
edges emanating from each vertex into two sets of adjacent (not opposite) edges
such that the black cells are locally attached along these pairs of adjacent edges.

Given a virtual knot diagram which has its regions black and white colored like a chess
board, one can construct the corresponding atom as follows. Classical crossings corre-
spond to the vertices of the atom, and generate both the A-structure and the B-structure
at these vertices (the B-structure comes from over/under information). Thus, an atom is
uniquely determined by a virtual knot diagram. It is easy to see that the inverse operation
is well defined modulo virtualization. Thus the atom knows everything about the bracket
polynomial (Jones polynomial) of the virtual link.

The crucial notions here are the minimal genus of the atom and the orientability of
the atom. For instance, for each link diagram with a corresponding orientable atom (all
classical link diagrams are in this class), all degrees of the bracket are congruent modulo
four while in the non-orientable case they are congruent only modulo two.

The orientability condition is crucial in the construction of the Khovanov homology
theory for virtual links as in [169, 171].

5. Biquandles

5.1. Main constructions. In this section we give a sketch of some recent approaches
to invariants of virtual knots and links.

A biquandle [8, 14, 21, 51, 102, 130] is an algebra with four binary operations written
ab, ab, a

b, ab together with some relations which we will indicate below. The fundamental
biquandle is associated with a link diagram and is invariant under the generalized Reide-
meister moves for virtual knots and links. The operations in this algebra are motivated
by the formation of labels for the edges of the diagram, see Fig 7. In this figure we have
shown the format for the operations in a biquandle. The overcrossing arc has two labels,
one on each side of the crossing. There is an algebra element labeling each edge of the
diagram. An edge of the diagram corresponds to an edge of the underlying plane graph
of that diagram.

ab = a b

ba = b a b

a

ab = a b

ba = b a

b

a

6

6

�

6

6

-

Fig. 7. Biquandle relations at a crossing
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Let the edges oriented toward a crossing in a diagram be called the input edges for
the crossing, and the edges oriented away from the crossing be called the output edges
for the crossing. Let a and b be the input edges for a positive crossing, with a the label
of the undercrossing input and b the label on the overcrossing input. In the biquandle,
we label the undercrossing output by

c = ab,

while the overcrossing output is labeled

d = ba.

The labeling for the negative crossing is similar using the other two operations.
To form the fundamental biquandle, BQ(K), we take one generator for each edge of

the diagram and two relations at each crossing (as described above).
Another way to write this formalism for the biquandle is as follows

ab = a b , ab = a b , ab = a b , ab = a b .

We call this the operator formalism for the biquandle.
These considerations lead to the following definition.

Definition 5.1. A biquandle B is a set with four binary operations indicated above:
ab, ab, ab, ab. We shall refer to the operations with barred variables as the left operations
and the operations without barred variables as the right operations. The biquandle is
closed under these operations and the following axioms are satisfied:

1. Given an element a in B, then there exists an x in the biquandle such that x = ax
and a = xa. There also exists a y in the biquandle such that y = ay and a = ya.

2. For any elements a and b in B we have

a = abba , b = b
aab , a = abba , b = b

aab .

3. Given elements a and b in B then there exist elements x, y, z, t such that xb = a,
ya = b, bx = y, ay = x and ta = b, at = z, zb = a, bz = t.
The biquandle is called strong if x, y, z, t are uniquely defined and we then write
x = ab−1 , y = ba

−1 , t = ba
−1 , z = a

b
−1 , reflecting the invertive nature of the

elements.
4. For any a, b, c in B the following equations hold and the same equations hold when

all right operations are replaced in these equations by left operations:

abc = acbb
c

, cba = cabba
, (ba)cab = (bc)acb .

These axioms are transcriptions of the Reidemeister moves. The first axiom transcribes
the first Reidemeister move. The second axiom transcribes the directly oriented second
Reidemeister move. The third axiom transcribes the reverse oriented Reidemeister move.
The fourth axiom transcribes the third Reidemeister move. Much more work is needed
in exploring these algebras and their applications to knot theory.

We may simplify the appearance of these conditions by defining

S(a, b) = (ba, ab), S(a, b) = (ba, ab)
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and in the case of a strong biquandle,
S+
−(a, b) = (bab−1 , ab−1), S−+ (a, b) = (ba

−1
, aba−1 ),

S +
−(a, b) = (b

ab
−1 , a

b
−1

) = (b
a

b
a−1

, aba−1 ),

S −+(a, b) = (b a−1 , aba−1 ) = (bab−1 , abab−1 )
which we call the sideways operators. The conditions then reduce to

SS = SS = 1,
(S × 1)(1× S)(S × 1) = (1× S)(S × 1)(1× S),

S
−
+S

+
− = S−+S

+
− = 1

and finally all the sideways operators leave the diagonal
∆ =

{
(a, a) |a ∈ X

}
invariant. There is a different and possibly simpler approach in [50].

Here the sideways operator is used to define the up and down actions. So if
F : X2 → X2 denotes the sideways operator then let

F (a, b) = (ba, ab) =
(
fa(b), f b(a)

)
.

The sideways operator is required to satisfy the following:

1) F is a bijection,
2) f∗ is a bijection,
3) f∗ is a bijection.

Then S, the switch operator, is defined by
S(ba, a) = (ab, b).

It turns out, symmetrically, that

1) S is a bijection,
2) s∗ is a bijection,
3) s∗ is a bijection,

where S(x, y) =
(
sx(y), sy(x)

)
.

The advantage of this approach is that the conditions for S to satisfy the Yang–Baxter
type equations above are:

1) abcb = acb
c

, 2) cbab = caba
and 3) baca = bcac

and for a biquandle aa = aa, which are considerably simpler than the above.

5.2. The Alexander biquandle. It is not hard to see that the following equations in
a module over Z[s, s−1, t, t−1] give a biquandle structure:

ab = a b = ta+ (1− st)b, ab = a b = sa

ab = a b = t−1a+ (1− s−1t−1)b, ab = a b = s−1a.

We shall refer to this structure, with the equations given above, as the Alexander Bi-
quandle.
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Just as one can define the Alexander module of a classical knot, we have the Alexander
biquandle of a virtual knot or link, obtained by taking one generator for each edge of the
projected graph of the knot diagram and taking the module relations in the above linear
form. Let ABQ(K) denote this module structure for an oriented link K. That is, ABQ(K)
is the module generated by the edges of the diagram, factored by the submodule generated
by the relations. This module then has a biquandle structure specified by the operations
defined above for an Alexander biquandle.

The determinant of the matrix of relations obtained from the crossings of a diagram
gives a polynomial invariant (up to multiplication by ±sitj for integers i and j) of knots
and links that we denote by GK(s, t) and call the generalized Alexander polynomial. This
polynomial vanishes on classical knots, but is remarkably successful at detecting virtual
knots and links. In fact GK(s, t) is the same as the polynomial invariant of virtual knots
of Sawollek [213] and defined by an alternative method by Silver and Williams [216] and
by yet another method by Manturov [161]. It is a reformulation of the invariant for knots
in surfaces due to the principal investigator, Jaeger and Saleur [81, 131].
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Fig. 8. The knot K and the Kishino diagram KI

We end this discussion of the Alexander biquandle with two examples that show
clearly its limitations. View Fig. 8. In this figure we illustrate two diagrams labeled
K and KI. It is not hard to calculate that both GK(s, t) and GKI(s, t) are equal to
zero. However, the Alexander biquandle of K is non-trivial—it is isomorphic to the
free module over Z[s, s−1, t, t−1] generated by elements a and b subject to the relation
(s−1− t− 1)(a− b) = 0. Thus K represents a non-trivial virtual knot. This shows that it
is possible for a non-trivial virtual diagram to be a connected sum of two trivial virtual
diagrams. However, the diagram KI has a trivial Alexander biquandle. In fact the dia-
gram KI, discovered by Kishino [1], is now known to be knotted and its general biquandle
is non-trivial. The Kishino diagram has been shown non-trivial by a calculation of the
three-strand Jones polynomial [139], by the surface bracket polynomial of Dye and Kauff-
man [35, 39], by the Ξ-polynomial (the surface generalization of the Jones polynomial)
of Manturov [162], and its biquandle has been shown to be non-trivial by a quaternionic
biquandle representation [8] which we will now briefly describe.

The quaternionic biquandle is defined by the following operations where i2 = j2 =
k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j in the associative,
non-commutative algebra of the quaternions. The elements a, b are in a module over the
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ring of integer quaternions:

ab = a b = j · a+ (1 + i) · b,

ab = a b = −j · a+ (1 + i) · b,

ab = a b = j · a+ (1− i) · b,

ab = a b = −j · a+ (1− i) · b.

Amazingly, one can verify that these operations satisfy the axioms for the biquandle.
Equivalently, referring back to the previous section, define the linear biquandle by

S =
(

1 + i jt

−jt−1 1 + i

)
,

where i, j have their usual meanings as quaternions and t is a central variable. Let R
denote the ring which they determine. Then as in the Alexander case considered above,
for each diagram there is a square presentation of an R-module. We can take the (Study)
determinant of the presentation matrix. In the case of the Kishino knot this is zero.
However the greatest common divisor of the codimension 1 determinants is 2 + 5t2 + 2t4
showing that this knot is not classical.

There are many other developments in the theory of virtual knots. We shall refer to
them as need be in composing the problems. We refer the reader to our list of papers and
particularly the introductory papers [101] and [110], and the book [191].

6. Biracks, biquandles etc.

6.1. Main definitions. Let X be a set of labels. Numerous knot invariants can be
defined by a switch map, S : X2 → X2.

There are various axioms which S may or may not satisfy. They are listed below in
no particular order:

1. Invertibility of S: The map S is a bijection.
2. Right invertibility of the binary products: Let i∗, j∗ : X → X2 be the inclusions

ia(y) = (a, y) and jb(x) = (x, b). Let p, q : X2 → X be the projections p(a, b) = a and
q(a, b) = b. Then the compositions

X
i∗−→ X2 q−→ X and X

j∗−→ X2 p−→ X

are bijections.
The first map defines a binary operation, (a, b) → ab, and the inverse of the second

defines another, (a, b)→ ba. So the switch map, S : X2 → X2, is now defined by

S(a, ba) = (b, ab).

The advantage of the suffix and superfix notation is that brackets can often be dis-
pensed with: so for example

abc = (ab)c, abc = a(bc), abc = (ab)c, etc.

On the other hand expressions such as abc are ambiguous and are not used.
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The operations are right invertible. So there are inverse operations (a, b)→ ab
−1 and

(a, b)→ ab−1 such that
abb

−1
= ab

−1b = a and abb−1 = ab−1b = a.

3. The set theoretic Yang–Baxter property:
(S × id)(id×S)(S × id) = (id×S)(S × id)(id×S) : X3 → X3.

The Yang–Baxter property implies the following equations among the operations.
abcb = acb

c

, cbab = caba and ba
ca = bcac .

4. The biquandle property: In terms of the operations introduced earlier, this is the
property that

aa = aa

for all a ∈ X.

In [51] and elsewhere there are slightly different conventions. The operations are de-
fined directly by the switch S. Suppose S(a, b) = (b ∨ a, a ∧ b). Then the operations ∨,∧
are defined in terms of the above as

b ∨ a = ba−1 , a ∧ b = aba−1 .

The advantage of the new operations is that the formulae involved in the Yang–Baxter
equations and the biquandle condition become much simpler.

The map, G : X2 → X2, defined by G(a, b) = (ba, ab) is called the sideways map
in [51]. The biquandle property says that G preserves the diagonal in X2.

Knot and link invariants can be defined from the above axioms by a mix’n’match
choice. Conditions 1 and 2 are usually satisfied.

A biquandle satisfies all the axioms. A birack satisfies all the axioms except the bi-
quandle condition. Quandles and racks are the same except the binary operation ab = a

is trivial.

a

b

-ab
a

bb

a

a

b
a
b

b
a

b

ba

a

ab

Fig. 9. Conditions at a crossing

So if all the edges of a virtual diagram are labeled by a biquandle and satisfy the
conditions at a crossing according to Fig. 9, then we can obtain invariants of a virtual
knot. Note that we can think of a square around each crossing. The label on the square
is ±ab according to the labels on the edges and the sign of the crossing.
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Fig. 10 below gives pictorial evidence of the invariance under the Reidemeister moves.
Full details can be obtained in [50]. Many examples of small size can be found in [9].
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Fig. 10. Invariance under the Reidemeister moves

On the other hand if we are looking for invariants of a doodle then we would not
expect the Yang–Baxter condition to be satisfied.

Suppose R is an associative ring with a multiplicative identity, 1. If the set of labels
is an R-module, then the birack, biquandle, etc. is called linear if there are elements
A, B, C, D of R such that the switch map is defined by the 2× 2 matrix

S =
(
A B

C D

)
.

There are many examples of linear biquandles with R equal to the quaternions, see for
example [14, 15, 49].

Affine biquandles, generalizing linear ones need to be investigated. One such is the
Cheng labeling (see [22])

S(x, y) = (y − 1, x+ 1).
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6.2. Homology of biracks and biquandles. Let X be the labels of a birack. A word
w = a1 · · · an of length n is called an n-cube. For example a 1-cube is a label, a 2-cube is
a crossing and a 3-cube is a Reidemeister III move.

For each n-cube there are 2n faces of dimension n− 1,

∂−i (a1 · · · an) = a1 · · · ai−1ai+1 · · · an

and
∂+
i (a1 · · · an) = (a1)ai · · · (ai−1)ai(ai+1)ai

· · · (an)ai
for i = 1, . . . , n

A cubical cell complex, ΓX, can be defined in the usual way by identifying all the disjoint
cubes having common faces. Properties of this complex can now be used to define knot
invariants. For example the fundamental group has a presentation

π1(ΓX) = 〈x, y ∈ X |xyx = yxy〉.

Let Cn = Cn(ΓX) be the free abelian group with basis the n-cubes of ΓX. The
homomorphism ∂ : Cn → Cn is defined on cubes by

∂ =
n∑
i=1

(−1)i(∂−i − ∂
+
i )

and extended linearly. The Yang–Baxter equations then imply that the composition

Cn → Cn−1 → Cn−2

is zero, and so we have a chain complex. The homology of this chain complex H∗(C) and
the homology of any subchain complex are therefore invariants.

One important example is the degenerate subchain. A cube, a1 · · · an, is called degen-
erate if ai = ai+1, for some i = 1, . . . , n − 1. If the birack is a biquandle, so aa = aa for
all a, then the degenerate cubes generate a subchain, D∗. The quotient BQ∗ = C∗/D∗
defines the biquandle chain complex and the short exact sequence

0→ D∗ → C∗ → BQ∗ → 0

extends to a long exact homology sequence.
Another example is the double of a birack. Consider the set of pairs of pairs X2×X2.

Then W ⊂ X2 ×X2 is the set of pairs of pairs defined by

W = {ac, bc |a, b, c ∈ X, ca = cb}.

The doubled operations are

(ac)(bc) = abcb, (bc)(ac) = bac
a and G(ac, bc) = (baca, abca).

Doubling converts racks into biracks and quandles into biquandles.
The homology of the double of the 3-color quandle can be used to distinguish the

right and left trefoils, see [50].
Much work has been done on the homology of racks and quandles, see [17, 20, 31,

33, 44, 55, 56, 57, 58, 150, 201, 204]. However the homology of biracks and biquandles is
little understood and needs investigating (see [16, 45, 145, 207, 208]).
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7. Graph-links. It turns out that some information about the knot can be obtained
from a more combinatorial data: the intersection graph of a Gauss diagram. The intersec-
tion graph is a graph without loops and multiple edges, whose vertices are in one-to-one
correspondence with chords of the Gauss diagram. Two vertices of the intersection graph
are adjacent whenever the corresponding chords of the Gauss diagram are linked (or inter-
sect each other when they are placed inside), see Fig. 11. Each vertex of the intersection
graph is endowed with the local writhe number of the corresponding crossing.

+

-

+

+

+

+

+

+
+

+

+

-

Fig. 11. A Gauss diagram and its labeled intersection graph

However, sometimes a chord diagram can be obtained from the intersection graph in
a non-unique way, and some graphs (shown in Fig. 12) cannot be represented by chord
diagrams at all.

Fig. 12. Non-realizable Bouchet graphs

Likewise virtual knots appear out of non-realizable chord diagrams and thus gener-
alize classical knots (which have realizable chord diagrams), graphs-links come out of
intersection graphs: We may consider graphs which are realized by chord diagrams, and,
in turn, by virtual links, and pass to arbitrary simple graphs which correspond to some
mysterious objects generalizing links and virtual links.

Traldi and Zulli [225] constructed a self-contained theory of “non-realizable knots”
(the theory of looped interlacement graphs) possessing lots of interesting knot theoretic
properties by using Gauss diagrams. These objects are equivalence classes of (decorated)
graphs modulo “Reidemeister moves”.

In [74] another way was suggested of looking at knots and links and generalizing them
(the theory of graph-links): whence a Gauss diagram corresponds to a transverse passage
along a knot, one may consider a rotating circuit which never goes straight and always
turns right or left at a classical crossing. One can also encode the type of smoothing
(Kauffman’s A-smoothing or Kauffman’s B-smoothing) corresponding to the crossing
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where the circuit turns right or left and never goes straight, see Fig. 13. We note that
chords of diagrams are naturally split into two sets: those corresponding to crossings
where two opposite directions correspond to emanating edges with respect to the circuit
and the other two correspond to incoming edges, and those where we have two consecutive
(opposite) edges one of which is incoming and the other one is emanating.
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Fig. 13. Rotating circuit shown by a thick line; chord diagram

After the two theories were constructed, some questions arose. It was shown that there
are graphs not being Reidemeister equivalent (each theory has own Reidemeister moves)
to an intersection graph of a virtual knot diagram [80, 183]. The equivalence of the two
theories (the theory of looped interlacement graphs and the theory of graph-knots) was
proved in [73]. Also, some invariants were constructed, see [74, 75, 77, 80, 202, 225].

8. A list of problems

8.1. Problems in and related with virtual knot theory. Below, we present a list
of research problems closely connected with virtual knot theory.

1. Recognizing the Kishino knot: There have been invented many ways to recognize
the Kishino virtual knot (from the unknot): The 3-strand Jones polynomial, i.e. the Jones
polynomial of the 3-strand cabling of the knot [139], the Ξ-polynomial, see [162], the
quaternionic biquandle [8], and the surface bracket polynomial (Dye and Kauffman [39]).
In [85] Kadokami proves the knot is non-trivial by examining the immersion class of a
shadow curve in genus two. One can use the Manturov parity bracket [182, 183, 186]
to show that essentially the flat Kishino diagram is its own invariant, exhibiting the
non-triviality of this knot. See [110] for an exposition of this proof.

Are we done with this knot? Perhaps not. Other proofs of its non-triviality may be
illuminating. The fact that the Kishino diagram is non-trivial and yet a connected sum
of trivial virtual knots suggests the question: Classify when a non-trivial virtual knot can
be the connected sum of two trivial virtual knots. A key point here is that the connected
sum of closed virtual knots is not well defined and hence the different choices give some
interesting effects. With long virtual knots, the connected sum is ordered but well-defined,
and the last question is closely related to the question of classifying the different long
virtual knots whose closures are equivalent to the unknot.
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2. Flat virtuals: Flat virtual knots, also known as virtual strings [70, 226], are difficult
to classify. Find new combinatorial invariants of flat virtual knots.

We would like to know more about the flat biquandle algebra. This algebra is isomor-
phic to the Weyl algebra [60] and has no (non-trivial) finite-dimensional representations.
An example that goes beyond the usual restrictions is the (very simple) affine biquandle
used in [112] to construct the Affine Index polynomial invariant of virtual knots. One
can make small examples of the flat biquandle algebra, that detect some flat linking be-
yond mod 2 linking numbers, but the absence of other finite-dimensional representations
presents a problem.

3. The flat hierarchy: The flat hierarchy is constructed for any ordinal α. We label
flat crossings with members of this ordinal. In a flat third Reidemeister move, a line
with two a labels can slide across a crossing labeled b only if a is greater than b. This
generalizes the usual to theory of flat virtual diagrams to a system with arbitrarily many
different types of flat crossings. Classify the diagrams in this hierarchy. This concept is
due to Kauffman (unpublished). A first step in working with the flat hierarchy can be
found in [174].

4. Virtuals and the theory of doodles: Compare flat theories of virtual knots with
theories of doodles. A doodle is represented by a flat diagram in the plane. Reidemeister
moves of type I and II are allowed but not type III. So a triple point must not be allowed.
Khovanov has associated a group to doodles [132]. Commutator identities can also be
associated to a doodle. Cobordism of doodles is defined by an immersed surface without
triple points. Cobordism classes represent elements of a free abelian group. There is
undoubtably a rich seam of results which could be found by investigating doodles. For
example there is no reason not to have virtual crossings as well as flat crossings. This
would give doodles on a surface of higher genus, see [48, 59, 132].

5. Virtual three-manifolds: There is a theory of virtual 3-manifolds constructed as
formal equivalence classes of virtual diagrams modulo generalized Kirby moves, see [40].
From this point of view, there are two equivalences for ordinary 3-manifolds: homeo-
morphisms and virtual equivalence. Do these equivalences coincide? That is, given two
ordinary three-manifolds, presented by surgery on framed links K and L, suppose that
K and L are equivalent through the virtual Kirby calculus. Does this imply that they
are equivalent through the classical Kirby calculus?

What is a virtual 3-manifold?: That is, give an interpretation of these equivalence
classes in the domain of geometric topology.

Construct another theory of virtual 3-manifolds by performing surgery on links in
thickened surfaces Sg×R considered up to stabilization. Will this theory coincide to that
proposed by Kauffman and Dye [40]?

6. Welded knots: We would like to understand welded knots [210, 212]. It is well
known [91, 198] that if we admit forbidden moves to the virtual link diagrams, each
virtual knot can be transformed to the unknot. If we allow only one forbidden move
(e.g. the upper one), then there are lots of different equivalence classes of knots. In fact
the fundamental group and the quandle of the virtual diagram are invariant under the
upper forbidden move. The resulting equivalence classes are called welded knots. Similarly,
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welded braids were studied in [53], and every welded knot is the closure of a welded braid.
The question is to construct good invariants of welded knots and, if possible, to classify
them. In [212] a mapping is constructed from welded knots to ambient isotopy classes of
embeddings of tori (ribbon tori to be exact) in four-dimensional space, and it is proved
that this mapping is an isomorphism from the combinatorial fundamental group (in
fact the quandle) of the welded knot to the fundamental group of the complement of
the corresponding torus embedding in four-space. Is this Satoh mapping faithful from
equivalence classes of welded knots (links) to ambient isotopy classes of ribbon torus
embeddings in four-space?

Another interesting question is the following: If a welded knot has trivial fundamental
group, does this imply that the knot is trivial as a welded knot?

7. Long knots and long flat knots: Enlarge the long knot invariant structure proposed
in [167]. Can one get new classical knot invariants from the approach in this paper? Bring
together the ideas from [167] with the biquandle construction from [130] to obtain more
powerful invariants of long knots. Long flat virtual knots can be studied via a powerful
remark due to Turaev (in conversation) to the effect that one can associate to a given
long flat virtual knot diagram F a descending diagram D(F ) (by always going over before
going under in resolving the flat (non-virtual) crossings in the diagram). The long virtual
knot type of D(F ) is an invariant of the long flat knot F . This means that one can
apply any other invariant I of virtual knots that one likes to D(F ) and I[D(F )] will be
an invariant of the long flat F . It is quite interesting to do sample calculations of such
invariants and this situation underlines the deeper problem of finding a full classification
of long flat knots.

Bartholomew, Fenn, S. Kamada and N. Kamada have applied quaternion invariants
to long virtual knots, see [10].

See also Section 8.4 for more questions about long virtual knots and long flat virtual
knots.

8. Virtual biquandle: Construct presentations of the virtual biquandle with a linear
(non-commutative) representation at classical crossings and some interesting structure
at virtual crossings. A start has been made by Bartholomew and Fenn [9]. In this paper
various biquandle decorations are made at classical and virtual crossings which were
found by a computer search.

9. Virtual braids: Is there a birack such that its action on virtual braids is faithful?
Is the invariant of virtual braids in [157], see also [6, 115, 169], faithful?
The action defined by linear biquandles is not faithful. This almost certainly means

that the corresponding linear invariants of virtual knots and links are not faithful [49]
(see also [9]).

10. The fundamental biquandle: Does the fundamental biquandle, see [130] classify
virtual links up to mirror images? (We know that the biquandle has the same value on
the orientation reversed mirror image where the mirror stands perpendicular to the plane
(see [70, 71]).

Are there good examples of weak biquandles which are not strong? This problem is
solved in [220].
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We would like to know more about the algebra with two generators A,B and one
relation [B, (A− 1)(A,B)] = 0 (see [14]). It is associated to the linear case.

11. Virtualization and unit Jones polynomial: Suppose the knot K is classical and not
trivial. Suppose that K̃ (obtained from K by virtualizing a subset of its crossings) is not
trivial and has a unit Jones polynomial, V (K̃) = 1. Is it possible that K̃ is classical (i.e.
isotopic through virtual equivalence to a classical knot)?

Suppose K is a virtual knot diagram with unit Jones polynomial. Is K equivalent
to a classical diagram via virtual equivalence plus crossing virtualization? (Recall that
by crossing virtualization, we mean flanking a classical crossing by two virtual crossings.
This operation does not affect the value of the Jones polynomial.)

Given two classical knots K and K ′, if K can be obtained from K ′ by a combination
of crossing virtualization and virtual Reidemeister moves, then is K classically equivalent
to K ′?

If the above two questions have affirmative answers, then the only classical knot with
unit Jones polynomial is the unknot.

12. Virtual quandle homology: Study virtual quandle homology in analogy to quandle
homology [18, 66].

13. Khovanov homology: Construct a generalization of the Khovanov complex for the
case of virtual knots that will work for arbitrary virtual diagrams. Investigate the Kho-
vanov homology constructed in [169, 171]. The main construction in this approach uses
an orientable atom condition to give a Khovanov homology over the integers for large
classes of virtual links. The import of our question, is to investigate this structure and to
possibly find a way to do Khovanov homology for all virtual knots over the ring of inte-
gers. Similar questions can be raised for the presently evolving new classes of Khovanov
homology theories related to other quantum invariants (cf. [121, 123]).

By a K-full virtual knot we mean a knot for which there exists a diagram such that the
leading (the lowest, or both) term comes from the B-state. Analogously, one defines the
Kho-full knot relative to the Khovanov invariant. Call such diagrams optimal diagrams.
(It is easy to find knots which are neither K-full nor Kho-full.)

Classify all K-full (Kho-full) knots.
Are optimal diagrams always minimal with respect to the number of classical cross-

ings?
Classify all diagram moves that preserve optimality.
Is it true that if a classical knot K has minimal classical diagram with n crossings

then any virtual diagram of K has at least n classical crossings?
Can any virtual knot have torsion in the B-state of the Khovanov homology (the gen-

uine leading term of some diagram)? Here we use the formulation of Khovanov homology
given in [169, 171].

The behavior of the lowest and the leading term of the Kauffman bracket for virtual
knots was studied in [169] and [2] and [87].

14. Brauer algebra: The appropriate domain for the virtual recoupling theory is to
place the Jones–Wenzl projectors in the Brauer algebra. That is, when we add virtual
crossings to the Temperley–Lieb Algebra to obtain “Virtual Temperley–Lieb Algebra” the
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result is the Brauer algebra of all connections from n points to n points (see [120, 122]).
What is the structure of the projectors in this context? Can a useful algebraic general-
ization of the classical recoupling theory be formulated?

15. Virtual alternating knots: Define and classify alternating virtual knots.
Find an analogue of the Tait flyping conjecture and prove it. Compare [234].
Classify all alternating weaves on surfaces (without stabilization).
16. Crossing number : One of the most important problems in knot theory is the

problem of finding the minimal crossing number for a given knot. It can be estimated
by means of various invariants, the simplest one, perhaps, being the Kauffman bracket
estimate:

span〈K〉 6 4n− 4g,

here span stands for the difference between the leading degree and the lowest degree of
non-zero terms in the Laurent polynomial defined by the Kauffman bracket, n is the
crossing number, g is the atom genus for the knot K (also called the Turaev genus).

In the case g = 0, we get the celebrated Murasugi–Kauffman–Thistlethwaite theorem
on minimality of alternating knot diagrams.

Is there a way to prove that the atom genus g is minimal for a concrete knot diagram?
Then this together with a sharp estimate for the span of the Kauffman bracket guarantees
the minimality of the diagram.

The estimate 4n−4g is exact for adequate diagrams (after Thistlethwaite). It is exact
for many diagrams which are not adequate however: there are lots of minimal diagrams
where the span of the Kauffman bracket “drops down”, for example, for torus (p, q) knots
for p > q > 2.

Why is the span of the Kauffman bracket smaller than expected for such classes of
knots?

One of possible explanations may be that the projection surface is wrongly chosen.
For a torus knot, it is more convenient to consider it as being projected to the torus with
no crossing points rather than to the plane with many crossing points. Thus the following
problem arises: How do we use the Kauffman bracket, Thistlethwaite spanning tree, atoms
and other invariants to get estimates for the number of crossings when projecting the knot
diagram not to the plane but rather to some surfaces of higher genera?

There are some classes of knots (e.g., torus knots) where the estimate coming from
the Kauffman bracket is very far from optimal. Possibly, the main reason is that for some
classes of knots (e.g., those which can be projected to surfaces of small genus in R3) it
is more appropriate to estimate not the minimal crossing number for planar projections
but the minimal crossing number for projections to some 2-surface. To this end, it may
be appropriate to expand the Kauffman bracket as a linear combination of some “basic
pieces” corresponding to elementary knots having zero crossing numbers (see [28]).

Can we get estimates from Thistlethwaite’s spanning tree and/or the Khovanov ho-
mology? Which minimality theorems can be proved in this direction?

Is it possible to get an estimate for the atom genus when the atom is considered not
in the neighborhood of the plane but rather in a neighborhood of the surface the knot is
projected to and the thickness of the Khovanov homology does not exceed 2 + g?
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17. Crossing number problems: For each virtual link L, there are three crossing num-
bers: the minimal number C of classical crossings, the minimal number V of virtual
crossings, and the minimal total number T of crossings for representatives of L. There
are also a number of unknotting numbers: The classical unknotting number is the number
of crossing switches needed to unknot the knot (using any diagram for the knot). The
virtual unknotting number is the number of crossings one needs to convert from classical
to virtual (by direct flattening) in order to unknot the knot (using any virtual diagram
for the knot). Very little is known. Find out more about the virtual unknotting number.

What is the relationship between the least number of virtual crossings and the least
genus in a surface representation of the virtual knot.

Is it true that T = V + L?
Is there any algorithm for finding V for some class of virtual knots. For T , this is

partially done for two classes of links: quasialternating and some other, see [159]. For
classical links and alternating diagrams see [195, 197].

Are there some (non–trivial) upper and lower bounds for T, V, L coming from virtual
knot polynomials (see [148])?

18. Wild virtuals: Create the category of “wild virtual knots” and establish its ax-
iomatics. In particular, one needs a theorem that states when a wild equivalence of tame
virtual links implies a tame equivalence of these links.

19. Vassiliev invariants: Understand the connection between virtual knot polynomials
and the Vassiliev knot invariants of virtual knots (in Kauffman’s sense). Some of that
was done in [65, 99, 173, 214].

The key question about this collection of invariants is this: Does every Vassiliev in-
variant of finite type, for classical knots extend to an invariant of finite type for long
virtual knots? Here we mean the problem in the sense of the formulation given in [65].
In [99] it was pointed out that there is a natural notion of Vassiliev invariants for virtual
knots that has a different notion of finite type from that given in [65]. This alternate
formulation needs further investigation.

20. Embeddings of surfaces: Given a non-trivial virtual knot K. Prove that there exists
a minimal realization of K in N = Sg × I and an unknotted embedding of N ⊂ R3 such
that the obtained classical knot in R3 is not trivial. (This problem is partially solved by
Dye in [36].)

21. Non-commutativity and long knots: It is known that any classical long knot com-
mutes with any long knot. This is definitely not the case in the virtual category, see
paper by Kamadas, Fenn et al. However the commutativity of classical long knots may
be incorporated into the commutativity of virtual knots if the following question is true.
Is it true that if K and K ′ are long knots and K#K ′ is isotopic to K ′#K then there
exists a virtual long knot L, classical long knots Q, Q′, and non-negative integer numbers
m,n such that K = Lm#Q, K ′ = Ln#Q′, where by Lm we mean the connected sum of
m copies of the same knot?

22. The rack space: The rack space was invented by Fenn, Rourke and Sander-
son [47, 55, 56, 58]. The homology of the rack space has been considered by the above
authors and Carter, Kamada, Saito [18]. For low dimensions, the homology has the fol-
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lowing interesting interpretations. Two-dimensional cycles are represented by virtual link
diagrams consistently colored by the rack, and three-dimensional cycles by the same but
with the regions also colored. See the thesis of Greene [66]. So virtual links can give,
in this way, information about classical knots! For the second homology of the dihedral
rack, the results are given in Greene’s thesis. We now know that for a prime p the third
homology has a factor Zp, see [200].

Another line of enquiry is to look at properties of the birack space [55] and associated
homology.

Beyond problem number 22 we list new problems that are added to this revised problem
list.

23. Find new geometric/topological interpretations for the Jones polynomial and for
Khovanov homology.

24. Let V KT/Z denote virtual knot theory modulo Z-equivalence, as defined in
the section above on virtual knot theory. Recall that two virtual diagrams that are
Z-equivalent have the same Jones polynomial. It is known that classical knot theory
embeds in virtual knot theory. Does classical knot theory embed in V KT/Z? That is,
suppose that K and K ′ are classical knot diagrams, and suppose that K and K ′ are
equivalent using virtual moves and Z-moves. Does it follow that K and K ′ are equivalent
as classical knots?

25. Rotational virtual knot theory introduced in [99] is virtual knot theory without the
first virtual move (thus one does not allow the addition or deletion of a virtual curl). This
version of virtual knot theory is significant because all quantum link invariants originally
defined for classical links extend to rotational virtual knot theory. This theory has begun
to be explored [99, 113, 118] and deserves further exploration. We have formulated a
version of the bracket polynomial for rotational virtuals that assigns variables according
to the absolute value of the Whitney degree of state curves. See Fig. 14 for examples of
non-trivial rotational virtual links.

K

L

‘L

Fig. 14. Examples of non-trivial rotational links
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The rotational bracket can be generalized in the fashion of the Arrow Polynomial.
Beyond this there are all the quantum link invariants and how they behave on rotational
virtuals. We are in the process of writing a new paper on rotational virtual knot theory.
A natural class of invariants for rotational virtuals arises as quantum invariants associ-
ated with finite-dimensional quasi-triangular Hopf algebras. This harks back to an early
project [127, 128, 129, 130] that needs further articulation. In that work with Radford
we articulate invariants that immediately generalize to invariants of rotational virtual
knots. These invariants are defined via integrals on finite-dimensional Hopf algebras and
should be studied for their own sake. We would also like to know about the possibility
of categorification of finite-dimensional Hopf algebras and, in particular, the meaning of
categorifying a right integral.

26. The arrow polynomial generalizes to a more powerful invariant of virtual knots by
defining a version of it for knots in specific thickened surfaces. The arrow polynomial for a
knot in a thickened surface has state variables that take into account the isotopy class of
the state curve and its arrow number as well. This gives a very strong invariant of knots
in thickened surfaces and it can be applied to virtual knots by using a minimal surface
representative for the virtual knot. Investigating this surface arrow invariant generalizes
previous work on the surface bracket polynomial [39].

27. Study concordance and cobordism invariants of virtual knots. In particular, solve
the question of virtual knots up to pass-equivalence [92] (taking a direct generalization
of classical pass equivalence that gives the Arf invariant of knots). Understanding this
specific problem will promote our understanding of concordance of virtual knots.

28. Biquandles: The first two problems are old chestnuts.
Give a descriptive representation of the free biquandle.
Give a topological explanation of the fundamental biquandle of a knot.
Is there such a thing as a free partial biquandle: probably not.
29. Khovanov homology for virtual knots and links works directly with mod 2 coef-

ficients. With mod 2 coefficients there are no technical difficulties associated with the
fact that a virtual state curve can resmooth to a single curve. Over the integers, this is
a problem that has to be dealt with. An integral Khovanov homology for virtual knots
has been constructed by Manturov [176]. It is also the case that the work of Khovanov–
Rozansky [137, 136] categorifiying infinitely many specializations of the Homflypt polyno-
mial is an integral invariant for virtual knots. In principle, the Khovanov–Rozansky work
solves the problem of integral Khovanov homology for virtuals, but to see this in terms
of Khovanov’s original definition is a very good technical problem. Solve this problem to
clarify the Manturov construction.

30. In [43, 86] we have studied a mod 2 categorification of the arrow polynomial and
discovered many baffling examples of pairs of virtual knots that are discriminated by
this link homology and not distinguished by Khovanov homology mod 2 or the arrow
polynomial. We want to understand this new link homology and to that end will do more
computations and will try to understand the structure of this homology theory for virtual
links.
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31. Make a systematic study of Vassiliev invariants for virtual knots and links. There
is ongoing work on this problem.

32. Generalize virtual knot theory to virtual 2-spheres in 4-space.
33. Find a way to effectively compute the Kauffman–Radford–Hennings (KRH) in-

variants [127] for three-manifolds via right integrals on finite-dimensional Hopf alge-
bras [98]. Find a way to categorify the Kauffman–Radford–Hennings invariants for all
finite-dimensional quasitriangular Hopf algebras. The KRH invariants are actually in-
variants of rotational virtual links that are also, after normalization, invariant under the
moves of the Kirby calculus. In this way, they give invariants of three-manifolds and
virtual three-manifolds. The formulation of the KRH invariants in terms of integrals for
finite-dimensional Hopf algebras is very elegant, but computation is very difficult. Thus
these invariants form a challenge for both virtual and classical knot theory. It is worth
pointing out again, that the proper domain for all quantum link invariants is rotational
virtual knot theory. Thus, this problem about the KRH invariants is a test case for the
structure of quantum link invariants as a whole.

34. Create a combinatorial homotopy theory for Khovanov homology so that the Kho-
vanov homology of a knot or link is equivalent to the homotopy type of an abstract com-
plex (or category) associated with the knot or link. This problem is meant in the spirit of
Bar-Natan’s reformulation of Khovanov homology as an abstract chain homotopy class of
a categorical chain complex associated with the knot or link. Recent work of Lifshitz and
Sarkar [149] goes very far in this direction. Of course we would like a deeper connection,
and we would like to have the theory working for virtual knots and links.

35. In [96] we give a formula for the Kauffman polynomial, due to Jaeger, that ex-
presses this invariant as a state sum over oriented, partially smoothed links associated
with the given link. These states are evaluated by using the Homfly polynomial. Gener-
alize the Jaeger point of view to obtain a categorification of the Kauffman polynomial
by using chain complexes for these states that are derived from the Khovanov–Rozansky
categorification of the Homflypt polynomial.

36. In [96, 100] we show how, by translating between knots and planar graphs (the
checkerboard and medial constructions) one can associate a signed graph to a classical
knot and that, with a choice of nodes and an interpretation of the signs as generalized
electrical conductance, the conductance between two nodes of the graph is an invariant of
isotopy of the knot restricted to move in the complement of these nodes. The moves on the
graphs involve replacements of pedant loops and edges, series and parallel replacements
and a star-triangle exchange move. These moves can be applied to abstract (possibly
non-planar) graphs. As a result we obtain a generalization of knot theory (similar in
spirit but quite different from virtual knot theory) by taking the electrical equivalence
classes of signed graphs. Call this theory EG±. The conductance remains an invariant of
these Electric Knots and shows that the theory is highly non-trivial. This formulation of
Electric Knots gives rise to many problems. Find new invariants of Graph-Knots. Note
that if we take a planar immersion of a signed graph, then the induced cyclic orders of
edges at the nodes of the planar embedding give a natural way (analogous to the medial
graph) to associate a virtual knot diagram to the immersion. Explore this relationship of
Electric Knots and virtual knots.
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37. It has been pointed out that the chain complex for Knot Floer Homology [206]
(categorifying the Alexander–Conway polynomial) is generated by the states described in
Formal Knot Theory [92]. These states involve an assignment of pointers to each region of
the diagram (with two adjacent regions omitted) such that each pointer marks a unique
crossing in the diagram. The key problem about this complex is that while the chain
groups are described via knot diagram combinatorics, the differential in the complex seems
to require high-dimensional contact geometry. Even though there is now a combinatorial
definition of Knot Floer homology via arc diagrams, this is an unsatisfactory state of
affairs. The problem is to find a combinatorial definition of the differential on the complex
generated by the Formal Knot Theory states.

38. The Kauffman bracket polynomial of a virtual diagram can have the leading term,
i.e., the term having the highest possible degree, equal to zero.

Assume that we have a diagram for which the Kauffman bracket polynomial has
the nonzero leading term. Classify moves (compositions of the generalized Reidemeister
moves) establishing the equivalence in the class of diagrams with nonzero leading terms.

39. We still do not know whether the free knot whose Gauss diagram is a heptagon
(i.e. consists of 7 chords each of which is linked with precisely two adjacent ones) is trivial.

40. Given a chord diagram D we can construct the following formal chain complex.
Formally speaking, this complex will look like a simplicial complex in all dimensions
except zero, but one can get rid of this by using duality arguments.

In dimension −1 there is just one chain denoted by ∅. In dimension 0, the chains are
in one-to-one correspondence with unoriented chords of the diagram D; in dimension 1
the chains are in one-to-one correspondence with pairs of unlinked chords, for dimension
2 we take triples of pairwise unlinked chords, etc.

The differential acts on the k-tuple, {a1, . . . , ak} of pairwise unlinked chords to the
(k + 1)-tuple {a1, . . . , ak, al} obtained by the addition of a chord unlinked with all the
previous ones. The sign is taken in a standard way to make the complex well-defined with
integral coefficients. Such a complex is naturally defined by the intersection graph of the
chord diagram.

Example 8.1. Let the chord diagram consist of 2n chords, where the following pairs of
chords are linked: (1, 2), (3, 4), (5, 6), . . . , (2n− 1, 2n). Then the corresponding simplicial
complex is the (n− 1)-sphere (the n-th join of S0).

Can we get any other simplicial complexes this way other than just bouquets of
spheres? An affirmative answer to this question may lead to some homological calculations
which are very easy for computer implementation. This problem was motivated several
years ago by an attempt to construct the spectrification of the Khovanov homology.
It turns out that if some (virtual) knot in the A-state has exactly one circle then its
Khovanov homology in the lowest quantum grading looks exactly as described above.
Thus, this approach may be useful for understanding the Khovanov homology of chord
diagrams as well as some other approaches to the Khovanov homology spectrification
obtained by recent work with Lipshitz.
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On the other hand, this problem is motivated by the construction of graph-link theory.
Indeed, every triangulated manifold admits a shallow triangulation such that together
with any 1-frame of a k-simplex, it contains the whole simplex.

Considering the one-dimensional frame of such a triangulation as the non-intersection
graph of some chord diagrams, we get exactly the chord diagram, whose lower term
Khovanov homology looks as described above. The problem is that not every graph is an
intersection graph (neither any graph is a non-intersection graph) of any chord diagram.
This leads to the graph-link theory for which all possible manifolds appear in the lower
degree homology theory. This leads to some lower homotopy of graph links. The next
problem can be formulated as follows.

Given two diagrams of (virtual) knots or links with exactly one circle in the A-state.
Which combinations of Reidemeister moves on the diagrams have to be considered in
such a way that whenever two diagrams generate equivalent knots, there exists a chain of
moves from one diagram to the other with all intermediate diagrams having single-circle
A-state and such that chord diagram homology (and homotopy) corresponding to those
intermediate diagrams do not change under such moves?

It is worth to compare these thoughts with the recent work of Lipshitz on the spec-
trification of Khovanov homology. Possibly, the Bloom–Nikonov [11, 202, 203] approach
to Khovanov homology [205, 206] can be used here.

41. Which quantum invariants extend to virtual knots themselves without restric-
tions? Certainly, there are such ones, e.g., the Kauffman bracket and the Jones polyno-
mial.

42. One can consider braids with even numbers of strands. Markov’s moves change
the parity of the number of strands. Can one reformulate Markov’s theorem in such a
way that only braids with even numbers of strands take part in this formulation?

43. In his wonderful paper [211], which firstly had the title “Knot Floer Homotopy”,
Sarkar constructs a cell complex. The homology of this complex coincides with the Floer
homology. In this work the following main ingredients are used: Manolescu–Ozsváth–
Sarkar–Szabó–Thurston approach allowing one to define Heegaard–Floer homology by
using grid diagrams and shellability. Roughly speaking, if complexes look like order com-
plexes, then they can be replaced with cell (simplicial) complexes homotopically equiva-
lent to them.

Try to do the same things for Khovanov homology. In the initial Khovanov definition
this problem seems to be very difficult, since the set of chains and states can hard be
ordered. However, by taking into account Bloom’s construction [11] this problem looks
more optimistic.

44. A complete invariant is used for proving that one theory is a part of another
theory. For example, the fact that the set of classical knots is a part of the set of virtual
knots, is true for the same reason as a quandle with peripheral structure can be extended
from classical knots into virtual knots. Analogous statements can be done for classical
and virtual braids (the extension of Hurwitz’s action).

So, we get an actual problem: how can one construct a complete invariant for virtual
knots?
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45. To prove that the invariant F constructed by V. O. Manturov for virtual braids,
is complete for virtual braids with more than two strands.

46. In [191] it was shown how one could determine non-invertibility of long virtual
knots and non-commutativity of long virtual knots. This method used two type crossings:
an early undercrossing and an early overcrossing. Further, for two types we have different
operations, these operations are similar but not coincide (these operations are related
to quandles). Regretfully, this method gives nearly nothing for classical knots. But it is
universal: instead of the construction of quandle with two operations one can consider
other ways of constructing knot invariants. In these ways we partition the set of crossings
into two subsets, and for each subset we use an operation. Moreover, two operations are
different enough to determine non-invertibility, and in the same time are similar to give
an invariant structure. In the level of the Kauffman bracket polynomial this construction
does not work. We get two problems.

(a) Try to do the same for other objects than quandles, for example: nonlinear quandles,
quandles with rings having non-unique decomposition of multiples.

(b) Try to apply it on a “categorified level”: use the usual chain space for Khovanov
homology and in it two different differentials but commuting with each other (these
differentials correspond to circle and star operations). These two different differ-
entials could arise from usual and odd Khovanov homologies in the case when we
have an identification (but maybe not canonical) between chain spaces of these
complexes. It is expected that these invariants could recognize non-invertibility of
knots.

47. It is well known that flat virtual knots are easily algorithmically recognizable,
see [68]. The absence of a geometric approach to the definition of free knots leads to the
lack of the methods for solving the following three problems.

(a) Is it true that (any) connected sum of free knots is trivial?
(b) Are free knots algorithmically recognizable?
(c) Prove that free knots do not commute in the general case.

In the first case we suggest that the answer is affirmative, and the proof should be a
certain modification of the analogous proof for virtual knots (see, e.g., [143]).

In the second case we suggest that the answer is negative. It seems to us that free
knots are a very complicated object, where one can construct models for many logical
constructions.

The third problem seems to be solvable by using (and, possibly, extending) standard
methods in the free knot theory.

48. The functorial mapping was constructed, by means of it we constructed the map
from the set of virtual knots to the set of virtual knots with orientable atoms.

Can one construct an analogous map which projects the set of virtual knots to the
set of classical knots? For example, one can try to find an index by using characteristic
classes. Here only one condition which arises under the third Reidemeister move should
hold.
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Note that in the case of homologically trivial knots we can consider a two-branched
covering like a projection.

49. Turaev constructed the map from the set of long flat knots to the set of long
virtual knots. Can one construct any map from the set of long free knots to the set of
long virtual knots? This question can be extended and one can try to construct any map
which “enlarge” the structure.

50. The problem about cobordisms in sections: Let us have a free knot and its cobor-
dism. Construct a parity on the given free knot, which is defined by using only this
cobordism and respect only moves inside this cobordism.

51. Prove or disprove the conjecture about the non-uniqueness of minimal represen-
tative of a free link, i.e., there exists a free link having several minimal representatives.

52. If X is the free rack, is ΓX a cat(0) space? A positive answer would imply that
all its higher homotopy groups are trivial.

53. Is there any algorithm for recognition whether two graph-links are equivalent or
not? Our conjecture is “no”. The idea behind that is that graph-links are complicated
enough, and possibly, they contain sufficiently many degrees of freedom to include some-
thing like Turing machines. All mathematics is roughly split into the recognizable one
(low-dimensional topology, hyperbolic groups, decidability) and the non-recognizable one
(topology of dimension 4 and higher, arbitrary finitely presentable groups, Turing ma-
chines etc.). The usual argument for undecidability for finitely presented group allows
one to construct some universal (semi)groups which include the apparatus of the Turing
machines. We think that graph-links are enough complicated to include similar things:
they contain arbitrary graphs, and Reidemeister moves, in principle, could play the role
of “rules for formal languages” or “group relations”. It seems unlikely that Reidemeister
moves collapse graph-links to anything simple enough because of the parity considera-
tions: there are “irreducibly odd” graph-links which are stable in the sense that every
equivalent graph contains the initial graph as a subgraph.

54. Can one construct a projection from the set of graph-links to the set of realizable
graph-links?

55. Construct a parity on graph-links by using Bouchet’s criterion about the real-
izability of a graph. Try to find a parity which is responsible for the cyclically 6-edge
connection, see [12].

56. Construct generalizations of the Frobenius extension [134] and the Rasmussen
invariant for “rigid” graph-links with orientable atoms.

57. Is it true that two equivalent realizable graph-links are equivalent in the class of
realizable graph-links? If it is not true, then construct an example.

58. Construct a group for graph-links which is analogous to the group from [191,
Subsection 8.9].

59. Construct “graph-braids”.
60. Problems on free knot cobordism: The methods used for proving the fact that the

invariant L [78] gives an obstruction to the sliceness are not immediately generalized for
obtaining lower estimates on the slice genus of free knots. Two reasons are as follows. First,
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when we define a parity and justified parity for double lines on D, we choose an arbitrary
curve connecting the two preimages of the point on the double curve. We assert that any
two curves connecting these two preimages (and behaving correctly in neighborhoods of
the ends) are homotopic. It is true in the case of cobordism of genus zero, but in the case
of a surface of an arbitrary genus h it is, indeed, not true.

Thus, in order to define a parity for double lines we have to impose some restrictions
on the spanning surface: we have to require that the cohomology class dual to the graph Ψ
was Z2-homologically trivial. The significance of the property for even-valent graphs to
be Z2-homologically trivial is closely connected with atoms (for details see Section 4
and [183]).

Another problem is that the Reeb graph of an arbitrary Morse function (not neces-
sarily corresponding to the disc) is not necessarily a disc. Consider Fig. 15.

0

4 4

8

Fig. 15. The Reeb graph corresponding to a cobordism of genus one

Thus, starting from a free knot K for which, we say, L(K) = 8, we (in principle)
can turn it by a Morse bifurcation into free two-component link consisting of two free
knots K1 and K2, for which L(Ki) = 4, and then by another Morse bifurcation we can
reconstruct this trivial link into the unknot. The invariant L is not an obstruction to this,
since the sum of 4 and −4 is zero.

In some cases we can overcome these two difficulties for cobordisms (of arbitrary
genus).

Let Dg be a surface with boundary S1. Obviously, the collection of double lines of
Dg defines a relative Z2-homology class κ ∈ H1(Dg, S1;Z2). This homology class is an
obstruction for the surface to be checkerboard-colorable; also, this is an obstruction for
well-definedness of even/odd double lines.

Namely, if we look at the definition of an even/odd double line: we see that there is an
ambiguity in the choice of path connecting two preimages of a generic point on the double
line. For the case of a disc cobordism, the parity of double lines is well defined, because
all such curves are homotopic. For Dg the unique obstruction to this well-definedness is
the class κ.

We call a cobordism of genus g checkerboard (or atomic) if the corresponding class κ
vanishes.
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The next task (after detecting which 1-stratum is even and which one is odd) is to
distinguish between b and b′. To this end, one should do the same for preimages of points
lying on odd 1-strata, connect them by a generic curve, and count the intersection with
even double lines. So, we see that the only obstruction is the relative Z2-homology class
κ′ ∈ H1(Dg, S1;Z2) generated by even double lines.

We say that a checkerboard cobordism is 2-atomic if κ′ vanishes.
The following theorem holds.

Theorem 8.1 (see [185]). Assume for a 1-component framed 4-graph K we have
L(K) 6= 0. Then there is no 2-atomic cobordism spanning the knot K of any genus.

In the papers [151, 192] the fourth author constructed a strengthening Gm of the
group G given in the present work (in the notation [151] our group G is G1) and the
invariants of free knots with values in the classes of conjugate elements from Gm. The
idea is as follows. Even chords are further partitioned into chords of different types, it leads
to more accurate definition of generators and relations in the group; these constructions
are closely connected with iterated parities and the map deleting odd crossings. It seems
that all invariants related to the groups Gm also give an obstruction to the sliceness of
a knot. Moreover, in the paper [190] the author constructed invariants of virtual knots
in which the over/undercrossing structure was taken into account besides the parity of
chords. We devote a separate paper to the investigation of a connection of these invariants
with cobordisms.

8.2. Problems on virtual knot cobordism. The material in this section will appear
in [38, 113] and there have been studies of virtual knot cobordism at the free knot level
by Manturov [185, 186, 188].

Definition 8.1. Two oriented knots or links K and K ′ are virtually cobordant if one may
be obtained from the other by a sequence of virtual isotopies (Reidemeister moves plus
detour moves) plus births, deaths and oriented saddle points, as illustrated in Fig. 16.
A birth is the introduction into the diagram of an isolated unknotted circle. A death is

saddle birth death

g=0 g=1

saddle

g=0

Fig. 16. Saddles, births and deaths
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the removal from the diagram of an isolated unknotted circle. A saddle point move results
from bringing oppositely oriented arcs into proximity and resmoothing the resulting site
to obtain two new oppositely oriented arcs. See the figure for an illustration of the process.
Fig. 16 also illustrates the schema of surfaces that are generated by cobordism process.
These are abstract surfaces with well defined genus in terms of the sequence of steps in
the cobordism. In the figure we illustrate two examples of genus zero, and one example
of genus 1. We say that a cobordism has genus g if its schema has that genus. Two knots
are concordant if there is a cobordism of genus zero connecting them. A virtual knot is
said to be a slice knot if it is virtually concordant to the unknot, or equivalently if it is
virtually concordant to the empty knot (The unknot is concordant to the empty knot via
one death.). This definition is based on the analogy of virtual knot theory and classical
knot theory. It should be compared with [228] in the category of virtual strings.

In Fig. 17 we illustrate the virtual stevedore’s knot, V S, and show that it is a slice
knot in the sense of the above definition. We will use this example to illustrate our
theory of virtual knot cobordism, and the questions that we are investigating. We define
a virtual knot to be a ribbon virtual knot if it is slice via only deaths and saddle point
transformations. We do not know at this point whether there are virtual slice knots
that are not ribbon. With the same definitions restricted to classical knots, this is a
long-standing open problem for classical knot theory.

VS

(detour move)

Fig. 17. Virtual stevedore is slice

We first point out that the virtual stevedore (V S) is an example that illustrates the
viability of this theory. We can prove that V S is not classical by showing that it is
represented on a surface of genus one and no smaller. The technique for this is to use
the bracket expansion on a toral representative of V S and examine the structure of the
state loops on that surface (see Fig. 18). Note that in this figure the virtual crossings
correspond to parts of the diagram that loop around the torus, and do not weave on the
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surface of the torus. An analysis of the homology classes of the state loops shows that
the knot cannot be isotoped off the handle structure of the torus.

AAAA AAAB AABA AABB

ABAA ABAB ABBA ABBB

BAAA BAAB BABA BABB

BBAA BBAB BBBA BBBB

Fig. 18. Virtual stevedore is not classical

VS I E

〈V S〉 = 〈I〉 = 〈E〉 = A−8 −A−4 + 1−A4 + A8

The knot V S has bracket polynomial equal to the bracket polynomial of the classical figure
eight knot diagram E. This implies that V S is not a connected sum.

Fig. 19. Bracket polynomial of the virtual stevedore
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Next we examine the bracket polynomial of the virtual stevedore, and show as in
Fig. 19 that it has the same bracket polynomial as the classical figure eight knot. The
technique for showing this is to use the basic bracket identity for a crossing flanked by
virtual crossings as discussed in the previous section. This calculation shows that V S is
not a connected sum of two virtual knots. Thus we know that V S is a non-trivial example
of a virtual slice knot, an example that constitutes proof in principle that this project is
viable. We will face the problem of the classification of virtual knots up to concordance.

8.2.1. Virtual surfaces in four-space. We now define a theory of virtual surfaces in four-
space that is given by moves on planar diagrams. One of the projects of this proposal
is to investigate the relationships between this diagrammatic definition and more geo-
metric approaches to virtual 2-knots due to Jonathan Schneider and to Takeda [222]
(see also [221]). One should also compare with the relationships to surfaces in four space
for welded knots due to Satoh [212]. We make diagrammatic definitions as follows: We
use middle level markers as indicated in Fig. 20 to encode two directions of smoothing
a marked crossing in a planar diagram. The classical interpretation of such a marker
is that it represents a cobordism through a saddle point at the middle level (t = 0 in
the figure) where the forms of smoothing above (t = 1) and below (t = −1) are shown
via the conventions in the figure. A diagram with markers can then be interpreted as
two cobordisms attached at the middle. One cobordism goes downward to a collection of
possibly linked and knotted loops, the other goes upward to another collection of linked
and knotted loops. We will refer to these as the up-cobordism and the down-cobordism.
A marked diagram is said to be excellent if both the up and the down cobordisms end in
collections of unlinked circles that can be capped off with births (from the bottom) and
deaths (at the top). The resulting schema is then a two-sphere and classically represents
a two-sphere in four space. We take exactly this definition for a virtual two-sphere where
it is understood that the ends of the two cobordisms will be trivial virtual links.

t = +1

t = -1

t = 0

Fig. 20. Middle level markers

Just as in classical theory, if a virtual knot is slice, then we can make a virtual two-
sphere from it by using the same cobordism both up and down. Births for the original
cobordism have to be represented directly in the middle level. The slicing example for V S,
the virtual stevedore’s knot, can be made into a two-sphere this way. We show the middle
level diagram for this sphere, called S in Fig. 21. In the same figure, we show another
middle level diagram for a virtual two-sphere S′. In this case we have used the fact
(the reader can verify) that V S can be sliced from its right-hand side. The sphere S′ is
obtained by slicing upward from the left and downward from the right.
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S

‘

S

FundGrp(S)=FundGrp(VS) FundGrp(S )=Z

‘

Fig. 21. Two two-spheres

1. Reidemeister Moves and Virtual Moves (Detour).

2. Moves on Markers.

3.Yoshikawa Moves.

Fig. 22. Middle level moves
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We give moves on the middle level diagrams to define isotopy of the virtual two-spheres
obtained from the middle level diagrams. The moves are indicated in Fig. 22. They are
a virtual generalization of the Yoshikawa moves that have been studied [147, 221] for
isotopies of the classical middle level formulations. Thus we say that two two-spheres are
isotopic if one can be obtained from the other via these Generalized Yoshikawa moves. In
particular, the fundamental group of the two-sphere, defined by adding relations at saddle
points exactly as in the classical case (but from the virtual knot theoretic fundamental
group) is an isotopy invariant. For example, in Fig. 23 we calculate the fundamental
group of V S and find that, in it the arcs whose elements must be identified to obtain the
fundamental group of the sphere S of Fig. 21 are already identified in the fundamental
group of V S. Thus we find that the sphere S is knotted since it has the same non-trivial
fundamental group as V S. On the other hand, it is not hard to see that the fundamental
group of the sphere S′ is isomorphic to the integers. At this writing we do not know if
this sphere is virtually unknotted.

a

b

VS

c

d

d

d

d

a

a

b

b
c

d−1ad = b

dbd−1 = c

b−1cb = d

bdb−1 = a

Therefore c = a and dbd−1 = bdb−1

FundGrp(V S) = 〈d, b |dbd−1 = bdb−1〉

Fig. 23. Fundamental group of V S

The generalized Yoshikawa moves present a useful first formulation for a theory of
virtual surfaces. One of the advantages of this approach is that we can adapt the general-
ization of the bracket polynomial of Sang Youl Lee [147] to obtain a bracket invariant for
virtual two-spheres. This will be an important subject of investigation for this proposal.
We want to know how this diagrammatic formulation is related to immersions of surfaces
in four space that could represent virtual two-knots. In this case the levels (movie of a
cobordism) description that we have adopted gives such an immersion, and one can be-
gin the investigation at that point. For these reasons, we believe that this formulation of
virtual cobordism and virtual surfaces will be very fruitful and lead to many new results.

8.2.2. Virtual Khovanov homology. Khovanov homology [133] (see also [3, 5, 109, 111,
143, 146, 196, 229, 231]) for classical knots works, with mod 2 coefficients, for virtual
knots. It has been generalized by Manturov [176, 191] for a homology theory with integer
coefficients. We have a new formulation of Manturov’s construction that simplifies some
of the choices in constructing the chain complex. We hope to see new results from this
technology. In particular we examine [38] the structure of the Rasmussen invariant [209]
with an eye to generalizing it in this framework. Using the notions of cobordism given
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here, we can define the virtual four genus of a virtual knot as the least cobordism genus
that it can attain. Thus slice knots have genus zero and others will have higher genus in
this sense. The Rasmussen invariant gives a lower bound on the 4-ball genus of classical
knots. One can obtain a similar lower bound for the virtual four genus, as is begun in [38].

8.2.3. Band-passing and other problems. The Arf invariant of a classical knot can be
interpreted as the pass-class of the knot, where two knots are pass equivalent [94] if one
can be obtained from the other by ambient isotopy combined with switching pairs of
oppositely oriented pairs of parallel strands. The pass-class is a concordance invariant
of classical knots and closely related to the Alexander polynomial. We would like to
determine the pass-classes of virtual knots. This problem appears difficult at this time due
the lack of invariants of the passing operation. We can obtain partial results by restricting
passing to only odd crossings (then the Manturov parity bracket described in this proposal
is an invariant of odd passing) but this is only a step on the way to understanding the
pass equivalence relation for virtual knots. We expect that understanding this relation
will shed light on problems of knot concordance.

We cannot resist ending this collection of problems with a very classical problem in
skein theory. It is well-known that the Alexander polynomial of a slice knot is of the form
f(t)f(1/t) up to powers of t and a sign. The problem is to give a proof of this result
using only Conway skein theory. This problem has resisted us for a long time, and its
resolution would surely shed light on problems of knot cobordism classical and virtual.

8.2.4. Questions from Micah W. Chrisman. In recent talks, Kauffman has defined no-
tions of cobordism, concordance, slice, and ribbon for virtual knots. Turaev [227] has
introduced a notion of cobordism for knots in thickened surfaces. A knot in R2 ×R that
is slice in the classical is slice in both the notions of Turaev and Kauffman. In [227], it is
observed that it is unknown whether the converse is true.

1. Are there any classical knots that are non-slice in the classical sense but are slice in
the the sense of Kauffman (when considered as virtual knots) or Turaev (when considered
as a knot in a thickened surface)?

2. If a knot in the thickened surface is slice in the sense of Turaev, does it necessarily
stabilize to a virtual knot that is slice in the sense of Kauffman?

8.3. Questions from V. Bardakov. The virtual braid group V Bn is defined by the
generators σ1, σ2, . . . , σn−1 which generate the braid group Bn and the generators
ρ1, ρ2, . . . , ρn−1 which generate the symmetric group Sn, also the following mixed re-
lations hold

σiρi+1ρi = ρi+1ρiσi+1, i = 1, 2, . . . , n− 2;
σiρj = ρjσi, |i− j| > 1.

1. The group G is called linear if there is an embedding of G into the linear group
GLm(k) for some natural m and a field k.

Is it true that V Bn is linear for all n > 3?
It is true for n = 3 (unpublished result of V. Bardakov and P. Bellingeri).
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2. Let Fn+1 = 〈x1, x2, . . . , xn, y〉 be a free group of rank n+1. There is a representation
ρ : V Bn → Aut(Fn+1):

σi :


xi 7−→ xixi+1x

−1
i ,

xi+1 7−→ xi,

xk 7−→ xk,

y 7−→ y,

ρi :


xi 7−→ yxi+1y

−1,

xi+1 7−→ y−1xiy,

xk 7−→ xk,

y 7−→ y,

where k 6= i, i + 1. This representation is an extension of the Artin representation
ρA : Bn → Aut(Fn) which is faithful, i.e., ker(ρA) = 1.

Is the representation ρ faithful for all n > 2?
3. Is virtual knot theory a subtheory of welded knot theory? This may seem unintuitive

since welded knot theory is a quotient of virtual knot theory. The welded braid group
WBn is the quotient of the virtual braid group V Bn by the relations

ρiσi+1σi = σi+1σiρi+1, i = 1, 2, . . . , n− 2.
The group WBn is a subgroup of Aut(Fn) and the representation ρA defined above is in
fact the representation of V Bn into WBn+1. In the virtual knot theory as in the welded
knot theory we have analogs of the Alexander theorem: every link is equivalent to the
closure of some braid.

Are there some non-equivalent virtual links Lv and L′v that are the closures of the
virtual braids: Lv = β̂v and L′v = β̂′v for some βv ∈ V Bn, β′v ∈ V Bm such that the welded
links ρ̂A(βv) ρ̂A(β′v) are equivalent as welded links?

4. The flat virtual braid group FV Bn is the quotient of the virtual braid group V Bn
by the relations

σ2
i = 1, i = 1, 2, . . . , n− 1.

Is there a representation ϕ : FV Bn → Aut(Fm) for some m such that in the image
the forbidden relations

ϕ(ρi)ϕ(σi+1)ϕ(σi) = ϕ(σi+1)ϕ(σi)ϕ(ρi+1), i = 1, 2, . . . , n− 2
do not hold?

8.4. Questions from Karene Chu
1. Long virtual knots and long flat virtual knots: Even though (round) flat virtual knots

are not well understood, it turns out long flat virtual knots can be completely classified.
They are in bijection with the subset of all signed permutations in which consecutive
pairs are not sent to oppositely signed consecutive pairs [30]. For example, 1 7→ (3,+),
2 7→ (2,−), 3 7→ (4,−), 4 7→ (1,+) is excluded since the pair (1, 2) is mapped to the
oppositely signed consecutive pair ((3,+), (2,−)). This classification is an invariant on
long virtual knots; in particular, it gives necessary conditions for a long virtual which is
classical, and can distinguish the long Kishino knots from the unknot. How can we use
this invariant to understand long free knots, or round flat virtual knots, both of which
are quotients of long flat virtual knots?

Long flat virtual knots are also equivalent to long descending virtual knots by sending
each flat real crossing to a descending crossing. The long descending virtual knots all
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have cyclic fundamental groups. What are the characteristics of the knot polynomials on
this subset of long virtual knots?

In fact, flat virtual pure tangles, whose skeletons are labeled long strands, are also
completely classified by the same approach. There is a well-defined map from flat vir-
tual braids into flat virtual pure tangles simply by interpreting the braid diagram as a
tangle diagram. It was pointed out in Chu’s talk that if this map is injective, then this
classification also gives normal forms for flat virtual braids. How to show that this map
is injective?

2. Virtual braids and flat virtual braids and braid-like virtual knots: The classifying
spaces for both the flat virtual braid group and the virtual braid group have been con-
structed in [7]. (In this paper the flat virtual and virtual braid groups are called the
triangular and quasi-triangular groups, respectively.) Indeed, the classifying space of the
flat virtual braid group is a beautiful space which is the quotient of the permutohedron
by a natural action of the symmetric group. But from another perspective, what are the
characterizations of the flat virtual or virtual braids in terms of embeddings into surfaces
or thickened surfaces with boundary modulo stabilization?

R2b

R2c

R3b

R3c

Fig. 24. R2b, R2c, R3b and R3c moves

The equivalence generated by the subset of “braid-like” Reidemeister II and III moves,
defined in Fig. 24, is a proper subset of the equivalence generated by the set of all
Reidemeister II and III moves. “Braid-like” or “acyclic” Reidemeister II and III moves,
shown as R2b and R3b, are moves whose diagrams contain no oriented cycles (with the
crossing as vertices). Cyclic moves, R2c and R3c, contain oriented cycles. The set of
virtual knot diagrams modulo only braid-like Reidemeister moves are called braid-like
virtual knots by Bar-Natan. One can construct quantum invariants of these simply by
“attaching R-matrices of quantum groups to the real crossings” and ignoring cups and
caps, unlike for classical knots (see [135]). What are braid-like virtual knots topologically?

3. Welded braids and knots: The welded braid group is the basis-conjugating subgroup
of the automorphism group of the free group and includes the classical braids. It has
been completely classified with normal forms in [67]. We can ask which properties of the
classical braid group are also possessed by the welded braid group, e.g., automaticity,
orderability, linearity?
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8.5. Questions from Micah W. Chrisman

8.5.1. Finite-type invariants. Finite-type invariants of classical knots can be understood
through the Kontsevich integral, configuration space integrals, and combinatorial formu-
lae (see [103]). There is no corresponding general theory for Vassiliev invariants of virtual
knots.

There are two notions of finite-type invariants of virtual knots: the Goussarov–Polyak–
Viro finite-type invariants and the Vassiliev finite-type invariants (introduced to the vir-
tual knot case by Kauffman). There is a universal finite-type invariant for the GPV
finite-type invariants by way of the Polyak algebra. On the other hand, there is no known
universal finite-type invariant for Vassiliev finite-type invariants.

In fact, the two types are quite different. The GPV finite-type invariants are finitely-
generated at every order. The Vassiliev finite-type invariants are however infinitely gener-
ated. There is even an infinite number of different extensions of the Conway polynomial to
virtual knots, all satisfying the same skein relation and whose coefficients give an infinite
family of finite-type invariants of every order [25]. Also, there are obstructions for when
a Vassiliev finite-type invariant can be represented by an arrow diagram formula in the
sense of Goussarov–Polyak–Viro. For example, an integer valued Vassiliev invariant which
is invariant under the virtualization move cannot be a GPV finite-type invariant [23].

1. Classify all obstructions for a Vassiliev finite-type invariant to be a GPV finite-type
invariant.

2. (see also [27]) Let Σ be a compact oriented surface. Let G be an abelian group,
VK the isotopy classes of oriented virtual knots, and K[Σ] the isotopy classes of oriented
knots in Σ × I. Let κ : K[Σ] → VK denote the projection of knots on Σ × I to virtual
knots. For a set S, let Z[S] denote the free abelian group generated by S. If v : K→ G is
a Vassiliev finite-type invariant of virtual knots, prove that there is a finite-type invariant
of knots in Σ× I such that the following diagram commutes:

Z[K[Σ]]
V

##
κ

��
Z[VK]

v
// G.

8.5.2. Prime decompositions of long virtual knots. Long classical knots commute under
the operation of concatenation. On the other hand, concatenation is not a commutative
operation for long virtual knots. This was first proved by Manturov [180], but has since
been established by many authors using a variety of techniques. Certainly, if either A
or B is classical, then A#B � B#A. If A, B, C, D are linear prime non-classical long
virtual knots, A#B � C#D, and A#B is non-classical, then A � C and B � D [24].
This gives a partial answer to the Manturov’s conjecture. In the virtual knot case, an
existence and uniqueness theorem for prime decompositions of virtual knots has been
proved [141, 194].

1. Besides concatenation, there are other kinds of decompositions for long virtual
knots. For non-classical long virtual knots A and B that are prime relative to these
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decompositions, is it possible for the concatenation A#B to be expressed as any other
type of decomposition into A and B?

2. Prove an existence and uniqueness theorem for prime decompositions of long virtual
knots.

3. Prove a generalization of Kuperberg’s theorem to virtual tangles. There are a few
generalizations of Kuperberg’s theorem appearing explicitly in the literature [13, 24, 69,
126].

8.5.3. Connections between classical and virtual knot theory. Virtual knot theory can be
applied to studying 1-knots in 3-manifolds and links in S3 with at least two components.
The technique is called the theory of virtual covers [26, 28, 142].

The technique may be described as follows. Let N be a compact oriented 3-manifold
and K a smooth knot in N (written KN ). Suppose that N admits a covering space
Π: Σ × (0, 1) → N and that there is a smooth knot k in Σ × (0, 1) such that Π(k) = K.
Then k can be considered as a knot in Σ× [0, 1] via inclusion and projected to a virtual
knot υ. Then we say that (kΣ×(0,1),Π,KN ) is a virtual cover with associated virtual
knot υ. If Π is regular and k is contained in a fundamental region of Π, then it is said to
be a fundamental virtual cover.

The theory has been studied in detail in the case that N is the complement of a fibered
knot, a multi-component fibered link, and a virtually fibered 3-manifold (possesses a
finite-index cover that is fibered over S1). For such N , inequivalent knots can be detected
by applying virtual knot invariants. The non-invertibility of knots in manifolds can also
be detected. Moreover, minimality theorems can be proved for diagrams of knots in a
manifold relative to fiber of the fibration [142].

1. The theory of virtual covers uses virtual knot theory to study links of at least two
components in S3. Is there an extension of the theory of virtual covers to one component
links (i.e. knots) in S3 ?

2. Use virtual covers to find a relation between the Milnor µ-invariants and invariants
of virtual knots. Can virtual covers be used to apply Milnor’s theory to one component
links (i.e. knots)?

3. How well does a virtual knot associated to a virtual cover of a classical link behave
under local moves (non-isotopy) applied to the link? Of particular interest would be
moves such as crossing changes, self-∆ moves, and Z-moves.

4. Can virtual covers be used to detect mutations of classical links?
5. Every virtual knot υ is the associated virtual knot for a fundamental virtual cover

of some two component link K tJ , where J is fibered and lk(J,K) = 0. Find a complete
set of moves on such two component links which do not change the virtual isotopy type
of the associated virtual knot.

6. Let J be a link in S3 and K a knot in the complement N of J . Let υ be a virtual
knot associated to a virtual cover (kΣ×(0,1),Π,KN ). If υ is a prime virtual knot, must K
be prime as a knot in S3?
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