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Abstract. We consider the classical problem of a position of n-dimensional manifold Mn

in Rn+2. We show that we can define the fundamental (n+1)-cycle and the shadow fundamental
(n+2)-cycle for a fundamental quandle of a knottingMn → Rn+2. In particular, we show that for
any fixed quandle, quandle coloring, and shadow quandle coloring, of a diagram ofMn embedded
in Rn+2 we have (n+ 1)- and (n+ 2)-(co)cycle invariants (i.e. invariant under Roseman moves).
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1. Introduction. We consider the classical problem of a position of n-dimensional man-
ifold Mn, in an (n + 2)-manifold Wn+2. The classical case deals with Wn+2 = Rn+2,
however our method is also well suited for a more general case of Wn+2 being a product
of an oriented (n+ 1)-manifold Fn+1 and the interval or the twisted interval bundle over
an unorientable (n+ 1)-manifold Fn+1, as we have, in these cases, the natural projection
of Wn+2 onto Fn+1 (see Section 7).

Historically, the main tool to study an n-knotting, f : Mn → Rn+2, was the funda-
mental group of the knotting complement in Rn+2. This was greatly extended by applying
quandle colorings and (co)cycle invariants. We follow, to some extent, the exposition by
Carter, Kamada, and Saito in [CKS-3], generalizing on the way the case of surfaces in R4

to general n-knottings. The paper is organized as follows: at the beginning of the first
section we recall the definition of a rack and quandle and their (co)homology. Then we
give a short introduction to diagrams, DM , of knottings, and rack and quandle colorings
of DM . Furthermore, we analyze shadow rack and quandle colorings. In the second part
of the first section we define (n+ 1)- and (n+ 2)-chains associated to rack and quandle
colorings. In the second section we prove that our chains are, in fact, cycles. In the third
section we show that the set of colorings by a given quandle is a topological invariant.
The first step in this direction is given by comparing two definitions of the fundamental
rack and quandle of a knotting (one from the diagram and one abstract). In the fourth
section we show that the homology classes represented by cycles constructed for diagrams
of knottings are topological invariants. Here we carefully consider Roseman’s pass move
(generalized third Reidemeister move). We offer various versions of cycle invariants of
knottings in particular taking into account the fact that a quandle acts on the space
of quandle colorings. We complete Section 4 by expressing invariants in the language
of cohomology (cocycle invariants). In the fifth section we generalize previous results to
twisted homology and cohomology. In the sixth section we discuss in detail general posi-
tion projection of n-knotting and Roseman moves; this is a service section to the previous
considerations.

Finally, in Section 7 we give a short overview of a knotting in Fn+1×̄[0, 1], and in
Section 8 we discuss possibility of working with a Yang–Baxter operator in place of a
right self-distributive operation.

1.1. Quandles and quandle homology. We give here a short historical introduction
to distributive structures and to homology based on distributivity. The word distributivity
was coined in 1814 by François Servois. C. S. Peirce in 1880 emphasized the importance
of (right) self-distributivity in algebraic structures [Peir]. The first explicit example of a
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non-associative self-distributive system was given by Ernst Schröder in 1887 [Schr, Deh].
The detailed study of distributive structures started with the 1929 paper by C. Burstin
and W. Mayer1 [B-M]. The basic example they give is the same as Schröder’s, and was
later used for Fox 3-colorings:

∗ a b c
a a c b
b c b a
c b a c

The first book partially devoted to distributivity is by Anton Sushkevich, 1937 [Sus].

Definition 1.1. Let (X; ∗) be a magma, that is a set with binary operation, then:

(i) If ∗ is right self-distributive, that is, (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c), then (X; ∗) is called
a RDS or a shelf (the term coined by Alissa Crans in her Ph.D. thesis [Cra]).

(ii) If a shelf (X; ∗) satisfies the idempotent2 condition, a ∗ a = a for any a ∈ X, then
it is called a right spindle, or just a spindle (again the term coined by Crans).

(iii) If a shelf (X; ∗) has ∗ invertible,3 that is the map ∗b : X → X given by ∗b(a) = a∗b
is a bijection for any b ∈ X, then it is called a rack4.

(iv) If a rack (X; ∗) satisfies the idempotent condition, then it is called a quandle (the
term coined in Joyce’s Ph.D. thesis of 1979 [Joy-1]).

(v) If a quandle (X; ∗) satisfies (a ∗ b) ∗ b = a then it is called kei or an involutive
quandle. The term kei ( ) was coined in a pioneering paper by M. Takasaki in
1942 [Tak]5.

Three axioms of a quandle arise (see [Joy-2, Matv]) as an algebraic reflection of three
Reidemeister moves on link diagrams. Idempotent condition corresponds to the first move,
invertibility to the second, and right self-distributivity to the third move. In Fig. 1.2 we
illustrate how right self-distributivity is arising from the third Reidemeister move, R3,

1Walter Mayer is well known for Mayer–Vietoris sequence and for being assistant to Einstein
at Institute for Advanced Study, Princeton. Celestin Burstin (1888–1938) born in Tarnopol,
finished high school there in 1907, moved to Vienna, then to Minsk where he was a member of
the Belarusian National Academy of Sciences, and a Director of the Institute of Mathematics
of the Academy. In 1937, he was arrested on suspicion of activity as a spy for the Poland and
Austria. He died in 1938, when interrogated in a prison (in Minsk); rehabilitated March 2, 1956
[B-Mat, Mal, Mio].

2The term coined in 1870 by Benjamin Peirce [Pei], the father of Charles Sanders Peirce.
3If X is a set then the set Bin(X) of all binary operations on X forms a monoid with

composition ∗1∗2 given by a ∗1 ∗2b = (a ∗1 b) ∗2 b and the identity element ∗0 given by a ∗0 b = a.
Then the condition (ii) is equivalent to invertibility of ∗ in Bin(X). If ∗ is invertible, we write
∗̄ for ∗−1.

4The term wrack, like in “wrack and ruin”, of J. H. Conway from 1959, was modified to rack
in [F-R]). The main example considered in 1959 by Conway and Wraith was a group G with a
∗ operation given by conjugation, that is, a ∗ b = b−1ab [C-W].

5Mituhisa Takasaki worked at Harbin Technical University in 1940, likely as an assistant to
Kôshichi Toyoda. Both perished when Red army entered Harbin in 1945. Takasaki was con-
sidering keis associated to abelian groups, that is the Takasaki kei (or quandle) of an abelian
group H, denoted by T (H) satisfies a ∗ b = 2b− a.
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when we color (label) arcs of the diagram by elements of X according to the following
rule (Fig. 1.1):

*a  b

a

b

b

Fig. 1.1. Magma coloring of a crossing

*(a   c)

a

b

c

c

a    b

(a    b)

b   c

   *

*
*

a

b

c

c

*b   c

R 3

*(a   c) * (b   c)*

* c

Fig. 1.2. Distributivity from R3

(Co)homology of racks was introduced by Fenn, Rourke and Sanderson between 1990
and 1995, [FRS-1, Fenn]. Quandle (co)homology was constructed by Carter, Kamada,
and Saito (compare [CKS-3]). Their motivation was to associate to any link diagram and
its quandle coloring, elements (cocycles) of quandle cohomology. The case of n = 1 was
first implicitly considered in the Michael Greene’s Ph.D. thesis of 1997 [Gr]. In [CKS-3]
the detailed construction of (co)cycles is given for a knotting f : Mn → Rn+2 for n = 1 or
n = 2, and we start our paper from the definition for any n (essentially following [CKS-3]).
First we give after [CKS-3] the definition of rack, degenerate and quandle (co)homology.

Definition 1.2.

(i) For a given rack X let CRn (X) be the free abelian group generated by n-tuples
(x1, x2, . . . , xn) of elements of a rack X; in other words CRn (X) = ZXn = (ZX)⊗n.
Define a boundary homomorphism ∂ : CRn (X)→ CRn−1(X) by

∂(x1, x2, . . . , xn) = ∂(∗0) − ∂(∗) =
n∑
i=1

(−1)i(d(∗0)
i − d(∗)

i )

=
n∑
i=1

(−1)i((x1, . . . , xi−1, xi+1, . . . , xn)−(x1∗xi, x2∗xi, . . . , xi−1∗xi, xi+1, . . . , xn)).
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(CR∗ (X), ∂) is called a rack chain complex of X. Here we assume that CR0 (X) = 0
so ∂1 : C1 → C0 is a zero map.

(ii) Assume that X is a quandle, then we have a subchain complex CDn (X) ⊂ CRn (X)
generated by n-tuples (x1, . . . , xn) with xi+1 = xi for some i. The subchain complex
(CDn (X), ∂) is called a degenerated chain complex of a quandle X.

(iii) The quotient chain complex CQn (X) = CRn (X)/CDn (X) is called the quandle chain
complex. We have the short exact sequence of chain complexes:

0→ CDn (X)→ CRn (X)→ CQn (X)→ 0.

(iv) The homology of rack, degenerate and quandle chain complexes are called rack,
degenerate and quandle homology, respectively. We have the long exact sequence
of homology of quandles:

. . .→ HD
n (X)→ HR

n (X)→ HQ
n (X)→ HD

n−1(X)→ . . .

R. Litherland and S. Nelson [L-N] proved that the short exact sequence from (iii) splits
respecting the chain maps. α : CQn (X) → CRn (X) is given, in the notation introduced
in [N-P], by

α(x1, x2, x3, . . . , xn) = (x1, x2 − x1, x3 − x2, . . . , xn − xn−1)

(recall that in our notation (x1, x2 − x1, x3 − x2, . . . , xn − xn−1) = x1 ⊗ (x2 − x1) ⊗
(x3−x2)⊗. . .⊗(xn−xn−1) ∈ CRn (X)). In particular, α is a chain complex monomorphism
and HR

n (X) = HD
n (X)⊕ α∗(HQ

n (X)).
In a recent paper [P-P-2] it is demonstrated that degenerate homology of a quandle

can be reconstructed from the quandle (normalized) homology of the quandle by a version
of a Künneth formula.

We define cohomology in a standard way (we follow [CKS-3]).

Definition 1.3. For an abelian group A define the cochain complexes C∗W (X,A) =
Hom(CW∗ , A). Here, W = D,R,Q, so we describe all cases (degenerate, rack and quan-
dle). We define ∂n : Cn → Cn+1 in the usual way, that is for c ∈ CnW (X;A) we have

∂n(c)(x1, . . . , xn, xn+1) = c(∂n(x1, . . . , xn, xn+1)).

Cohomology groups are defined as usual as Hn
W (X,A) = ker ∂n/ im(∂n−1).

Another useful definition is that of right X-set, in particular the set of colorings of
knotting diagram by a quandle X will be a right X-quandle-set.

Definition 1.4. Let E be a set, (X; ∗) a magma and ∗ : E × X → E an action of X
on E (we can use the same symbol ∗ for operation in X and the action as it unlikely
leads to confusion). Then

(i) If (X; ∗) is a shelf and (e∗x1)∗x2 = (e∗x2)∗ (x1 ∗x2) then E is a right X-shelf-set.
(ii) If (X; ∗) is a rack and E a right X-shelf-set and additionally the map ∗b : E → E

given by ∗b(e) = e ∗ b is invertible then we say that E is a right X-rack-set. In the
case X is a quandle we will say that E is a right X-quandle-set.

The basic example of a quandle (resp. rack or shelf) right X-quandle- (resp. rack-,
shelf-) -set is E = Xn with (x1, . . . , xn) ∗ x = (x1 ∗ x, . . . , xn ∗ x). One should also
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add that for a given X-rack-set E one can define homology (as before) by assuming
Cn(X,E) = Z(E×Xn), and d(∗)

i (e, x1, . . . , xn) = (e∗xi, x1∗xi, . . . , xi−1∗xi, xi+1, . . . , xn).
If E has one point, so the action is trivial, we reach exactly homology of Definition
1.2(i). In the standard definition we assume C0(X,E) = 0, but here more natural is an
augmented version C̃0(X,E) = ZE, and ∂

(∗)
1 (e, x) = e ∗ x, and ∂

(∗0)
1 (e, x) = e, with

H̃0(X,E) a free abelian group generated by orbits of the action of X on E.

Observation 1.5. The chain groups Cn(X) = ZXn of a rack chain complex are
X-rack-sets. Furthermore, the action ∗x : Cn(X) → Cn(X), given by ∗x(x1, . . . , xn) =
(x1, . . . , xn) ∗ x = (x1 ∗ x, . . . , xn ∗ x), is a chain map for any x, inducing the identity on
homology. It is a well know but important fact (see e.g. [CJKS, N-P]) and we use it in
Theorems 4.4, 4.8, and 5.5. To prove this fact we use chain homotopy (−1)n+1hx : Cn →
Cn+1, where hx(x1, . . . , xn) = (x1, . . . , xn, x). We check directly that ∂n+1(−1)n+1hx +
(−1)nhx∂n = Id−∗x. If we consider ∂T = t∂(∗0) − ∂(∗), as is the case in twisted rack or
quandle homology, we see that ∗x induces t · Id on homology. We use it in Definition 5.3.

We need yet another observation that if X is a quandle and E is an X-quandle-set
then X t E has also a natural quandle structure.

Observation 1.6.

(i) Let (X; ∗) be a shelf and E an X-shelf-set (with a right action of X on E also
denoted by ∗), then X t E is also a shelf with ∗ operation a ∗ e = a for any
a ∈ X t E, and e ∈ E. Furthermore, if (X; ∗) is a rack (resp. spindle, or quandle)
then (X t E; ∗) is also a rack (resp. spindle, or quandle). Then we observe that a
chain complex Cn(X,E) is a subchain complex of Cn(X t E).

(ii) If X is a one element set, say X = {x}, then E instead of being a trivial shelf
can be a shelf (or a rack) with e1 ∗ e2 = e1 ∗ x which complemented by the rule
x ∗ x = x = x ∗ e makes E t {x} into a shelf (resp. rack).

Proof. (i) It is a direct exercise so we demonstrate only that (E t X; ∗) is a shelf. We
have

(a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) for a, b, c ∈ X as (X; ∗) is a shelf.(1)
= (a ∗ c) ∗ (b ∗ c) for a ∈ E, b, c ∈ X as E is an X-shelf-set.(2)
= a ∗ c for b ∈ E and also we have (a ∗ c) ∗ (b ∗ c) = a ∗ b as b ∗ c ∈ E.(3)
= a ∗ b for c ∈ E and also we have (a ∗ c) ∗ (b ∗ c) = a ∗ b.(4)

(ii) Let f : E t {x} → E t {x} where f(u) = u ∗ x (in particular f(x) = x, then

(u1 ∗ u2) ∗ u3 = f(f(u1)) = (u1 ∗ u3) ∗ (u2 ∗ u3) for any u1, u2, u3 ∈ E t {x}.

1.2. Presimplicial module and a weak simplicial module. We follow here [Lod,
Prz-1] and introduce the notion of a presimplicial and weak simplicial module. This will
simplify our calculation and provide a language for visualization.

Definition 1.7. A weak simplicial module (Mn, di, si) is a collection of R-modules Mn,
n ≥ 0, together with face maps, di : Mn →Mn−1 and degenerate maps si : Mn →Mn+1,
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0 ≤ i ≤ n, which satisfy the following properties:

(1) didj = dj−1di for i < j.

(2) sisj = sj+1si, 0 ≤ i ≤ j ≤ n,

(3) disj =
{
sj−1di if i < j

sjdi−1 if i > j + 1,
(4′) disi = di+1si.

(Mn, di) satisfying (1) is called a presimplicial module and leads to the chain complex
(Mn, ∂n) with ∂n =

∑n
i=0(−1)idi.

If (4′) is replaced by a stronger condition

(4) disi = di+1si = IdMn

then (Mn, di, si) is a (classical) simplicial module.

The following basic lemma will be used later:

Lemma 1.8. Let (Mn, di) be a presimplicial module then the map d0d0 : Cn → Cn−2 is
a chain map, chain homotopic to zero. In particular, if d0d0 = 0 then (−1)nd0 is a chain
map.

Proof. We think of d0 : Cn → Cn−1 as a chain homotopy and we have:

d0∂n + ∂n−1d0 = d0

n∑
i=0

(−1)idi +
n−1∑
i=0

(−1)idid0

= d0d0 +
n∑
i=1

(−1)i(d0di − di−1d0) (1)= d0d0.

In particular, if d0d0 = 0 we have (−1)nd0∂n = (−1)n−1∂n−1d0.

For us it is important that rack and quandle homology can be described in the lan-
guage of weak simplicial modules:

Proposition 1.9 ([Prz-1]).

(i) Let (X; ∗) be a rack, Cn = ZXn, d(∗0)
i : Cn → Cn−1 be given by d(∗0)

i (x1, . . . , xn) =
(x1, . . . , xi−1, xi+1, . . . , xn), and d(∗)

i : Cn → Cn−1 be given by d(∗)
i (x1, . . . , xn) =

(x1 ∗ xi, . . . , xi−1 ∗ xi, xi+1, . . . , xn), and furthermore di = d
(∗0)
i − d

(∗)
i , then

(Cn(X), d(∗0)
i ), (Cn(X), d(∗)

i ), and (Cn(X), di) are presimplicial modules. (We have
here shift by one comparing to Definition 1.7, that is we start from 1 not from 0,
but it is not important in our considerations).

(ii) Assume now that (X; ∗) is a quandle and degeneracy maps si : Cn(X)→ Cn+1(X)
are given, as before, by si(x1, . . . , xn) = (x1, . . . , xi−1, xi, xi, xi+1, . . . , xn). Then
(Cn(X), d(∗0)

i , si), (Cn(X), d(∗)
i , si), and (Cn(X), di, si) are weak simplicial modules.

Remark 1.10.

(i) The homology related to (Cn(X), d(∗)
i ) is called one term distributive homology and

it is studied in [Prz-1, P-S, P-P-1, P-P-2, CPP].



258 J. H. PRZYTYCKI AND W. ROSICKI

(ii) We define the trivial quandle (X; ∗0) by a ∗0 b = a. Then indeed we have

d
(∗0)
i (x1, . . . , xn) = (x1 ∗0 xi, . . . , xi−1 ∗0 xi, xi+1, . . . , xn)

= (x1, . . . , xi−1, xi+1, . . . , xn).

(iii) Notice that d(∗)
1 = d

(∗0)
1 so d1 = d

(∗0)
1 − d(∗)

1 = 0, and this is the reason why we
could start summation in Definition 1.2 from i = 2 (but ideologically it is better to
start summation from i = 1).

(iv) Let γn = d
(∗)
0 : Cn → Cn−1, that is γ(x1, x2, . . . , xn) = (x2, . . . , xn), then (−1)nγn

is a chain map in (Cn, ∂n), by Lemma 1.8 (e.g. [CJKS, N-P]).

1.3. Codimension 2 embedding, lower decker set. We introduce here, following
[CKS-3, Kam-1], the language needed to define quandle colorings and (co)cycle invariants
in codimension 2. LetM = Mn be a closed smooth n-dimensional manifold and f : M →
Rn+2 its smooth embedding which is called a smooth knotting (or just knotting). Define
π : Rn+2 → Rn+1 by π(x1, . . . , xn+1, xn+2) = (x1, . . . , xn+1) to be a projection on the
first n+ 1 coordinates. The projection of the knotting is the set M∗ = πf(M). Crossing
set (or singularity set) D∗ of the knotting, is the closure in M∗ of the set of all points
x∗ ∈M∗ such that (πf)−1(x∗) contains at least two points, that is

D∗ = closure
({
y ∈ Rn+1 ∣∣ |π−1(y) ∩M | > 1

})
.

We define the double point set D = (πf)−1(D∗) (or sometimes as (π)−1(D∗) if we need it
to be a subspace of Rn+2). Let f : M → Rn+2 be a knotting which is in general position
with respect to the projection π : Rn+2 → Rn+1. The precise definition is in Section 6
(Definition 6.1), here we only use the basic notions:

D∗ is (n− 1)-dimensional stratified complex. Its (n− 1)-dimensional strata consist of
transverse double points (double point set strata ∆1). The crossing set D∗ divides πf(M)
into pieces. Each piece (connected component of πf(M) − D∗) is an open n-manifold
embedded in Rn+1 consisting of regular points of πf(M), which is called open regular
sheet or n-semi-region of M∗. Regular sheets are 2-sided (even if we allow M to be
nonorientable [Kam-1]).

The lower decker set D− is the closure of the subset of pure double points which are
lower in the projection (that is with respect to the last coordinate of Rn+2). Similarly, the
upper decker set D+ is the closure of the subset of pure double points which are higher in
the projection. M is cut by D− into the set of n-dimensional regions (n-regions) denoted
by R, that is R is the set of connected components of M −D− (notice that πf restricted
to M −D− is an embedding and that the image of an n-region can contain several open
regular sheets (semi-regions)).

The diagram DM of a knotting with a general position projection is the knotting
projection M∗ together with “over under” information for the crossing set. In other
words, it is M∗ with D+ and D− given.

1.4. Quandle colorings, and quandle shadow coloring. We define here, after
[CKS-3], the notion of quandle coloring and quandle shadow coloring of diagrams of
knottings ([CKS-3] gives only definition in dimension n ≤ 2 but generalization is natural
and it is implicit in the work of Fenn, Rourke and Sanderson [F-R, FRS-2]). In [P-R] the
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core coloring was considered for any n. We assume in the paper (unless otherwise stated)
that the considered n-dimensional manifold M is oriented thus the normal orientation
(co-orientation) of every open sheet of M∗ is well defined6.
Definition 1.11 (magma coloring). Fix a magma (X; ∗). Let f : M → Rn+2 be an
n-knotting, π : Rn+2 → Rn+1 a regular projection, and DM the knotting diagram. Let
R be the set of n-regions of M cut by lower decker set. We define a magma coloring
of a diagram DM (or a pair (M,π)) as a function φ : R → X satisfying the following
condition: ifR1 andR2 are two regions separated by n-dimensional upper decker regionR3
and the orientation normal to R3 points from R1 to R2, then φ(R1) ∗ φ(R3) = φ(R2);
compare Fig. 1.3. Coloring of n-regions leads also to coloring of open sheets of the diagram
DM of the knotting. Through the paper we often refer to this as coloring of a knotting
diagram. We denote by ColX(DM ) the set of colorings of DM by X, and by colX(DM )
its cardinality. Note that the definition is not using any properties of ∗; only when we will
demand invariance of colX(DM ) under various moves on DM , we will need some specific
properties of ∗.

R  2

1R  R  2

R  3

(R  )32 *(R  )=    (R  )1(R  )1

(R  )3

(R  )1 (R  )3

(R  )3*(R  )1
1R  

R  3

2(R  )=    

Fig. 1.3. Rules for magma (e.g. quandle) coloring for n = 1, 2

If we assume that (X; ∗) is a shelf then the set ColX(DM ) is a right X-shelf-space with
an action of X on ColX(DM ) given by (φ∗x)(R) = φ(R)∗x for any region R ∈ R. By the
right self-distributivity of ∗ we have (φ∗x)(R1)∗(φ∗x)(R3) = (φ(R1)∗x)∗(φ(R3)∗x) distr=
(φ(R1) ∗ φ(R3)) ∗ x = φ(R2) ∗ x = (φ ∗ x)(R2).

Before we define shadow coloring it is useful to notice that rack coloring of sheets
of DM allows unique coloring of any closed path in Rn+1 in a general position to DM ,
as long as a base point is colored (Lemma 1.12). In a preparation for the lemma we need
the following:

Fix a rack (X, ∗) and an element q0 ∈ X. Let t0 < t1 < . . . < tk < tk+1 be points
on the line R. Each point ti (1 ≤ i ≤ k) is equipped with a ±1 framing, according

6In the case of M unorientable, we can work with involutive quandle (kei) X and develop the
theory of colorings and (co)-cycle invariants. I was informed by Seiichi Kamada (at Lafayette,
November 7, 2013) that his symmetric quandle can be used to define fundamental coloring of a
knotting Mn → Rn+2 with unorientable Mn and then it can be used to construct the (co)-cycle
invariants stronger from that given by a kei. The symmetric quandle is a quandle with an
involution ρ : X → X such that ρ(x ∗ y) = ρ(x) ∗ y and x ∗ ρ(y) = x∗̄y. For a kei the involution
is the identity [Kam-2].
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to the convention:
it
+

,
it . Then any function φ : {t1, . . . , tk} → X

extends uniquely to the function φ̃ : [t0, tk]→ X with φ̃(t0) = q0 by the following rule. If
a ∈ [ti−1, ti] and b ∈ [ti, ti+1] then

φ̃(b) =
{
φ̃(a) ∗ φ(ti) if the framing at ti is positive
φ̃(a) ∗̄ φ(ti) if the framing at ti is negative.

In particular, φ̃(tk+1) = (q0 ∗1 φ(t1)) ∗2 · · · ∗k φ(tk), where ∗i = ∗ if the framing of ti
is positive and ∗i = ∗̄ if the framing of ti is negative. Finally we can apply the above
to an arc α : [t0, tk+1] → Rn+1 in a general position with respect to DM with some
X-coloring φ, and which cuts DM at k points α(t1), . . . , α(tk). The framing of points ti
(1 ≤ i ≤ k) is yielded by co-orientation of DM and points α(ti). We can identify φ(t)
with φ(α(ti)), thus by above φ can be extended to the function φ̃ : [t0, tk+1] → X. Now
we are ready to prove that:

Lemma 1.12. If α : [t0, tk+1] → Rn+1 is a closed path, that is α(t0) = α(tk+1), then
φ̃(α(t0)) = φ̃(α(tk+1)).

(R) 

0
q  =   ( (t  )) 0

R  

(R) q
0*

Fig. 1.4. A path moving for and back through the n-sheet (q0 ∗ φ(R)) ∗̄ φ(R) = q0

Proof. Using the fact that Rn+1 is simple connected, we can contract α to a base point
α(t0), and we can put contracting homotopy in a general position with respect to DM .
The proof is by induction on the number of critical points of contracting homotopy. The
critical points are either cancelling a piece of the path going forth and back, or crossing
a double point strata. In the first case if we start from the color a and cross color b,
forth and back, thus we get a color (a ∗ b) ∗̄ b or (a ∗̄ b) ∗ b which is a by invertibility
of ∗. In the case when isotopy is crossing a double point set, we use the fact that double
point crossing looks like classical crossing multiplied by Rn−1, and the interesting case
is when the closed path is below sheets it crosses. The situation can be illustrated by
using classical crossing and coherence of coloring follows from right distributivity and
invertibility of ∗, see Figures 1.4 and 1.5.
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q
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q
1

q
3*

  (t   )   
(  (t   ))=q   

0

0

q
2=

q
0* q

3

q
1

0

q
3

q
1

q
3*

1
(q q   )

0* * q
3

  (t   )   
(  (t   ))=q   

0

0

q
2=

Fig. 1.5. A path is crossing double point stratum:
(
((q0 ∗ q3) ∗ q2) ∗̄ q3

)
∗̄ q1

=
(
((q0 ∗ q3) ∗ (q1 ∗ q3)) ∗̄ q3

)
∗̄ q1 =

(
((q0 ∗ q1) ∗ q3) ∗̄ q3

)
∗̄ q1 = (q0 ∗ q1) ∗̄ q1 = q0

Definition 1.13 (magma shadow coloring). A shadow coloring of a knotting diagram
(extending the given coloring φ) is a function φ̃ : R̃∪R → X, where R̃ is the set of (n+1)-
dimensional regions(chambers7) of Rn+1−πf(M) satisfying the following condition. If R1
and R2 are n+ 1 regions (chambers) separated by n-dimensional region (regular sheet) α
where the orientation normal of α points from R1 to R2, then φ̃(R1) ∗ φ̃(α) = φ̃(R2) and
φ̃ restricted to the set of n-dimensional regions is a given coloring φ (compare [CKS-3]
and Fig. 1.6 for n = 1 or 2). Again the definition works for any binary operation but if
(X; ∗) is a rack, then any coloring φ and a constant q0 chosen for a fixed (n+1)-chamber,
R0, yield the unique extension to shadow coloring φ̃ so that φ̃(R0) = q0; this follows from
Lemma 1.12.8 We denote by Colsh,X(DM ) the set of all shadow colorings of (Rn+1, DM )
by X and by colsh,X(DM ) its cardinality.

7We should appreciate here, not that accidental, analogy to Weyl chambers in representation
theory of Lie algebras. Thus we use the term chamber throughout the paper.

8We can also see this important property, as follows: consider a small trivial circle Tc in a
chosen chamber Rb of Rn+1 − πf(M) let T be the boundary of a regular neighborhood of Tc,
thus T = S1 × Sn−1. We can extend coloring φ to M ∪ T by coloring T by a fixed color q0.
Then we isotope the circle Tc (and T ) so that it is always below f(M) part but it touches every
chamber of Rn+1− πf(M). Now having initial chamber colored by q0 any other chamber is now
colored by an appropriate color of part of T in the chamber. Unlike in approach using Lemma
1.12, we use here the fact that Roseman moves on a diagram are preserving colorings by a rack
(see Theorem 3.4).
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1R  R  2

R  3

(R  )1 (R  )3

(R  )3*(R  )1

R  3

(R  )0

(R  )1

(R  )32 *(R  )=    (R  )1

* (R  )0(R  )
1

(R  )3*(R )0 (R  )3*(R  )1* (R  )0(R  )
1

R  0
(R  )0(R  )3

2(R  )=    

* 3(R  ) =

*

Fig. 1.6. Quandle shadow coloring for n = 1, 2

Similarly as in non-shadow case if we assume that (X; ∗) is a shelf then the set
Colsh,X(DM ) is a right X-shelf-space with an action of X on Colsh,X(DM ) given by
(φ̃ ∗ x)(R) = φ̃(R) ∗ x for any region or chamber R.
Remark 1.14. A shadow coloring of n-knotting diagram can be interpreted as a special
case of coloring in dimension n + 1. To this aim we consider the (n + 1)-dimensional
manifold M̃ = (Mn × R) t Rn+1 embedded in Rn+3 as follows: Let f̃ : M̃ → Rn+3

with f̃(m,x) = (f(m), x) and f̃(x1, . . . , xn+1) = (x1, . . . , xn+1, h, 0), where for f(m) =
(f1(m), . . . , fn+2(m)) we assume h ≤ fn+2(m) for any m ∈Mn (in other words, Rn+1 is
embedded below Mn). The projection π̃ : Rn+3 → Rn+2 is defined as π × Id. We get the
diagram DM̃ = π̃f̃(M̃) = (DM × R) ∪ (Rn+1 × {0}) in Rn+2. The points of multiplicity
n + 1 in DM gives rise to points of multiplicity n + 2 in DM̃ , and each shadow coloring
of (Rn+1, DM ) gives rise to a coloring of DM̃ (also the (shadow) chain cn+2(DM ) gives
rise to the chain cn+2(DM̃ ) as will be clear in the next subsection). As we do not use
this remark later, we should not worry that the resulting manifold M̃ is not compact
(otherwise we need to consider knotting up to isotopy with compact support).
Observation 1.15. As noted by S. Kamada, one can consider shadow coloring φ̃ also
in the case of (X; ∗) a rack and E an X-rack-set. In this case we color the chambers of
Rn+1 −DM by elements of E with a natural convention that if R1 and R2 are chambers
separated by n-dimensional region α where the orientation normal of α points from R1
to R2, then φ̃(R1) ∗ φ̃(α) = φ̃(R2). One can also show, using Lemma 1.12 or footnote 8,
that if we take φ′(R0) = q0 for some q0 ∈ E then φ̃ is uniquely extendable from coloring
of DM . The reason is that in place of X and E we can consider a rack X t E as in
Observation 1.6(i).

1.5. (n + 1)- and (n + 2)-chains of diagrams of knotting. We show in this part
how to any knotting diagram DM given by πf : Mn f→ Rn+2 π→ Rn+1 and a shelf (X; ∗)
associate two chains of dimension (n+1), and (n+2) in rack (and quandle) chain groups
CWn+1(X) and CWn+2(X) respectively (W = R or D or Q, that is Rack, Degenerate or
Quandle).

We start from the classical theory in dimensions n = 1.
Carter, Kamada, and Saito noticed in 1998 that if we color a classical oriented link

diagram, D, by elements of a given quandle X and consider a sum over all crossings of D
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of pairs in X2, ±(q1, q2) according to the convention of Fig. 1.7 then the sum has an
interesting behavior under Reidemeister moves.

x 0

1 2*q       q   
2

p p

3 1 2

+

q

1q x 0

1 2* 2

1

2 1 2

3 0 21

2 2

q       q   q

q

1
c  (p)= −(q  ,q  )

0
c  (p)= −(q  ,q  ,q  )c  (p)=(q  ,q  ,q  )

c  (p)=(q  ,q  )

Fig. 1.7. The contribution to the 2-chain is (q1, q2) for a positive crossing
and −(q1, q2) for a negative crossing; in the case of the 3-chain

for a shadow coloring, we have (q0, q1, q2) and −(q0, q1, q2), respectively

This led them to define in 1998 a 2-cocycle invariant and relate it to rack homology
defined between 1990 and 1995 by Fenn, Rourke, and Sanderson. Because the first Rei-
demeister move is changing the sum by ±(x, x) they were assuming that (x, x) should be
equivalent to zero (so (x, x) should represent degenerate element). The 3-cocycle of the
shadow X-colorings was motivated by [R-S] and developed in [CKS-1] (compare [CKS-3],
page 154). In particular, they noted that the 3-chain constructed with convention of
Fig. 1.7, that is c3(D) =

∑
p∈crossings sgn(p)c3(p), is a 3-cycle and Reidemeister moves

preserve homology class of c3(D).
We define, in this subsection, the chains cn+1(DM , φ) and cn+2(DM , φ̃) for any dia-

gram DM of a knotting M and chosen colorings φ and φ̃ (the fact that they are cycles
is proven in Section 2, Theorem 2.1, and topological invariance of their homology via
Roseman moves is proven in Section 4, Theorem 4.1). To make the general definition we
need some conventions and notation concerning a crossing of multiplicity (n + 1) in a
diagram of an n-knotting.

The sign of a crossing of multiplicity (n + 1) is chosen so that it agrees with the
definition of the sign of a crossing in a classical knot theory. We say that the sign of p
is positive if n + 1 normal vectors to n + 1 hyperplanes intersecting at p listed starting
from the top (that is the normal vector to the highest hyperplane is first) form a positive
orientation of Rn+1; otherwise the sign of p is equal to −1. The source chamber R0 of
Rn+1 − πf(M) adjacent to p is the region from which normals of hyperplanes points
(compare page 151 of [CKS-3]).

Definition 1.16 ((n+1)-chain). Let f : M → Rn+2 be an n-knotting, π : Rn+2 → Rn+1

a regular projection, and DM the knotting diagram.

(i) Fix a quandle X and a coloring φ : R → X. Let p be a crossing of multiplicity n+1
of DM . We define a chain cn+1(p, φ) ∈ Cn+1(X) by

cn+1(p) = sgn(p)(q1, . . . , qn+1) where (q1, . . . , qn+1) is obtained as follows:

We consider the source region, say R0, around p and (q1, . . . , qn+1) are colors of
hyperplanes intersecting at p around R0 listed in the order of hyperplanes from the
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lowest to the highest (see Fig. 1.8 for the case of n = 2). We often write cn+1(p)
for cn+1(p, φ) if φ is fixed.

(ii) The chain associated to the diagram and fixed coloring is the sum of above chains
taken over all crossings of multiplicity n+ 1 of DM :

cn+1(DM , φ) =
∑

p∈crossings
cn+1(p, φ).

(iii) Finally, if X is finite, we sum over all X colorings of DM so the result is in the
group ring over Cn+1(X) (in fact, it is in the group ring of Hn+1(X) but this will
be proven later). It is convenient here to use multiplicative notation for chains so
that cn+1(DM , φ) = Πp(q1, . . . , qn+1)sgn(p) and then

cn+1(DM ) =
∑
φ

cn+1(DM , φ) =
∑
φ

∏
p

(q1, . . . , qn+1)sgn(p).

(iv) If X is possibly infinite, in place of a sum we consider the set with multiplicity

cset
n+1(DM ) = {cn+1(DM , φ)}φ∈ColX(DM ).

2q =( * ) *1 2 3q q q

( * ) *3 ( * )21 3q q q q

( )( * * ) *0 1 2 3q q q q

normal vectors

1q

0q
3q

Fig. 1.8. Multiplicity three point in M3 knotting and quandle coloring;
the point yields the 3-chain (q1, q2, q3) and the 4-chain (q0, q1, q2, q3);

normal vectors yield here positive orientation

Definition 1.17 ((n + 2)-(shadow) chain for DM ). Here we generalize the previous
definition to construct (n+ 2)-chains from shadow colorings related to link diagram. We
color not only regions of M (as in Definitions 1.11, 1.16) but also (n + 1)-chambers of
Rn+1 cut by πf(M). As before we take the product of signed chains associated to every
multiplicity (n + 1)-crossing point, p and sum these products over all shadow colorings.
Thus we start from cn+2(p) = sgn(p)(q0, q1, . . . , qn+1), where q0 is the color of the source
chamber R0. In effect, if X is finite then

cn+2(DM ) =
∑
φ̃

cn+2(DM , φ̃) =
∑
φ̃

∏
p

(q0, q1, . . . , qn+1)sgn(p).
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If X is possibly infinite, in place of a sum we consider the set with multiplicity

cset
n+2(DM ) = {cn+2(DM , φ̃)}φ̃∈Colsh,X(DM ).

We illustrate the case of n = 1 in Fig. 1.7, and the case of n = 2 in Fig. 1.8.

For M which is not connected we can use a trick of [CENS] to have more delicate
chains. They behave nicely under Roseman moves but they are not cycles. Thus we
can use them to produce cocycle invariants but not cycle invariants of knottings (Theo-
rem 4.8(iii)).

Definition 1.18. LetM = M1∪M2∪. . .∪Mk. We define an (n+1)-chain cn+1(DM , φ, i)
by considering only those crossings of multiplicity (n + 1) whose bottom sheet belongs
to Mi. We denote the set of such (n+ 1)-crossings by Ti. Then we define

cn+1(DM , φ, i) =
∑
p∈Ti

cn+1(p, φ).

2. (n + 1)- and (n + 2)-cycles for n-knotting diagrams. We show in this section
the two chains cn+1(DM , φ) and cn+2(DM , φ̃) constructed in Subsection 1.5 are, in fact,
cycles.

Theorem 2.1. The chains cn+1(DM , φ) and cn+2(DM , φ̃) are cycles in CQn+1(X) and
CQn+2(X) respectively.

The main idea of the proof is to analyze points of multiplicity n + 1 and n + 2 in
M∗ ∈ Rn+1, and associated (n + 1)- and (n + 2)-chains in ZXn+1 and ZXn+2, and to
identify face maps of the chains, d(∗0)

i and d
(∗)
i , as associated to arcs of multiplicity n.

Then by Roseman theory (see Section 6), such an arc starts at a point of multiplicity
n + 1 (say p1) and ends either at another point of multiplicity n + 1 (say p2) or at a
singular point (of multiplicity less than n). In the first case, we prove that there are
proper cancellations of face maps associated to the arc. In the second case (which may
happen for n > 1), the colorings of the arc give degenerate chains which can be ignored
in CQn+1(X) and CQn+2(X). Details are given in the following subsections, starting from
the classical case of n = 1.

2.1. Shadow 3-cycle for n = 1. We start from the known case of n = 1 but present
our proof in a way which will allow natural generalization for any n. We show in detail in
this subsection that the 3-chain constructed with convention of Fig. 1.7, that is c3(D) =∑
p∈crossings sgn(p)c3(p), is a 3-cycle.
We start from 2 crossings p1 and p2 connected by an arc colored by the pair qsh(arc) =

(q0, b) in our convention (that is the color of the arc is b and the shadow color of the
source region (chamber) close to the arc is q0; see Definition 2.2). In our examples the
horizontal line is first above and then below the other arcs, and it will be denoted as pair
of type (2, 1) later in generalization. For a reader who would like to visualize here the
general case, we stress that the arc connecting crossings p1 and p2 will be an arc of points
of multiplicity n (intersection of n hyperplanes in Rn+1) connecting points of multiplicity
n+ 1.

Now consider our four cases.
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Fig. 2.1. In all cases the connecting arc has label qsh(arc) equal to (q0, b);
the multi-labelling qsq is explained in full generality in Definition 2.2.

To describe precisely the outcome of our pictures we denote the shadow 3-chain of
our diagram by c3(D), the contribution of the first crossing p1 by c3(p1), the contribu-
tion of the second crossing, p2, by c3(p2), and c3(p1, p2) = c3(p1) + c3(p2) denotes the
contribution of both crossings. We also use the notation of Fig. 2.2 which is the special
case of Definition 2.2.

q
0

0
q     b*

b
arc

sh
q    (arc)=(q  ,b)

0

Fig. 2.2. Convention for arc coloring, qsh(arc) = (q0, b)

Thus in the first case we have

c3(p1) = (q0, a, b), c3(p2) = (q0, b, c), and c3(p1, p2) = (q0, a, b) + (q0, b, c).

We have then

d
(∗0)
2 (c3(p1)) = d

(∗0)
2 (q0, a, b) = d

(∗0)
3 (q0, b, c) = (q0, b) = qsh(arc).

Thus proper pieces of ∂(p1) and ∂(p2) cancel out in c3(p1, p2). This will be the case
always, and below we shortly analyze other cases:

In the second case we have

c3(p1) = (q0, a, b), c3(p2) = −(q′′0 , w, c), and c3(p1, p2) = (q0, a, b)− (q′′0 , w, c),

where b = w ∗ c. Then

d
(∗0)
2 (q0, a, b) = d

(∗)
3 (q′′0 , w, c) = (q0, b) = qsh(arc).

In the third case

c3(p1) = −(q′0, a, b), c3(p2) = −(q′′0 , w, c), and c3(p1, p2) = −(q′0, a, b)− (q′′0 , w, c).

Then
d∗2(q′0, a, b) = d∗3(q′′0 , w, c) = (q0, b) = qsh(arc).



COCYCLE INVARIANTS OF EMBEDDINGS OF MANIFOLDS 267

Finally, in the fourth case

c3(p1) = −(q′0, a, b), c3(p2) = +(q0, b, c), and c3(p1, p2) = −(q′0, a, b) + (q0, b, c).

Then
d

(∗)
2 (q′0, a, b) = d

(∗0)
3 (q0, b, c) = (q0, b) = qsh(arc).

This proves that c3(D) is a cycle in C3(X), as ∂ = ∂(∗0) − ∂(∗) =
∑3
i=2(−1)id(∗0)

i −∑3
i=2(−1)id(∗)

i . We did not consider all cases as we will argue in the general case that
all cases follows at once, however we illustrate one more case, of type (2, 2), that is the
horizontal line is above both crossings. We have

c3(p1) = −(q′0, a, b), c3(p2) = −(q0, c, b), and c3(p1, p2) = −(q′0, a, b)− (q0, c, b).

Then:

d
(∗)
2 (q′0, a, b) = d

(∗0)
2 (q0, c, b) = (q0, b) = qsh(arc); as illustrated in Fig. 2.3.

0
q’ q

0 0
q’* aa c

−

=

b
−

Fig. 2.3. Two crossings of type (2, 2)

We also can work with a tangle diagram T in place of a link diagram D; then c3(T )
is not an absolute cycle, but we can work in the setting of relative chain (of (T, ∂T )). We
do not follow this idea here but it may be useful in many situations.

2.2. The general case of (n + 1)-and (n + 2)-cycles. For the general case we need
a notation for coloring of strata of a neighborhood of a crossing of multiplicity (n + 1)
in Rn+1 generalizing coloring and shadow coloring.

For a given vector w in Rn+1 let Vw be an (n + 1)-dimensional linear subspace or-
thogonal to w. For basic vectors e1 = (1, 0, . . . , 0), . . . , ei = (0, . . . , 0, 1, 0, . . . , 0), . . . ,
en+1 = (0, . . . , 0, 1), /we write Vi for Vei . We have

⋂n+1
i=1 Vi = (0, . . . , 0) = p and it is our

“model” singularity (crossing of multiplicity n + 1). In a standard way we associate to
this crossing the signum +1. If our system of hypersurfaces

⋃
Vi is a part of a knotting

diagram, the sign +1 would correspond to the situation V1 > V2 > . . . > Vn+1, that is Vi
above Vi+1 at the crossing. However, our convention, motivated by right self-distributivity,
makes more convenient assumption V1 < V2 < . . . < Vn+1 and then with our convention
the crossing p has the signum sgn(p) = (−1)n(n+1)/2.

We introduce two labellings (generalizing colorings and shadow colorings):

(i) q :
⋃
Vi → X ∪X2 ∪ . . . ∪Xn+1;

(ii) qsh : Rn+1 → X ∪X2 ∪ . . . ∪Xn+2.

The strata of the labelling of a point x depend on the “order of singularity”, that is, q(x)
(respectively qsh(x)) is an element of Xk (respectively Xk+1), where X is a fixed shelf
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and k = k(x) is the number of hyperplanes Vi to which x belongs (if x ∈ Rn+1−
⋃
Vi then

k(x) = 0). Both colorings are coherent because of right self-distributivity law in X. The
idea of coloring is that we choose a color, say q0, for a source region, R0, of Rn+1−

⋃n+1
i=1 Vi

(this will be part of qsh coloring, that is qsh(x) = q0 for x ∈ R0). Furthermore, we choose
colors q1, q2, . . . , qn+1 and if x ∈ R(s)

i where R(s)
i is the source sheet of Vi, then q(x) = qi

and qsh(x) = (q0, qi) ∈ X2.
With an assumption that Vi is always below Vi+1 in our considerations. we propagate

our colors according to our rules of coloring. Notice that we use only ∗ (never ∗̄) in our
coloring, so assumption that X is a shelf suffices here.

We describe this idea formally below.

Definition 2.2. Choose a shelf X and n+ 2 elements (q0, q1, . . . , qn, qn+1) in X.

(i) For x = (x1, . . . , xn, xn+1) ∈ Rn+1 −
⋃
Vi the label qsh(x) is defined to be q0 ∗ qi1 ∗

. . . ∗ qis where 0 < i1 < . . . < is are precisely these indexes for which xij > 1. In
particular, if for all i, xi < 0 (i.e. x is in the source sector), then qsh(x) = q0.

(ii) If x = (x1, . . . , xn, xn+1) has only one coordinate, say i-th, equal to zero (that is
x ∈ Vi but x /∈ Vj for j 6= i) then q(x) is defined to be qi ∗ qi1 ∗ . . . ∗ qis where
i < i1 < . . . < is are precisely these indexes for which ij > i and xij > 1. In
particular, if for all j such that j > i we have xj < 0, then q(x) = qi.

(iii) Let x = (x1, . . . , xn, xn+1) belong to exactly k hyperplanes, x ∈
⋂k
j=1 Vij , then

q(x) = (q(i1), . . . , q(ik)) ∈ Xk, where qij (x) = q(xij ) where xij is obtained from x

by replacing all coordinates equal to 0, but xij , by −1 (recall that xi1 = xi2 = . . . =
xik = 0 and other coordinates are different from 0).

(iv) If x ∈
⋃
Vi then qsh(x) is obtained from q(x) by qsh(x) = (qsh(x′), q(x)) where x′ is

obtained from x = (x1, . . . , xn) by replacing all 0 in the sequence by −1 (i.e. x′ is
a point in a source chamber). In particular, if q(x) = qi then qsh(x) = (q0, qi).

We can complete with this notation, the proof that cn+1(DM ) and cn+2(DM ) are
cycles.

Very schematic visualization of the general case is shown in Fig. 2.4 where the ver-
tical lines represent n-dimensional sheets of M∗ = fπ(Mn) with source colors a and c

respectively and horizontal line representing the line of intersection of n sheets (in Rn+1)
with the coloring b = q(arc) = (q1, . . . , qn).

q
0

p
1

Vvp
1

b=(q   ,...,q   )
1 n

a c

p
2

Vvp
2

Fig. 2.4. Connecting arc has label qsh(arc) = (q0, q(arc)) = (q0, b) = (q0, q1, . . . , qn)

We denote the position of the first vertical sheet as i(p1) and the second vertical
sheet by i(p2). The n + 2 chains corresponding to p1 and p2 depend on direction of
vertical vectors, np1 and np2 to vertical sheets Vvp1 and Vvp2 . We write ε(p1, p2) = 1 if
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the vector np1 points from p1 to p2 and 0 otherwise. Similarly ε(p2, p1) = 1 if the vector
np2 points from p2 to p1, and it is 0 otherwise. This notation is used to identify operation
∗0 and ∗ = ∗1. Then we have:

d
(∗ε(p1,p2))
i(p1) (q0, q1, . . . , qi(p1)−1, a, qi(p1), . . . , qn)

= d
(∗ε(p2,p1))
i(p2) (q0, q1, . . . , qi(p2)−1, b, qi(p2), . . . , qn).

Thus sgn(p1)(−1)i(p1) = −sgn(p2)(−1)i(p2) and in cn+2(p1, p2) the terms d(∗ε(p1,p2))
i(p1) and

d
(∗ε(p2,p1))
i(p2) cancel out. In conclusion, the (n+ 2)-chain cn+2(DM , φ̃) is a cycle.
The similar proof works for cn+1(DM , φ). The fact that cn+1(DM , φ) is a cycle follows

also from the following observation:

Observation 2.3. Consider the map γn : Cn(X) → Cn−1(X) given by cutting the first
coordinate, that is, γn(x1, x2, . . . , xn) = (x2, . . . , xn). Then by Lemma 1.8 (compare Re-
mark 1.10(iv)) the map (−1)nγ is a chain map for ∂(∗0) and ∂(∗) thus also for ∂ =
∂(∗0)−∂(∗). From definitions of cn+1 and cn+2, we have cn+1(DM , φ) = γn+2cn+2(DM , φ̃).
From this we conclude that if cn+2(DM , φ̃) is an (n + 2)-cycle then cn+1(DM , φ) is an
(n+ 1)-cycle.

In the next two sections we show that our cycles (and their sums) are topological
invariants. We will start from the fact that the spaces of colorings (and shadow colorings)
are topological invariants.

3. Topological invariance of colorings. The logic of the section is as follows: We
introduce here, following [Joy-2, F-R], two definitions of a fundamental rack or quandle
of a knotting, the abstract one and the concrete definition. The abstract definition of
the fundamental rack or quandle of a knotting is independent of any projection in the
similar way, as the fundamental group. In the concrete definition, for a given projection,
we get the concrete presentation of a fundamental rack or quandle from the diagram
using generators and relations in a way reminiscent of the Wirtinger presentation of the
fundamental group of a classical link complement. It was observed in [F-R, FRS-2] that
these definitions are equivalent using a general position argument. As a consequence we
see that a concrete rack and quandle colorings are topological invariants (independent
of a diagram) because in both cases abstract and concrete colorings are obtained from a
homomorphism from the fundamental object to X.

3.1. The fundamental rack and quandle of an n-knotting. The first definition we
give uses a knotting diagram. We follow Definitions 1.11 and 1.13, except that in place of
concrete chosen (X; ∗) we build a universal (called fundamental) object (magma, shelf,
rack or quandle).

Definition 3.1 (fundamental magma of a knotting diagram). Let f : M → Rn+2 be a
knotting, π : Rn+2 → Rn+1 a regular projection and DM related knot diagram.

(i) The fundamental magma X(DM ) = (X; ∗) is given by the following finite presenta-
tion. The generators of X are in bijection with the set of regions of M cut by lower
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decker set. Relations in (X; ∗) are given as follows: if R1 and R2 are two regions sep-
arated by n-dimensional upper decker region R3 (with variables, respectively, q1, q2
and q3) and the orientation normal to R3 points from R1 to R2, then q1 ∗ q3 = q2.9

(ii) If (X; ∗) is required to be a shelf we get a fundamental shelf of DM .
(iii) If (X; ∗) is required to be a rack we get a fundamental rack of DM .
(iv) If (X; ∗) is required to be a quandle we get a fundamental quandle of DM .
(v) Fix a quandle (X; ∗) and the knotting f : M → Rn+2, with regular projection

π : Rn+2 → Rn+1. The quandle (resp. rack) coloring of a diagram DM is a quandle
homomorphism from the fundamental quandle (resp. rack) X(DM ) to X.

The quandle (or rack) coloring described in Definition 3.1 is equivalent to Defini-
tion 1.11.

The fundamental shadow magma, shelf, rack and quandle of a knotting diagram are
defined analogously to that of coloring; we give a full definition so it is easy to refer to it.

Definition 3.2 (fundamental shadow magma of a knotting diagram). Let f : M → Rn+2

be a knotting, π : Rn+2 → Rn+1 a regular projection and DM related knot diagram.

(i) The fundamental shadow magma Xsh(DM ) = (X; ∗) is given by the following finite
presentation. The generators of X are in bijection with the set R∪Rcha where R is
the set of regions of M cut by lower decker set and Rcha is the set of chambers of
Rn+1−πf(M). Relations in (X; ∗) are given as follows: if R1 and R2 are two regions
separated by n-dimensional upper decker region R3 (with variables, respectively, q1,
q2 and q3) and the orientation normal to R3 points from R1 to R2, then q1 ∗q2 = q3.
Furthermore, if R̃1 and R̃2 are n+1 chambers separated by n-dimensional region α
where the orientation normal of α points from R̃1 to R̃2, and q̃1, q̃2, q̃3 are colors of
R̃1, R̃2 and α, respectively, then q̃1 ∗ q̃3 = q̃2.10

(ii) If (X; ∗) is required to be a shelf we get a fundamental shelf of DM .
(iii) If (X; ∗) is required to be a rack we get a fundamental rack of DM .
(iv) If (X; ∗) is required to be a quandle we get a fundamental quandle of DM .
(v) Fix a quandle (or a rack) (X; ∗) and the knotting f : M → Rn+2, with regular

projection π : Rn+2 → Rn+1. The quandle (resp. rack) shadow coloring of a dia-
gram DM is a quandle homomorphism from the fundamental quandle (resp. rack)
Xsh(DM ) to X.

Again, the quandle (or rack) shadow coloring described in Definition 3.2 is equivalent
to Definition 1.13.

Remark 3.3. If we assume that X(DM ) is the fundamental rack (or quandle) of a
diagram DM , then the presentation of the fundamental shadow rack Xsh(DM ) can be
obtained by adding one generator and no new relations (except that of rack (or quandle)

9Notice that however our definition of X(DM ) is not using any properties of ∗ but still for
n > 1 and a projection with a triple crossing point, colors involved in the crossing satisfy right
self-distributivity (see Fig. 1.8 where (q1 ∗ q2) ∗ q3 = (q1 ∗ q3) ∗ (q2 ∗ q3)).

10Notice that however our definition of Xsh(DM ) is not using any properties of ∗ but still
if there is a double crossing in the projection then colors involved in the crossing satisfy right
self-distributivity (see Fig. 1.6).
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relations). That is: Xsh(DM ) = {X(DM ), w | }. The new generator w is a color of an
arbitrary, but fixed, chamber of Rn+1 − DM . The presentation can be justified using
Lemma 1.12 or by a method described in footnote 8 to Definition 1.13.

We recall in the next subsection a projection free approach to the fundamental rack
and quandle of a knotting and use it to notice thatX(DM ) andXsh(DM ) are independent
of the concrete diagram.

3.2. Abstract definitions of a fundamental rack and quandle. Joyce, Fenn, and
Rourke [Joy-2, F-R] gave an abstract definition of the fundamental rack of a knotting,
independent of a projection and they noted that it is equivalent to the concrete definition
given in Subsection 3.1.

We follow here [F-R] in full generality, however we are concerned mostly with the case
of the ambient manifold W = Rn+2.

(i) Let L : M → W be a knotting (codimension two embedding). We shall assume
that the embedding is proper at the boundary if ∂M 6= ∅, that W is connected and that
M is transversely oriented in W . In other words we assume that each normal disk to M
in W has an orientation which is locally and globally coherent. The link is said to be
framed if there is given cross section (called framing) λ : M → ∂N(M) of the normal disk
bundle (the total space of the bundle is a tubular neighborhood of L(M) in W ). Denote
by M+ the image of M under λ. We call M+ the parallel manifold to M .

(ii) We consider homotopy classes Γ of paths in W0 = closure(W − N(M)) from a
point inM+ to a base point. During the homotopy the final point of the path at the base
point is kept fixed and the initial point is allowed to wander at will in M+.

(iii) The set Γ is a right π1(W0)-group-set, that is the fundamental group of a knotting
complement acts on Γ as follows: let γ be a loop in W0 representing an element g of the
fundamental group. If a ∈ Γ is represented by the path α then define a · g to be the class
of the composition path α ◦γ. We can use this action to define a rack structure on Γ. Let
p ∈M+ be a point on the framing image. Then p lies on a unique meridian circle of the
normal circle bundle. Let mp be the loop based at p which follows round the meridian
in a positive direction. Let a, b ∈ Γ be represented by the paths α, β respectively. Let
∂(b) be the element of the fundamental group determined by the loop β̄ ◦mβ ◦ β. (Here
β̄ represents the reverse path to β and mβ is an abbreviation for mβ(0) the meridian at
the initial point of β.) The fundamental rack of the framed link L is defined to be the set
Γ = Γ(L) of homotopy classes of paths as above with operation

a ∗ b = a · ∂(b) = [α ◦ β̄ ◦mβ ◦ β].

(iv) A rack coloring, by a given rack (X; ∗) is a rack homomorphism f : Γ(L) → X.
In a case of W = Rn+2 we give also down to earth definition from the link projection
(initially depending on the projection) (see Definition 1.11).

(v) If L is an unframed link then we can define its fundamental quandle: let Γq =
Γq(L) be the set of homotopy classes of paths from the boundary of the regular neigh-
borhood (N(M)) to the base point where the initial point is allowed to wander during
the course of the homotopy over the whole boundary. The rack structure on Γq(L) is
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defined similarly to that of Γ(L). Thus the fundamental quandle of L is the quotient of
the fundamental rack of L by relations generated by idempotency x ∗ x = x.

(vi) A quandle coloring, by a given quandle (X; ∗), is a quandle homomorphism
f : Γq(L)→ X.

Fiber of a normal
disk bundle

Fig. 3.1. Composition a · g where a is a class of an arc α and g is a class of a loop γ

ForW = Rn+2 (or Sn+2) our two definitions of the fundamental rack (or quandle) are
equivalent. If DM is a diagram of a knotting L : M → Rn+1 with the regular projection
π : Rn+2 → Rn+1 then we have a natural epimorphism Fq : Xq(DM ) → Γq(L) given as
follows: Let xH be a generator of Xq(DM ) corresponding to a sheet (region) H of DM .
Choose a base point of Rn+1 − πL(M) very high (call it ∞) and project it to a point
of H cutting ∂VM at some point mH , then we define Fq(xH) to be the class of a straight
line from mH to ∞. Similarly we define a rack epimorphism F : X(DM ) → Γ(L), by
extending Fq(xH) by starting from the point of M+ being on the same fiber disk of VM
as mH and connecting along the boundary of the disk to mH .
Theorem 3.4 ([F-R, FRS-2]).
(i) Two definitions of a fundamental rack (resp. quandle) of a (framed) n-link L : M →

Rn+2 coincide, the map F : X(DM ) → Γ(L) is a quandle isomorphism. In partic-
ular, Definition 3.1 (and equivalent 1.11) for racks and quandles are independent
of regular projection11 and give a finite presentation of the fundamental rack Γ(L)
(resp. quandle Γq(L)).

(ii) The fundamental shadow rack (resp. quandle) is independent of regular projection
thus it is well defined for a knotting n-link L : M → Rn+2; we denote it by Γsh(L)
(resp. Γsqh(L)).

(iii) The sets (X-quandle-sets) ColX(DM ) and ColX,sh(DM ) do not depend on the dia-
gram of a given linking M .

Proof. The statement and a sketch of a proof is given in [F-R] (Remarks (2) p. 37512) and
[FRS-2] (Lemma 3.4; p. 718). One can give also a proof using Roseman moves (starting
with the pass move S(c, n+ 2, 0) discussed in detail later in this paper).

11In quandle case we consider knottings up to (smooth) ambient isotopy (equivalently up to
Roseman moves), and in a rack case up to framed (smooth) ambient isotopy.

12Fenn and Rourke write in Remarks (2): A similar analysis can be carried out for an embedding
of Mn in Sn+2: we obtain a “diagram” by projecting onto Rn+1 in general position and regarding
top dimensional strata (n-dimensional sheets) as “arcs” to be labelled by generators and (n− 1)-
dimensional strata (simple double manifolds) as “crossings” to be labelled by relations. In general
position a homotopy between paths only crosses the (n− 1)-strata and a proof along the lines of
the theorem can be given that this determines a finite presentation of the fundamental rack.
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We also can conclude that the set Xsh(DM ) (in fact, X quandle set) of shadow color-
ings is a topological invariant. We use here Remark 3.3, namely, asX(DM ) is a topological
invariant, so is Xsh(DM ) = {X(DM ), w | }.

Remark 3.5. Theorem 3.4 should be understood as follows: If R is a Roseman move on
a diagram of n-knotting DM resulting in RDM , then there are natural X-rack isomor-
phisms (i.e. bijections preserving right action byX), R# : ColX(DM )→ ColX(RDM ) and
R̃# : ColX,sh(DM ) → ColX,sh(RDM ). Natural means here that outside a ball (tangle)
in which the move R takes place, the bijections R# and R̃# are identity. This raises
an interesting question: assume that after using a finite number of Roseman moves we
come back to the diagram DM . What automorphism of X-quandle-sets ColX(DM ) and
ColX,sh(DM ) we performed? Is it always an inner automorphism13. When it is the iden-
tity?

Corollary 3.6. The homology, HW
∗ (X(DM )) and HW

∗ (Xsh(DM )) of the fundamental
rack and the fundamental shadow rack are topological knotting invariants. M. Eisermann
proved that in the classical case a knot is nontrivial if and only if HQ

2 (X(K)) = Z, [Eis-1].
We can ask what we can say in a general case about HQ

n+1(X(DM )).

The presentation of X(DM ) gives the coloring of DM by the quandle X(DM ); we
call this the fundamental coloring and denote by φfund. Similarly, The presentation of
Xsh(DM ) gives the shadow coloring of DM by the quandle Xsh(DM ); we call this the
fundamental shadow coloring and denote by φ̃fund(DM ).

Corollary 3.7. The homology classes of cycles cn+1(DM , φfund) (cn+2(DM , φ̃fund),
resp.) are knotting invariants up to isomorphism of homology groups generated by an
automorphism of a fundamental quandle (fundamental shadow quandle, resp.). M. Eiser-
mann proved that in the classical case, the homology class of the fundamental cycle14 of
a nontrivial knot is a generator of HQ

2 (X(K)) = Z, [Eis-1].

4. Roseman moves are preserving homology classes of fundamental cycles.
We deal in this section with the main result of our paper, about (co)cycle invariants of
knottings. We start by describing precisely the case of a pass move, R, (generalization
of the third Reidemeister move), that is a move of type S(c, n + 2, 0) in notation of
[Ros-1, Ros-2]; see Section 6 (we write R ∈ S(c, n+ 2, 0)).

4.1. Colorings and homology under Roseman moves. Fix a quandle (X; ∗). We
already established bijection, for any Roseman move R between sets of colorings of DM

and the set of colorings of RDM , Theorem 3.4. We denote this bijection by R#, so
R# : ColX(DM ) → ColX(RDM ). In fact, R# is X-quandle-sets isomorphism, that is it
preserves the right multiplication by elements of X (i.e. R#(φ ∗ x) = R#(φ) ∗ x).

13If we change a base point in the definition of the fundamental rack we make an inner
automorphism on it (i.e. generated by X action) reflecting similarity with fundamental group),
[Joy-2].

14This class is called in [Eis-1] the orientation class of K.
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Theorem 4.1. For a fixed φ ∈ ColX(DM ) the cycles cn+1(DM , φ), cn+1(RDM , R#(φ))
are homologous in HQ

n+1(X). Similarly for φ̃ ∈ ColX,sh(DM ), the cycles cn+2(DM , φ̃),
cn+2(RDM , R#(φ̃)) are homologous in HQ

n+2(X).

The main, and, as we see later, essentially the only one nontrivial to check is the pass
move R of type S(c, n+ 2, 0).

Lemma 4.2. The pass move R ∈ S(c, n + 2, 0) preserves the homology class of cn+1(L)
and cn+2(L). To be precise, let φ be a fixed coloring of DM and R#(φ) the corresponding
coloring of RDM then the cycles cn+1(DM , φ) and cn+1(RDM , R#(φ)) are homologous in
HQ
n+1(X). Similarly for φ̃ ∈ Colsh,X(DM ), the cycles cn+2(DM , φ̃), cn+2(RDM , R#(φ̃))

are homologous in HQ
n+2(X).

Proof. We show the result for all possible types of pass moves (including all possible
co-orientation of sheets) at once. We start from n+2 sheets (hypersurfaces) in Rn+2 with
arbitrary co-orientation, intersecting in a point p, and the direction of time ~t in general
position to co-orientation vectors.
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q  (p)= (q  ,q  ,q  ,q  )
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Projections before and after move 

 normal coorientation vectors

and time vector

Fig. 4.1. From isotopy to pass move (n = 1 case)
c3(p1, p2, p3) = (q0, q2, q3)− (q0, q1, q3) + (q0, q1, q2) = ∂(∗0)(q0, q1, q2, q3)

c3(p′1, p′2, p′3) = (q0 ∗ q1, q2, q3)− (q0 ∗ q2, q1 ∗ q2, q3) + (q0 ∗ q3, q1 ∗ q3, q2 ∗ q3) = ∂(∗)(q0, q1, q2, q3)

Before we give technical details, we first use a simple visualization of our proof:
On each side of the move, say for t = −1 and t = 1, we have n + 2 crossings

(p1, . . . , pn+2) and (p′1, . . . , p′n+2) respectively. Each crossing represents the intersection



COCYCLE INVARIANTS OF EMBEDDINGS OF MANIFOLDS 275

of n + 1 sheets in Rn+1, that is, pi is the intersection of all sheets V1, . . . , Vn+2 but Vi
at t = −1, and p′i is the intersection of all sheets but Vi at t = 1. Furthermore, we
have sgn(pi) = sgn(p′i) for any i ≥ 1. We concentrate on the case of a shadow coloring
φ̃ of DM (the non-shadow case being similar). The weights associated to pi and p′i are
sgn(pi)d(∗0)

i qsh(p) and sgn(p′i)d
(∗)
i qsh(p) (the order depends on co-orientation ~ni of Vi).

Furthermore, the sign of pi is (−1)n−isgn(~ni · ~t) that is the sign depend on whether ~ni
agrees or disagrees with ~t (that is the scalar product ~ni · ~t is positive or negative). In
effect cn+2(pi) − cn+2(p′i) = ε(−1)−i(d(∗0)

i − d
(∗)
i )(qsh(p), where ε = ±1, and in effect

cn+2(DM )− cn+2(RDM ) = ±∂n+3(qsh(p)). Therefore cn+2(DM )− cn+2(RDM ) is homol-
ogous to zero in Hn+2(X) as needed15. Similarly cn+1(DM , φ) − cn+1(RDM , R#(φ)) =
±∂n+2(q(p)). This follows also directly by using Observation 2.3.

Proof of Theorem 4.1. Now we can complete the proof of Theorem 4.1.
We use Roseman moves in more substantial way than before. Details of Roseman

theory are given in Section 6 where we follow [Ros-1, Ros-2, Ros-3]. Here we give a short
description referring often to that section. D. Roseman proved that for any n there are
a finite number of moves on link diagrams in Rn+1 so that if two diagrams Fn1 and Fn2
represent ambient isotopic links in Rn+2 then our diagrams are related by a finite number
of Roseman moves. For n = 1, 2 and 3, the moves of Roseman were explicitly given (for
n = 1 these are classical Reidemeister moves).

We are showing that any Roseman move is preserving the homology class of cn+1(DM )
and cn+2(DM ). Because only crossings of multiplicity n + 1 are contributing to cycles
cn+1(DM ) and cn+2(DM ), thus it suffices to consider only those Roseman moves which
involve singularities of multiplicity n+ 1 before or after the move. A precise definition of
Roseman moves and their properties is given in Section 6 and here we need only the fact
that there are exactly three types of moves of interest:

(i) A move of type S(c, n + 2, 0) which we analyzed in Lemma 4.2 called the pass
move or maximal crossing move or the generalized third Reidemeister move.

(ii) A move of type S(c, n + 1, 0) (or its inverse a move of type S(c, n + 1, 1)). This
move describes two cancelling crossing points of a knotting diagram and can be called
the generalized second Reidemeister move (in the case of n = 2, 3 they are moves (e) in
[Ros-1]).

In the isotopy the arc of points of multiplicity n+1 joins these crossing points, and they
have opposite signs. Furthermore, up to sign, these crossings have the same contributions
to cn+1(DM , φ) (and cn+2(DM , φ̃)). Thus in the state sum of Definitions 1.16 and 1.17
they do cancel.

15We were informed by Scott Carter that this observation was crucial in the definition of
rack homology by Fenn, Rourke and Sanderson. In particular, the relation of the generalized
Reidemeister move can be read from the boundary of singularity of one dimension higher. We
deal then with a point p̂ of multiplicity n+2 and we choose any time vector ~t in general position
to normal vectors of (n+1)-dimensional hyperplanes. We shadow color neighborhood of p̂ so that
qsh(p̂) = (q0, q1, . . . , qn+2). Then we analyze face maps d∗0

i (qsh(p̂)) and d∗i (qsh(p̂)) and recognize
qsh of points p1, . . . , pn+2 and p′1, . . . , p′n+2 at cross section at t = −1 and t = 1. Fig. 4.1 illustrates
it for n = 1.
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Notice that we can interpret our situation as a special case of considerations in Sub-
section 2.2 (consider Fig. 2.4 with Vvp1 = −Vvp2 and a = c as describing the knotting
diagram before the move).

(iii) A move of type S(m, (1, n−1), 0, p) (with p = 0 or 1), where one side of the isotopy
has a point of multiplicity n+ 1 (compare the move (f) in the case of M2 in R4 and the
move (l) in the case of M3 in R5 [Ros-1]).16 Then the branch set B is the boundary of
the lower decker set D− so the lower decker set does not separate the regions; thus both
sides of this set have the same color. Therefore the chains corresponding to the crossing
of multiplicity n+ 1 are degenerate in CRn+1(X) and CRn+2(X), thus these chains do not
contribute to quandle homology HQ

n+1(X) and HQ
n+2(X), respectively.

This completes our proof of Theorem 4.1.

If M = M1 ∪M2 ∪ . . .∪Mk we can generalize Theorem 4.1 for a non-shadow coloring
of DM (we use notation of Definition 1.18). Our proof of Theorem 4.1 also works in this
case.

Corollary 4.3. For a fixed φ ∈ ColX(DM ) and a Roseman move R the difference of
chains before and after the move, cn+1(DM , φ, i) − cn+1(RDM , R#(φ, i)) is a boundary
(so homologically trivial).

4.2. Cycle invariants of knottings. To obtain invariants of knottings using Theo-
rem 4.1 we can either sum over all colorings of the cycles cn+1(DM , φ) or take them as a
set with multiplicity (in order not to loose an information that some colorings have the
same cycle):

Theorem 4.4. Let (X; ∗) be a fixed quandle, f : M → Rn+2 be an n-knotting, π :
Rn+2 → Rn+1 a regular projection, and DM the knotting diagram. We use the notation
[c] for a homology class of a cycle c.

(i) Let [cn+1(DM ), φ] denote the homology class of the cycle cn+1(DM , φ). For a finite
X the state sum, defined below

[cn+1(DM )] =
∑

φ∈ColX(DM ,φ)

[cn+1(DM ), φ]

in the group ring ZHn+1(X) is a topological invariant of a knotting M . Thus we
can denote this invariant by cn+1(M) and call it the (non-shadow) cycle invariant
of a knotting f : M → Rn+2 (or shortly of M).

(ii) The reduced (non-shadow) cycle invariant of the knotting f : M → Rn+2

cred
n+1(M) = [cred

n+1(DM )] =
∑

φ∈Colred,X(DM )

[cn+1(DM , φ)]

is a topological invariant. Notation is explained as follows. We sum here over
smaller number of colorings using the fact that set of colorings ColX(DM ) is an
X-quandle-set and, as proven in Observation 1.5, cn+1(DM , φ) is homologous to
cn+1(DM , φ ∗x), for any x ∈ X. Thus we take Colred,X(DM ) to be the subset of all

16There is a misprint in [Ros-1] page 353; it should be S(m, (1, 1), 0, 0) or S(m, (1, 1), 0, 1) in
place of S(m, (1, 2), 0, 0) or S(m, (1, 2), 0, 1).
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X coloring, one coloring from every orbit. Even if we can have various choices for
Colred,X(DM ) the resulting cred

n+1(M) = [cred
n+1(DM )] is well defined.

(iii) Let [cn+2(DM ), φ̃] denote the homology class of the cycle cn+2(DM , φ̃). For a finite
X the state sum

[cn+2(DM )] =
∑

φ̃∈Colsh,X(DM )

[cn+2(DM , φ̃)]

in the group ring ZHn+2(X) is a topological invariant of a knotting M . Thus we
denote this invariant by cn+2(M) and call it the shadow cycle invariant of a knot-
ting M .

(iv) The reduced shadow cycle invariant of the knotting M is a topological invariant

cred
n+2(M) = [cred

n+2(DM )] =
∑

φ̃∈Colred,sh,X(DM )

[cn+2(DM , φ̃)].

(v) If in any sum of (i)–(iv) we replace sum by a set with multiplicity, we obtain topo-
logical invariants, cset

n+1(M), cred,set
n+1 (M), cset

n+2(M), and cred,set
n+2 (M) respectively (we

allow X to be infinite here).

4.3. Cocycle invariants of knottings. In this subsection we reformulate our main re-
sult in the language of cocycles and cohomology. For a fixed quandle (X; ∗) and fixed co-
cycles in Cn+1(X,A) and Cn+2(X,A) we obtain directly cocycle invariants of n-knotting.
It generalizes the case of n = 1, 2 (see [CKS-3] for a summary), and the case of n = 3
checked in [Rosi-2]. We start from the definition which involves diagrams.
Definition 4.5. Let (X; ∗) be a fixed quandle, f : M → Rn+2 an n-knotting, π : Rn+2 →
Rn+1 a regular projection, and DM the knotting diagram.
(i) For a fixed coloring φ ∈ ColX(DM ) and (n+ 1)-cocycle Φ : ZXn+1 → A we define

the value Φ(DM , φ) ∈ A by

Φ(DM , φ) = Φ(cn+1(DM , φ)) =
∑
p

Φ(cn+1(p, φ)),

where Φ(cn+1(p, φ)) is a Boltzmann weight of the crossing p of multiplicity n + 1,
and the sum is taken over all crossings of DM .

(ii) We can also take into account the fact thatM is not necessary connected (following
[CENS, CKS-3] in the case n = 1). That is if M = M1∪M2∪ . . .∪Mk, we can take
the sum from (i) not over all crossings p of multiplicity n+ 1 but only those which
have Mi on the bottom of the crossings. Let us denote such a set of crossings by Ti.
Then we define

Φ(DM , φ, i) =
∑
p∈Ti

Φ(cn+1(p, φ))

(iii) For a fixed shadow coloring φ̃ ∈ ColX,sh(D(M)) and (n+2)-cocycle Φ̃ : ZXn+1 → A,
we define the value Φ̃(DM , φ̃) ∈ A by the formula

Φ̃(DM , φ̃) = Φ̃(cn+2(DM , φ̃)) =
∑
p

Φ̃(cn+2(p, φ̃)).

Theorem 4.6 (Cocycle invariants). Consider a knotting f : M → Rn+2 and fix a quandle
(X; ∗) and (n+ 1)-cocycle Φ : ZXn+1 → A and (n+ 2)-cocycle Φ̃ : ZXn+2 → A.
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(i) For a fixed colorings φ ∈ ColX(DM ), the element ΦX(DM , φ) ∈ A is preserved by
any Roseman move R that is ΦX(DM , φ) = ΦX(RDM , R#(φ)) in A.

(ii) If M = M1 ∪M2 ∪ . . . ∪Mk then the conclusion of (i) holds also for Φ(DM , φ, i),
that is ΦX(DM , φ, i) = ΦX(RDM , R#(φ), i) in A.

(iii) For a fixed shadow coloring φ̃ ∈ ColX,sh(DM ), the element Φ̃X(DM , φ̃) ∈ A is
preserved by any Roseman move, that is, Φ̃X(DM , φ̃) = Φ̃X(RDM , R#(φ̃)) in A.

Proof. Theorem 4.6 follows directly from the analogous result for homology. We should
stress that we do not need here the property that cn+1(DM , φ, i) are cycles, as we can
evaluate a cocycle on any chain. Furthermore, we can work also with tangles not only
with knotting diagrams.

To produce invariant of a knotting we should make our invariants of diagram inde-
pendent of a choice of a coloring (and use Theorems 4.4 and 4.6). As before, two natural
solutions are to take a set with multiplicity of invariants over all colorings or, for finite X,
sum invariants over all colorings as usually is done in statistical mechanics.

Definition 4.7. Let (X; ∗) be a fixed quandle, f : M → Rn+2 be an n-knotting, π :
Rn+2 → Rn+1 a regular projection, and DM the knotting diagram.

(1) Let Φ be a fixed cocycle in Cn+1
Q (X). Then:

ΦX(DM ) =
∑

φ∈ColX(DM )

ΦX(DM , φ) =
∑
φ

∏
p

Φ(cn+1(p, φ)),(i)

where X is a finite quandle. Here we have classical cocycle invariant in ZA, written
as a state sum (A in a multiplication notation) and generalizing cocycle invariants
of [CKS-3].

ΦX(DM , i) =
∑

φ∈ColX(DM )

ΦX(DM , φ, i),(ii)

where M = M1 ∪M2 ∪ . . . ∪Mk and we consider only the crossings which have
Mi on the bottom of the crossings. For n = 1, 2 this invariant of M with ordered
components was described in [CENS, CKS-3].

Φred
X (DM ) =

∑
φ∈ColX,red(DM )

ΦX(DM , φ).(iii)

Here we use the fact that X acts on ColX(DM ) and we can choose in the sum
one representative from any orbit. Any choice is good (see Observation 1.5) and we
write for the chosen subset ColX,red(DM ),17

Φred
X (DM , i) =

∑
φ∈ColX,red(DM )

ΦX(DM , φ, i);(iv)

here we reduce crossings as in (ii) and colorings as in (iii).

17For example, for the trivial knotting Sn ⊂ Rn+2, finiteX and any cocycle, we have ΦX(S2) =
|X| · 1 and Φred

X (S2) = |Or| · 1, where Or is the set of orbit of the action of X on X on the right.
Furthermore, in our notation 1 is a zero of an abelian group written multiplicatively, and |Or| ·1
is an element of a group ring Z(ZXn+1).
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(v) Without restriction to finite X we can repeat all definitions of (i)–(iv) by consid-
ering, in place of the sum over colorings, the set of invariants indexed by colorings
(thus we have a set with multiplicities, or better cardinalities of elements if X is
infinite). We get Φset(DM ), Φset(DM , i), Φred

set (DM ), and Φred
set (DM , i), respectively.

(2) For a fixed (n+ 2)-cocycle Φ̃ : ZXn+2 → A, we define:

Φ̃X(DM ) =
∑

φ̃∈ColX,sh(DM )

Φ̃X(DM , φ̃) =
∑
φ̃

∏
p

Φ̃(cn+2(p, φ̃)),(i)

where X is a finite quandle. Here we have classical shadow cocycle invariant in ZA.

Φ̃X,red(DM ) =
∑

φ̃∈C̃olX,red(DM )

Φ̃X,red(DM , φ̃).(ii)

(iii) Without restriction on X to be finite, we can repeat definitions of (i) and (ii) by
considering, in place of the sum over colorings, the set with multiplicity of invariants
indexed by colorings. We get Φ̃set(DM ) and Φ̃set,red(DM ).

Theorem 4.8 (cocycle invariants). Consider a knotting f : M → Rn+2 and for a fixed
quandle (X; ∗), quandle cocycles Φ : ZXn+1 → A and Φ̃ : ZXn+2 → A. Then:

(1) If X is finite then ΦX(M) Φred
X (M), Φ̃X(M), and Φ̃red

X (M) are topological in-
variants of the knotting (i.e. independent of a diagram, invariant under Roseman
moves). They are called cocycle, and shadow cocycle invariants of a knotting M .

(2) For any X, Φset(M), Φred
set (M), Φ̃set(M), and Φ̃red

set (M) are topological invariants of
the knotting M .

(3) If M = M1 ∪ . . .∪Mn and X is finite then ΦX(M, i) and Φred
X (M, i) are topological

invariants of the knotting M with ordered components. Similarly, for any X the
sets with multiplicity Φset

X (M, i) and Φset
X,red(M, i) are topological invariants of the

knotting M with ordered components.
(4) We can make invariants of (3) to be independent of the order of components if we

take the set with multiplicity of invariants over all i.

Proof. It follows directly from Theorems 4.4 and 4.6. Notice here that for shadow coloring
the idea of considering M = M1 ∪M2 ∪ . . . ∪Mk and only crossings where Mi is on the
bottom will not work as d(∗0)

2 usually differs from d
(∗)
2 , thus cred

n+2(pi) − cred
n+2(p′i) is not

necessary homological to zero.. In the non-shadow case we only needed d(∗0)
1 = d

(∗)
1 .

5. Twisted (co)cycle invariants of knottings. Twisted homology (and cohomology)
was introduced in [CENS]. Most of the results of the paper generalize, without many
changes, to the twisted case so we give a concise explanation.

Definition 5.1.

(i) The twisted chain complex of a shelf (X; ∗) is given by the chain modules CTn (X) =
Z[t±1]Xn (that is, free modules with basis Xn and with coefficients in a ring of
Laurent polynomials in variable t), and the chain map ∂T = t∂(∗0) − ∂(∗). Recall
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that

∂(∗0)(x1, . . . , xn) =
n∑
i=1

(−1)i(x1, . . . , xi−1, xi+1, . . . , xn),

∂(∗)(x1, . . . , xn) =
n∑
i=1

(−1)i(x1 ∗ xi, . . . , xi−1 ∗ xi, xi+1, . . . , xn).

(ii) If (X; ∗) is a spindle (e.g. a quandle) we define as in the untwisted case the degen-
erate and quandle homology. Thus as before we consider HTW

n (X) for W = R,D

and Q.
(iii) The cohomology Hn

TW (X,A) is defined in a standard way with A being an Z[t±1]-
module.

The theory of cocycle invariants was introduced in [CES-1] for n = 1, 2. We give
definition for any n-knotting below. Our description follows [CKS-3], the important tool
we use is the classical Alexander numbering of chambers in (Rn+1, πf(M)) (see [CKS-0,
CKS-3]). Our version of the definition refers to shadow colorings by an (extended) shift
rack structure on integers with infinity (Z ∪ ∞; ∗s) where a ∗s b = a + 1 (in particular
∞∗ b =∞).
Definition 5.2.
(i) Let X be a set and f : X → X a bijection with a fixed point b. We define a

rack (X; ∗f ) by a ∗f u = f(a), where u ∈ X. Then for a given knotting diagram
DM the shadow rack coloring of chambers of the knottings, is called the generalized
Alexander numbering. More precisely, we color regions of the diagram trivially by b,
choose one chamber and color it by an element of X − b and the resulting shadow
coloring of chambers is a generalized Alexander numbering (compare Observation
1.6(ii)).

(ii) The Alexander numbering of chambers (e.g. [CKS-3]) starts from the rack
(Z ∪∞; ∗s) and the unbounded chamber is colored by 0.

Definition 5.3 (twisted chains of knotting). Let f : M → Rn+2 be an n-knotting,
π : Rn+2 → Rn+1 a regular projection, and DM the knotting diagram. Furthermore, fix
a rack or quandle X, a coloring φ : R → X, and a shadow coloring φ̃.
(i) If p is a crossing of multiplicity (n + 1) then we define the chain (twisted Boltz-

mann weight) associated to p as cTn+1(p, φ) = t−k(R0)cn+1(p, φ), where k(R0) is the
Alexander numbering of the source region in the neighborhood of p and cn+1(p, φ)
is the untwisted Boltzmann weight.

(ii) In the case φ̃ is the shadow coloring we define a twisted shadow Boltzmann weight by
cTn+2(p, φ̃) = t−k(R0)cn+2(p, φ̃), where cn+2(p, φ̃) is the untwisted shadow Boltzmann
weight associated to p.

(iii) The twisted chain associated to the diagram DM is

cTn+1(DM , φ) =
∑

p∈crossings
cTn+1(p, φ).

(iv) Finally, we sum over all X colorings of DM so the result is in the group ring over
CTn+1(X) (in fact, it is in the group ring of HT

n+1(X)). It is convenient to use multi-
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plicative notation for chains so that cTn+1(DM , φ) = (Πp(q1, . . . , qn+1)sgn(p))t−k(R0)

and then
cTn+1(DM ) =

∑
φ

cTn+1(DM , φ).

(v) We define the twisted shadow chain associated to the diagram DM in an analogous
manner:

cTn+2(DM , φ̃) =
∑

p∈crossings
cTn+2(p, φ̃).

Then we sum over all colorings to get

cTn+2(DM ) =
∑
φ̃

cTn+2(DM , φ̃).

(vi) As in untwisted version we can consider smaller sum by taking into account only one
element from each orbit of action by X on the space of colorings. However we should
be careful here about which action we consider because the action (x1, . . . , xn) ∗ x
is equal on homology to t · Id according to Observation 1.5. Thus we should change
this action to (x1, . . . , xn) 7→ t−1(x1, . . . , xn) ∗ x. We obtain then reduced versions
of (iv) and (v).

(vii) Each of the above has its cocycle version as long as we choose a twisted (n + 1)-
and (n+ 2)-cocycles in Cn+1

T (X) and Cn+2
T (X), respectively.

Most of the results as in Theorems 4.1, 4.6, and 4.8 generalize without any problem
to twisted (co)homology. We give two examples below.

Theorem 5.4. For a fixed φ ∈ ColX(DM ) the chain cTn+1(DM , φ) is a cycle and it is
homologous to cTn+1(RDM , R#(φ)) in HTQ

n+1(X), where R is any Roseman move on a dia-
gram DM . Similarly for a fixed shadow coloring φ̃ ∈ ColX,sh(DM ), the chain cTn+2(DM , φ̃)
is a cycle and it is homologous to cTn+2(RDM , R#(φ̃)) in HTQ

n+2(X).

The main, nontrivial Roseman move to check is the pass move R of type S(c, n+2, 0).
Here analysis is very similar to that of Theorem 2.1 and Lemma 4.2.

Theorem 5.5 (Twisted cocycle invariants). Consider a knotting f : M → Rn+2 and fix
a quandle (X; ∗) and (n + 1)-twisted cocycle ΦT : Z[t±1]Xn+1 → A and (n + 2)-cocycle
Φ̃T : Z[t±1]Xn+2 → A where A is a [t±1]-module.

(1) For a fixed coloring φ ∈ ColX(DM ), the element ΦX(DM , φ)=ΦT (cTn+1(DM , φ) ∈ A
is preserved by any Roseman move R, that is, ΦX(DM , φ) = ΦX(RDM , R#(φ))
in A.

(2) For a fixed shadow coloring φ̃ ∈ ColX,sh(DM ), the element Φ̃X(DM , φ̃) =
Φ̃T (cTn+2(DM , φ̃) ∈ A is preserved by any Roseman move, that is, Φ̃X(DM , φ̃) =
Φ̃X(RDM , R#(φ̃)) in A.

(3) We can sum now over colorings of a finite quandle X, or sum over reduced colorings,
or just take a set over colorings, to get twisted cocycle invariants of a knotting.

Remark 5.6. If we work with racks and rack (or degenerate) homology we cannot ignore
degenerate elements, so the Roseman move of type S(m, (1, n− 1), 0, p) (generalized first
Reidemeister move) cannot be performed on the diagrams without possibly changing
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(co)homology class of (co)cycles. For other Roseman moves however all our results work
well. Thus we have (co)cycle invariants of diagrams of n-knottings up to all Roseman
moves except moves of type S(m, (1, n− 1), 0, p), for any rack.

6. General position and Roseman moves in codimension 2. An important tool
in our work is given by the work of Roseman on general position of isotopy on moves in
co-dimension two and the moves he developed. The next subsections follow [Ros-1, Ros-2,
Ros-3]. We have used these notion in the paper; here is more formal development.

Before we can define Roseman moves we need several definitions.
6.1. General position. Let M = Mn be a closed smooth n-dimensional manifold and
f : M → Rn+2 its smooth embedding which is called a smooth knotting. Define π :
Rn+2 → Rn+1 given by π(x1, . . . , xn+1, xn+2) = (x1, . . . , xn+1) to be a projection on the
first n+ 1 coordinates. The projection of the knotting is the set M∗ = πf(M). Crossing
set D∗ of the knotting is the closure in M∗ of the set of all points x∗ ∈ M∗ such that
(πf)−1(x∗) contains at least two points.

We define the double point set D as D = (πf)−1(D∗). The branch set B of f is the
set of all points x ∈M such that πf is not an immersion at x. In general, if A ⊂M then
A∗ denotes πf(A).
Definition 6.1. Let f : M → Rn+2 be a smooth knotting with branch set B and double
point set D. We say that f is in general position with respect to the projection π if the
following six conditions hold:
(1) B is a closed (n− 2)-dimensional submanifold of M .
(2) D is a union of immersed closed (n − 1)-dimensional submanifolds of Mn with

normal crossings. Denote the set of points of D where normal crossings occur as N
and call this the self-crossing set of D.

(3) B is a submanifold of D and for any b0 ∈ B there is a small (n − 1)-dimensional
open sub-disk V with b0 ∈ V , V ⊆ D such that V − B has two components V0
and V1, each of which is an (n − 1)-disk which is embedded by the restriction of
π ◦ f but with V ∗0 = V ∗1 (Fig. 2.1).

(4) B meets N transversely.
(5) (π ◦ f)|B is an immersion of B with normal crossings.
(6) The crossing set of B∗ is transverse to the crossing set of (D −B)∗.

b0
*

B*

V1
*

b 0

V

V

0

1

V

B

=V *
0

Fig. 6.1. Projecting (folding) of V = V0 ∪ V1 ∪ (B ∩ V ) onto (V −B)∗ = V ∗0 = V ∗1

Theorem 6.2. Given a knotting f : Mn → Rn+2 we may isotope f to a map which is in
general position with respect to the projection π.
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Similarly we define what it means for an isotopy F : M×I → Rn+2×I to be in general
position with respect to the projection π′ = π × Id. It is just the previous definition for
general position of a codimension two knotting except that B and D may have nonempty
boundary. In particular, F0 = F/(M ×{0}), F1 = F/(M ×{1}) : M → Rn+2 are smooth
knottings in general position.

6.2. Arranging for moves. We put on our isotopy additional conditions called arrang-
ing for moves [Ros-3]. Roughly speaking, we filtrate D∗ of F : M × I → Rn+2× I in such
a way that the projection p : Rn+1× I → I restricted to any component of each stratum,
Q(i), is a Morse style function.

Definition 6.3 (Roseman). Let q be a proper immersion of a manifold Q in Rn+1×I. We
say that q(Q) is immersed in Morse style if pq is a Morse function, where p : Rn+1×I → I.
We assume that a Morse function has critical points on different levels.

For details see [Ros-3]. Here we just mention that Q(0) is the crossing set of B∗,
Q(1) = B∗, the projection of the branch set of F . Q(2) = D∗, generally, Q(k), k > 1, is
the closure of the subset of D∗ such that F ′ = π′F is at least k to 1. Roseman proves:

Theorem 6.4 (Roseman). Any isotopy F : M×I → Rn+2×I can be arranged for moves.

6.3. Listing of moves after Roseman. The standard set of moves Mn is described
as follows:

Fix a dimension n and suppose we are given an isotopy F : Mn×I → Rn+2×I which
is arranged for moves. This gives a sequence of elementary singularities. Each singularity
will correspond to a standard local knot move in our collectionMn.

In the notation which follows, we consider three general types of points:

1. branch type: critical points of B∗ and self-crossing points of B∗ for which we use
the letter b,

2. crossing type: critical points of D∗ and the crossing set of D∗ which do not belong
to B∗ for which we use the letter c.

3. mixed type: critical points which are in the crossing set of D∗ and are in B∗, a
“mixed” type, for which we use the letter m.

The first collection of branch type points is denoted by {S(b, k, p, q)}. If x∗ ∈ D∗ is
such a singular point, where D∗ is the crossing set of an isotopy F : Mn× I → Rn+2× I,
let k denote the number of points of F ′−1(x∗). In our case the branch point set B∗ of F ,
is codimension 2 in Mn × I, that is, it is of dimension n− 1.

If in projection this branch set intersects itself generically, the self-intersection set will
have dimension n − 4. It follows that 1 ≤ k ≤ n − 2. The integer p is the index of the
singularity. The integer q has range 0 ≤ q ≤ k and might be called transverse index of
this critical point. This is defined as follows. If x ∈ B, consider a curve δ in D transverse
to B (recall that B has codimension one in D) so that δ∗ is, except for the point x, the
two-to-one image of δ. In the I direction, the image of this curve has a local maximum
or a local minimum at b. Now suppose b∗ is a k-fold point of B∗ then we have k such
curves to consider. The number q is the number of those curves for which we have a local
maximum. Of course, it follows that k − q of the curves have a local minimum.
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The next collection of crossing type singularities is denoted by {S(c, k, p)}. If x∗ is such
a singularity, k denotes the cardinality of F ′−1(x∗). Thus k is an integer 2 ≤ k ≤ n+ 2.
Furthermore, on this set of points, where F ′ is k-to-one, x∗ is a critical point in the I
direction, of index p. A single point has index 0 by convention.

Finally S(m, (i, j), p, q) denotes mixed singularities. Such a singularity x∗ has F ′−1(x∗)
consisting of i + j points, where exactly i of these points are in B. Again p is the index
of the singularity and q is an integer, 0 ≤ q ≤ i, which is the number of local maxima we
get by looking at those i arcs transverse to B at the points of F ′−1(x∗) ∩B.

7. A knotting Mn f→ Fn+1 × [0, 1] π→ Fn+1. The Roseman (local) moves can be
used for any n-knotting f : Mn → Wn+2 by the following classical PL-topology result
following from Theorem 6.2 in [Hud] (we will use it in a smooth case which can be derived
using Whitehead results on triangulation of smooth manifolds).
Lemma 7.1. If C is a compact subset of a manifold W and F : W ×I →W is the isotopy
of W then there is another isotopy F̂ : W × I → W such that F0 = F̂0, F1/C = F̂1/C

and there exists a number N such that the set {x ∈W | F̂ /{x}× (k/N, (k+ 1)/N) is not
constant} sits in a ball embedded in W .

Let f : Mn → Fn+1×̄[0, 1] be an n-knotting where Fn+1 is an (n + 1)-dimensional
manifold and Fn+1×̄[0, 1] is an [0, 1]-bundle over Fn+1 (trivial bundle if Fn+1 is oriented
and the twisted [0, 1]-bundle over Fn+1 if Fn+1 is unorientable. In both cases the manifold
is oriented). Let π : Fn+1×̄[0, 1]→ Fn+1. By Lemma 7.1 an embedding f can be assumed
to be in general position with respect to π and every ambient isotopy of a knotting can be
decomposed into Roseman moves (on DM ). If π1(Fn+1) = 0 then essentially all results
of the paper can be also proven for the knotting (we need W = Fn+1×̄[0, 1] to be simply
connected in Lemma 1.12, Remark 3.3, and Theorem 3.4).
Remark 7.2. If we do not assume that π1(Fn+1) = 0 in the case ofWn+2 = Fn+1×[0, 1],
we can still develop the theory of (co)cycle invariants by following [FRS-2] where the
notion of a reduced fundamental rack is developed (essentially one kills the action of
π1(Fn+1)). Then the reduced fundamental rack (or quandle) is, according to Corollary 3.5
of [FRS-2], the same as the fundamental rack (or quandle) obtained by rack (or quandle)
abstract coloring of any diagram of the knotting.

8. Speculation on Yang–Baxter homology and invariants of knottings. Yang–
Baxter operator can be thought of as a direct generalization of right self-distributivity
when we go from the category of sets to the category of k-modules.

We follow here [Leb-1, Leb-2, Prz-1, Prz-2] describing the classical case n = 1.
First we note how to get Yang–Baxter operator from a right self-distributive binary

operation. Let (X; ∗) be a shelf and kX be a free module over a commutative ring k
with basis X (we can call kX a linear shelf). Let V = kX, then V ⊗ V = k(V 2) and the
operation ∗ yields a linear map Y = Y(X;∗) : V ⊗V → V ⊗V given by Y (a, b) = (b, a ∗ b).
Right self-distributivity of ∗ yields the equation of linear maps V ⊗ V ⊗ V → V ⊗ V ⊗ V
as follows:

(Y ⊗ Id)(Id⊗Y )(Y ⊗ Id) = (Id⊗Y )(Y ⊗ Id)(Id⊗Y ).(1)
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In general, the equation of type (1) is called a Yang–Baxter equation and the map Y

a Yang–Baxter operator. We usually require that Y is invertible, otherwise the name
pre-Yang–Baxter operator is used. For example if Y is given by an invertible ∗, then
Y(X;∗) is invertible with Y −1

(X;∗)(a, b) = (b ∗̄ a, a).
In our case Y(X;∗) permutes the base X ×X of V ⊗ V , so it is called a permutation

or a set theoretic Yang–Baxter operator18. Our distributive homology, in particular our
rack homology ((Cn, ∂Y ), ∂Y = ∂(∗0) − ∂(∗)) can be thought of as the homology of Y . It
was generalized from the Yang–Baxter operator coming from a self-distributive ∗ to any
set theoretic Yang–Baxter operator (coming from biracks or biquandles), [CES-2]. For a
general Yang–Baxter operator, there is no general homology theory (however, compare
[Eis-2, Eis-3]). The goal/hope is to define homology for any Yang–Baxter operator and
develop the homological invariants of n-knottings (it is done for n = 1 and a set theo-
retic Yang–Baxter equation in [CES-2]). The simple visualization of the distributive face
map d(∗)

i from Fig. 8.1, observed by I. Dynnikov during Przytycki’s talks in Moscow in
May 2012 (and slightly earlier by Victoria Lebed when she was writing her Ph.D. thesis
[Leb-1]), easily gives a hint to homology of set theoretic Yang–Baxter homology, and,
partially, to general Yang–Baxter homology (this is studied in [Prz-2]). To get the i-th
face map of [CES-2] we take the difference of “one term” face maps as illustrated in
Fig. 8.2.

The homology invariants of n-knotting should follow, and combining the method of
this paper with [Leb-2, Prz-2] looks rather promising.

We plan to study (co)cycle invariant for codimension 2 embeddings in the case of set
theoretic Yang–Baxter operators (biracks). The main difficulty is that one cannot use

18The pair (X;Y ), where Y : X ×X → X ×X leads to pre-Yang–Baxter operator, is called a
bishelf, and if Y is invertible — a birack. A classical birack, related to (branched) cyclic covers
of links, is defined as follows [Win, Prz-0, P-R, DPT]:
Let G be a group and f : G→ G a group automorphism, then YG,f : G×G→ G×G is given by

YG,f (a, b) = (f(b), f(b−1)ab). We have Y −1
G,f (c, d) = (cdf−1(c−1), f−1(c)). In fact, we check that

Y −1
G,fYG,f (a, b) = Y −1

G,f (f(b), f(b−1)ab) = (f(b)f(b−1)abb−1, f−1(f(b))) = (a, b) = YG,fY
−1
G,f (a, b).

We also check directly the condition of the set theoretic Yang–Baxter equation:

(YG,f × Id)(Id×YG,f )(YG,f × Id)(a, b, c) = (f2(c), f2(c−1)f(b)f(c), f(c−1b−1)abc)
= (Id×YG,f )(YG,f × Id)(Id×YG,f )(a, b, c),

as illustrated in the figure below:

f(b  )ab
−1

f  (c)2

f  (c)2

−1f(c  )(b   )abc−1 −1

−1f(c   b   )abc−1 −1

2
f  (c   )f(b)f(c)

−1

f  (c   )af(c)
−12

a

b

c    

a

b

c

R 3

f(b)
−1

f(c)

f(c) 2 −1f  (c   )f(bc)

−1
f(c  )bc

In a place of idempotency, we have YG,f (f(a), a) = (f(a), a).
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the general position argument of Fenn, Rourke, and Sanderson, in this case (there is no
appropriate, diagram free, topological definition of a fundamental birack for arbitrary n),
thus one has to use analysis of all Roseman moves.

q
i

q
i−1

q
1

q
i+1

q
i*i−1

q q
n

q
i+1

q
i

q
1*

q
n

...

Fig. 8.1. Diagrammatic visualization of a face map gives hint to Yang–Baxter homology.
For a right self-distributive ∗ we have a face map
d

(∗)
i (q1, . . . , qn) = (q1 ∗ qi, . . . , qi−1 ∗ qi, qi+1, . . . , qn).

We can also interpret the picture to be applicable to Yang–Baxter theory
by using Yang–Baxter operator at each crossing.

i iX X XX

Fig. 8.2. Diagrammatic visualization of an i-th face map of [CES-2];
Y : X ×X → X ×X is a set theoretic Yang–Baxter operator
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