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Abstract. We create a framework for odd Khovanov homology in the spirit of Bar-Natan’s
construction for the ordinary Khovanov homology. Namely, we express the cube of resolutions
of a link diagram as a diagram in a certain 2-category of chronological cobordisms and show
that it is 2-commutative: the composition of 2-morphisms along any 3-dimensional subcube is
trivial. This allows us to create a chain complex whose homotopy type modulo certain relations
is a link invariant. Both the original and the odd Khovanov homology can be recovered from
this construction by applying certain strict 2-functors. We describe other possible choices of
functors, including the one that covers both homology theories and another generalizing dotted
cobordisms to the odd setting. Our construction works as well for tangles and is conjectured to
be functorial up to sign with respect to tangle cobordisms.

1. Introduction. The Khovanov homology [Kh99] opened to knot theorists a new and
interesting world of powerful invariants, of which knot polynomials are only shadows. For
instance, the Euler characteristic of the Khovanov homology is the Jones polynomial of
a link. It did not take much time to prove usefulness of these invariants. For instance,
the Lee deformation of the Khovanov’s differential [Le05] leads to a spectral sequence,
from which J. Rasmussen extracted a lower bound for the knot genus, giving a combi-
natorial proof of Milnor Conjecture [Ra04]. Moreover, the Khovanov homology detects
the unknot [KM12] and unlinks [HN12], although the question whether the Jones polyno-
mial is an unknot detector is still open. This raised a question, whether there were other
link homology theories categorifying the Jones polynomial. In particular, D. Bar-Natan
[BN05] described a very general construction that produces link homology for rank two
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Frobenius algebras satisfying some additional relations. Then M. Khovanov classified all
theories that arise from Frobenius systems [Kh04], proving that the Bar-Natan’s theory
of dotted cobordisms is universal.

When it seemed that categorifications of the Jones polynomial were well understood,
P. Ozsváth, J. Rasmussen and Z. Szabó published a paper with a distinct construction
[ORS13] based on a projective TQFT. Their invariant also categorifies the Jones poly-
nomial, but the algebra used in the construction is not cocommutative and even not
coassociative. They call it odd Khovanov homology, because of similarity with the origi-
nal construction, which we now refer to as even. Both theories agree modulo 2, but they
are not equivalent over Z. In particular, results of A. Shumakovitch [Sh11] provide ex-
amples of pairs of knots that can be distinguished by one theory but not by the other.
Moreover, it was proved by J. Bloom that the odd Khovanov homology is mutation in-
variant [Blo10], generalizing the similar result by S. Wehrli for even Khovanov homology
with Z2 coefficients [Wh10]. On the other hand, the even Khovanov homology detects
mutant links, but the problem is still open for knots.

Both theories are obtained from the cube of resolutions of a link diagram. Namely,
given a link diagram D with n crossings we create 2n pictures, by resolving each crossing
horizontally (type 0 resolution) or vertically (type 1 resolution):

0 1

The picture of crossing highways is placed to the right to help to remember the naming
convention: a resolution of a crossing can be seen as leaving one highway by turning right
(assuming the traffic is on the right side). In type 0 we leave the lower highway, while in
type 1 the upper one. We place all such pictures in vertices of an n-dimensional cube and
decorate its edges with certain cobordisms. This cube commutes and by applying a TQFT
functor we obtain a commuting cube of abelian groups and homomorphisms, which can
be collapsed to a chain complex (after changing signs of some maps). On the other hand,
a projective TQFT from [ORS13] produces a cube that commutes only up to signs, which
has to be fixed before collapsing. It is a kind of mystery, why this is possible.

The last step is exactly why the odd theory does not fit into Bar-Natan’s framework.
The latter starts with a cube of resolutions and cobordisms, and invariance is proved at
this level, before applying a TQFT functor. The author extended this framework [Pu08]
using cobordisms with an additional structure, a chronology, which is a framed Morse
function τ : W → I that separates critical points [Ig87]. Isotopies of these functions equip
the category of chronological cobordisms with a structure of a 2-category and we can ex-
press the projective functor from [ORS13] as a strict 2-functor. By translating Bar-Natan’s
construction into this new framework, we were able to show invariance of the complex
built from chronological cobordisms. Applying different 2-functors recovers both the even
and odd Khovanov homology. In particular, it follows from contractibility of certain loops
in the space of framed functions that in the odd theory we can always distribute signs over
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edges of the cube to make it commute. In addition to that, we have found several theories

H(L)

Hev(L) Hodd(L)

X,Y,Z 1
X,Z 1

Y −1

with parameters, especially the covering homology Hcov(L). It is a sequence of graded
modules over the ring of truncated polynomials Z[X,Y, Z±1]/(X2 = Y 2 = 1), from which
we can obtain both even and odd Khovanov homology
as illustrated to the right. The specializations take
place at the level of chains. This construction was
first described in [Pu08]. Another example is given by
chronological cobordisms with dots that generalizes
the universal Bar-Natan’s theory to the odd setting.
By an analogy to the even case it is proved to be universal, see Theorem 11.9. A motivation
was to find an odd analog of Lee’s deformation, the goal that has not been reached.

A connection with categorified quantum groups.

Uq,π

Uq(sl2) Uq(osp1|2)

π=1 π=−1

The existence of covering homol-
ogy theory fits nicely with recent discoveries regarding odd categorifications of quantum
groups. It is known that the even Khovanov homology can be recovered from categorical
representations of categorified Uq(sl2) [We10]. A recent discovery of odd nilHecke algebras
[EKL12, KKT11], which categorifies the negative half of Uq(sl2), suggests the existence
of the odd Khovanov homology may also possess a representation-theoretical explana-
tion. The odd nilHecke algebras appeared to be connected with the Lie superalgebra
Uq(osp1|2). Both Uq(sl2) and Uq(ops1|2) are covered by a Kac–Moody algebra Uq,π in-
troduced by S. Clark, D. Hill and W. Wang [CHW13, HW12], where π is a formal pa-
rameter with π2 = 1. The relationship is illustrated
in the diagram to the right. Recently, A. Lauda and
A. Ellis categorified the covering algebra Uq,π using
graded supermonoidal categories, in which the rela-
tion (f ⊗ id)◦ (id⊗g) = (id⊗g)◦ (f ⊗ id) holds up to
a sign in a coherent way [EL13]. It is expected that
this categorification leads to homologies covering both odd and even homology theories
and the author believes that the covering Khovanov homology described in this paper is
one of them.

Outline. We start the paper with a picture visualizing the construction of the Kho-
vanov complex for the trefoil knot, see Fig. 1. We hope it will serve as a motivation for
the next two sections, in which we define chronological cobordisms and analyze changes
of chronologies. Section 3 describes the 2-category of chronological cobordisms of any
dimension and explains a symmetric monoidal structure induced by a disjoint union.
The section ends with a detailed description of the two-dimensional case. A refined ver-
sion of chronological cobordisms embedded in D2 × I is described in Section 4, together
with a solution for chronological relations: permuting critical points corresponds to scaling
a cobordism by an invertible scalar.

Details of the construction of the generalized Khovanov complex for a tangle diagram
are given in Sections 5 and 6. The former deals with link diagrams only, whereas the lat-
ter describes how to extend the construction to tangles in the spirit of Bar-Natan, using
planar algebras. Unfortunately, the functors forming a planar algebra of chronological
cobordisms are not strict, so that we cannot combine complexes for tangles in the naive
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way. This issue is partially resolved in Section 7, where we prove invariance of the gen-
eralized complex under Reidemeister moves. Section 8 contains several straightforward
properties of the complex.

The next few sections are devoted to computation of the homology of the complex.
We recover both odd and even Khovanov homology from our construction in Section 9.
The covering homology is defined in Section 10, in which we define a chronological version
of a Frobenius system. Similarly to the ordinary case, a chronological Frobenius system
induces a TQFT 2-functor from the category of chronological cobordisms to a 2-category
of graded symmetric bimodules. They are analyzed in the next section. In particular, we
describe dotted chronological cobordisms and their algebra, proving it is universal among
all Frobenius systems fitting in our framework.

Section 12 contains several remarks and constructions related to this paper, but not
fully explored. We discuss, following [BN05], functoriality up to ‘sign’ of our construction,
where a ‘sign’ is understood as an invertible scalar in degree 0. Then we analyze a choice
in defining chronological relations: there is one type of changes for which the associated
coefficients are defined only up to a scalar XY , although the whole construction is inde-
pendent of this choice. Finally, we analyze a possible connection of our construction to
the one based on sl2 foams [Ca09]. We suppose there is a parallel theory of chronological
foams, closely connected to our construction.

The construction of chronological cobordisms utilizes the theory of framed functions,
which is an interesting enrichment of Morse theory. It is described in Appendix A following
[Ig87]. In particular, we describe all singularities of these functions up to codimension
two.

The paper uses also several 2-categorical constructions, including semi-strict monoidal
structure and braiding. These are explained in Appendix B.

Acknowledgements. This paper would have never been written without help of many
people. The problem of creating a framework for odd Khovanov homology was suggested
by Dror Bar-Natan while the author was at the University of Toronto. The dotted al-
gebra was understood with the help of Anna Beliakova, when the author visited her in
Zürich. Several ideas used to clarify the original construction came out after discussions
with Aaron Lauda, Robert Lipshitz, Mikhail Khovanov, Józef Przytycki and Alexander
Shumakovitch. The author is also thankful to Alexander Ellis, Maria Hempel, Vasilly
Manturov, Cotton Seed and Joshua Batson for interesting discussions and remarks. Fur-
ther, the author would like to thank the referees for their insightful remarks on an earlier
version of this paper.

2. The picture. We begin with describing elements of the big diagram in Fig. 1. In
the next few sections we shall create a framework for this picture.

Knot. In the left top corner we can see a diagram D of the left-handed trefoil with
enumerated crossings. Each crossing is equipped with an arrow oriented in such a way
that it connects the two arcs in the type 0 resolution at this crossing (there are two choices
of such an arrow). These arrows do not appear in the construction of the even Khovanov
complex [Kh99, BN05], but it is crucial for the odd Khovanov complex [ORS13].
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Fig. 1. The Khovanov bracket for the trefoil.

Vertices in the cube. Most of the picture is occupied by resolutions of the diagram D,
placed in vertices of a unit three-dimensional cube. A vertex ξ of the cube is encoded
by a sequence (ξ1, ξ2, ξ3) with each ξi = 0 or 1, and it is decorated with a diagram
Dξ obtained from D by replacing i-th crossing with the resolution of type ξi. The cube
is drawn slant, to have all diagrams grouped in columns with respect to the weight of
the vertex ‖ξ‖ := ξ1 + ξ2 + ξ3.

Edges in the cube. Edges are encoded by sequences ζ = (ζ1, ζ2, ζ3) with exactly one
ζi being a star ∗. The star indicates direction of the edge: replacing it with 0 or 1 re-
sults in the source or the target vertex respectively. Choose an edge ζ : ξ → ξ′ and
let U be a small neighborhood of the i-th crossing, where ζi = ∗. It is decorated with
a unique cobordism Dζ ⊂ R2× I that has only one critical point: a cylinder (D−U)× I
with a saddle inserted over U . We equip this cobordism with a height function
h : Dζ → I. The small arrow over the crossing determines the framing, hence the orienta-
tion of the saddle (see Appendix A). For simplicity we represent the cobordism by its input
together with an arrow, which determines both the place and the orientation of the sad-
dle. This is the same arrow that decorates the i-th crossing in the diagram of the knot.
A 3D picture of the cobordism decorating the edge 0∗0 is given in the left-bottom corner.
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An underlying diagram with holes.

1

2

3

The two paragraphs above can be unified by
a single construction, which also explains how to create the cube for any
link diagram D. Take the diagram D and remove a small neighborhood
of each crossing, obtaining a new diagram D•.1 For instance, the tre-
foil diagram produces a diagram with three holes. Copy the numbers
associated to crossings to the holes—this gives an ordering of them.
The picture Dξ at a vertex ξ is obtained from D• by filling the holes with resolutions,
type ξi at the i-th hole. To obtain the cobordism Dζ associated to an edge ζ, where ζi = ∗,
copy the arrow from i-th crossing to the i-th hole. For a 3D picture, take a product D•×I
and insert into the i-th hole2 either a pair of vertical rectangles, when ζi 6= ∗, or a saddle
for ζi = ∗ with a framing induced by the small arrow over the crossing, see Fig. 2.

ζi=0

ζi=∗
ζi=1

Fig. 2. 3D resolutions of a crossing decorated by an arrow.

Faces. Consider a two-dimensional face S of the cube of resolutions of a diagram D

with n crossings. It is encoded by a sequence ν = (ν1, . . . , νn) having 0 or 1 at all except
two positions, i0 and i1, where we put stars. Denote the vertices of S by Sab, where a, b
are the replacements for the two stars. We label S with the resolution of D decorating
the vertex S00 with two arrows placed over smoothings of the i0-th and i1-th crossing.
This is a surgery diagram of a cobordism with two saddles, and there are two height
functions depending on which of the two saddle points is below the other. Instead of
picking any of them, we interpret the diagram as a linear homotopy between the two
height functions, see Fig. 3 for an example.

:

Fig. 3. A two-arrow surgery diagram encodes a permutation of two saddle points.

1 This is an example of a planar arc diagram, see Section 6.
2 Notice that holes in D• × I are three-dimensional.
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Commutativity cochain. Take the two-arrow description of a face and disregard all
circles that are not touched by any of the two arrows. What remains is one of the pic-
tures listed in Tab. 1. We gathered all such configurations into groups labeled with some
monomials from a commutative ring k := Z[X,Y, Z±1]/(X2=Y 2=1) (they are explained
in Section 4). They define a 2-cochain ψ ∈ C2(In;k∗), where k∗ is the group of invertible
elements in k. Here one must be careful with the two configurations placed in Tab. 1
below the letter Z—the value of ψ is either Z or Z−1, depending on the orientation of
the face:

ψ



•

•

•

•
m
er
ge split

split m
er
ge




= Z, but ψ



•

•

•

•
sp
lit

m
erge

m
erge sp

lit




= Z−1. (1)

We call ψ the commutativity 2-cochain.

X Y

Z

1
2

2
1

1 XY

Tab. 1. Diagrams for faces that can appear in a cube of resolutions, grouped by values
of the commutativity cochain ψ. All coefficients live in the commutative ring

k := Z[X,Y, Z±1]/(X2=Y 2=1). Thin lines are the input circles and thick arrows visualize
saddle points. Orientations of the arrows are omitted if ψ does not depend on them.

The small numbers 1 and 2 in the two configurations placed under the letter Z indicate
an initial order of critical points, see (1). For the opposite order take Z−1.

Coefficients on edges. Edges in Fig. 1 are labeled with elements of k, describing
a 1-cochain ε ∈ C1(I3;k∗) (take 1 if no coefficient is present). The product of these
elements around each face S is equal to −ψ(S), i.e. ψ = −dε. Such a cochain ε is called
a sign assignment, following [ORS13]. It exists for any link diagram and, in some sense,
it is unique (see Section 5).
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Complex. The bottom line in Fig. 1 shows a sequence of objects and maps between
them. This is the Khovanov bracket of the trefoil: think of the objects Ci as columns of
the diagrams above and the maps di as bundles of arrows between the columns. We give
more meaning to this in Section 5, showing that (C, d) is a chain complex.

A word about tangles. In the same manner we can create a cube of resolutions for
a tangle diagram, using cobordisms with corners. However, it has to be explained what
we mean by a 2-cochain ψ in this case, as faces are more complicated. This is done in
Section 6.

3. Cobordisms and chronologies. We start creating the framework for Fig. 1 by
describing a 2-category3 of chronological cobordisms.

An (n + 1)-manifold W is a cobordism between two oriented n-manifolds Σ0 and Σ1
if its boundary is diffeomorphic to Σ0 t −Σ1 (the minus sign stands for the opposite
orientation of Σ1). We will often write Win and Wout for the components of ∂W identified
with Σ0 and −Σ1 respectively, and call them the input and the output of W .

Given cobordisms W from Σ0 to Σ1 and W ′ from Σ1 to Σ2 one can glue them together
along the orientation reversing diffeomorphism Wout ≈ Σ1 ≈W ′in to obtain a cobordism
W ′W . Unfortunately, this operation is defined only up to a diffeomorphism, the issue we
can address by considering cobordisms with collars. Namely, think of an n-manifold Σ
as an open cylinders Σ× (−ε, ε) for a fixed small ε > 0, and a cobordism from Σ0 to Σ1
as a manifold W with a pair of embeddings Σ0 × [0, ε) → W ← Σ1 × (−ε, 0]. If W ′ is
another cobordism from Σ1 to Σ2, then the gluing W ′W := W ′ ∪ (Σ1× (−ε, ε))∪W has
a well-defined smooth structure.

Definition 3.1. Let W be a cobordism and τ : W → I an oriented Morse function sepa-
rating critical points. The pair (W, τ) is called a chronological cobordism if τ−1([0, ε)) and
τ−1((1− ε, 1]) are the collars of Win and Wout respectively, on which τ is the projection
on the second factor. A homotopy of τ in the space of oriented Igusa functions is called
a change of a chronology.

We now explain some notions from the definition, referring for details to Appendix A.
An Igusa function f : W → I is allowed to have two types of critical points:

• A1 or Morse singularities, characterized by the property that the Hessian Hessp(f)
of f is nondegenerate, and

• A2 or birth-death singularities, for which the Hessian has a one-dimensional kernel
N(p), on which the third derivative of f does not vanish.

Choose a Riemannian metric on W . For a critical point p we denote by E±(p) the positive
or negative eigenspace of the Hessian Hessp(f) : TpW → TpW . A choice of orientations
for negative eigenspaces over all critical points is called an orientation of f . We denote
the space of oriented Igusa functions on W by Funor(W ).

A generic function f : W → I has only Morse singularities, but we need birth-
death singularities for generic homotopies. Higher singularities are unnecessary for higher

3 A brief introduction to the theory of 2-categories is included in Appendix B.
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homotopies if we equip these functions with framing, i.e. a choice of a basis for each E−(p),
see Theorem A.3. The space of oriented functions can be seen as a quotient of this space,
as explained at the end of Appendix A. This space may no longer be contractible, but it
is simply connected.

We are interested only in the order of critical points of the function τ , so that we
identify chronologies that differ by a change preserving the order.
Definition 3.2. Chronological cobordisms (W, τ) and (W, τ ′) are equivalent if there
exists a path γ in Funor(W ) from τ to τ ′ such that each γt : W → I is a Morse function
that separates critical points.4 In such case we write (W, τ) ∼ (W, τ ′) or τ ∼ τ ′.

Given cobordisms (W, τ) from Σ0 to Σ1 and (W, τ ′) from Σ1 to Σ2 we define a chronol-
ogy τ ′′ on the gluing W ′W by concatenation:

τ ′′(p) :=
{ 1

2τ(p), for p ∈W ,
1
2 (τ ′(p) + 1), for p ∈W ′.

(2)

The assumed behavior of a chronology on collars of a cobordism guarantees τ ′′ is smooth.
Hence, we have an associative and unital operation on equivalence classes of cobordisms,
where units are given by cylinders Σ × I with the simplest chronology—the projection
on I.

Recall that given two paths γ, γ′ : I → X in a topological space X such that γ(1) =
γ′(0) we define their concatenation γ′ ? γ by the formula

(γ′ ? γ)(t) :=
{
γ(2t), 0 6 t 6 1/2,
γ′(2t− 1), 1/2 6 t 6 1.

(3)

Definition 3.3.
(W,H0) (W,H1)

(W,H ′
0) (W,H ′

1)

H

γ γ′

H′

htp
y

Let H,H ′ : W × I → I be changes of chronologies such that (W,H0)
and (W,H ′0) are equivalent chronological cobordisms, i.e.
there is a path γ in Funor(W ) between H0 and H ′0. We say
H and H ′ are equivalent if there is a path γ′ from H1 to
H ′1 such that the paths γ′t ? Ht and H ′t ? γt are homotopic
in Funor(W ), see the square to the right. In such case we
write H ∼ H ′.
Remark 3.4. The connectivity of Funor(W ) implies the homotopy in the definition above
always exists. Hence, any two changes H,H ′ : W × I → I, for which H0 ∼ H ′0 and
H1 ∼ H ′1, are equivalent.

We can juxtapose changes occurring on different regions of a cobordism. Formally, if
H and H ′ are changes of chronologies on W and W ′ respectively, and cobordisms W
and W ′ can be glued together, there is a change of a chronology on W ′W induced by
the map

(H ′ ◦H)(p, t) :=
{
H(p, t), p ∈W,
H ′(p, t), p ∈W ′,

(4)

which may need to be smoothed. This operation is clearly associative and unital.

4 We are allowed to deform not only the function τ , but also the chosen Riemannian structure
on W . As shown in [Ig87] all Riemannian structures can be related by such deformations.
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Concatenation of changes of chronologies is a bit cumbersome: we cannot combine
homotopies H,H ′ : W × I → I if (W,H1) and (W,H ′0) are only equivalent, as H1 may
not agree with H ′0. Instead, we define

(H ′ ? H)(p, t) :=


H(p, 3t), 0 6 t 6 1/3,
γ(p, 2t− 1), 1/3 6 t 6 2/3,
H ′(p, 3t− 2), 2/3 6 t 6 1,

(5)

where γ is a path in Funor(W ) from H1 to H ′0. Hence, H ′ ? H is given as the following
sequence of homotopies:

(W,H0) H=⇒ (W,H1) γ=⇒ (W,H ′0) H′=⇒ (W,H ′1). (6)

This operation is well-defined up to equivalence due to Remark 3.4 (in particular, it does
not depend on the path γ), and it is clearly associative and unital up to equivalence.

Lemma 3.5. Choose pairs of equivalent changes of chronologies H ∼ H̃ and H ′ ∼ H̃ ′ on
a cobordism W such that H ′ and H can be concatenated. Then we can concatenate H̃ ′
with H̃, and H ′ ? H ∼ H̃ ′ ? H̃.

Proof. The asserted equivalences guarantee (W,Hi) ∼ (W, H̃i) and (W,H ′i) ∼ (W, H̃ ′i) for
i = 0, 1, and since H ′ can be concatenated with H, (W,H1) and (W,H ′0) are equivalent
as well. Hence, we have a sequence of equivalences (W, H̃1) ∼ (W,H1) ∼ (W,H ′0) ∼
(W ′, H̃ ′0), which shows H̃ ′ and H̃ can be composed together. The assertion follows, since
the rectangle below

(W,H0)

(W, H̃0)

(W,H1)

(W, H̃1)

(W,H ′
0)

(W, H̃ ′
0)

(W,H ′
1)

(W, H̃ ′
1)

Ht ωt

H̃t ω̃t

H′
t

H̃′
t

γt γ′
t (7)

commutes up to homotopy due to Remark 3.4, where γ, γ′, ω, and ω̃′ are paths of Morse
functions given by corresponding equivalences of chronological cobordisms.

All the above almost shows that chronological cobordisms form a 2-category—it re-
mains to check the interchange law (137) holds; this follows immediately as concatenation
and juxtaposition commute with each other. We state this as the following proposition.

Proposition 3.6. There is a strict 2-category of chronological cobordisms nChCob
with oriented manifolds of dimension (n − 1) as objects, equivalence classes of chrono-
logical cobordisms as morphisms, and homotopy classes of changes of chronologies as
2-morphisms. The composition of morphisms is induced by gluing, and the two composi-
tions of 2-morphisms are given as juxtaposition (the horizontal one) and concatenation
(the vertical one).

Remark 3.7. For a chronological cobordism W the set of critical points crit(W ) is
linearly ordered by the chronology: we write x < y if τ(x) < τ(y). This order is invariant
under equivalence of cobordisms, but it is affected by changes of chronologies.
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Fig. 4. A disjoint union in a chronological setting requires a shift.

One of the important operations on cobordisms is the disjoint union. For chronological
cobordisms it has to be defined carefully: with the naive definition one might get two
critical points at the same level, which is prohibited. Instead, we have to shift critical
points of the left or the right cobordism below critical points of the other one, obtaining
a ‘left-then-right’ and a ‘right-then-left’ disjoint unions denoted respectively by and

(see Fig. 4). Formally, we equip (W, τ) (W ′, τ ′) with the chronology

τr(p) :=
{
β1

1/2(τ(p)), p ∈W,
β

1/2
0 (τ ′(p)), p ∈W ′,

(8)

y

x

y=βb
a(x)

1

a b 1

where βba : I → I is a perturbed ‘bump function’: an increasing function which is very
close to 0 on the interval [0, a] and very close to 1 on [b, 1].
The chronology τ` on (W, τ) (W ′, τ ′) is defined in a simi-
lar way. Finally, the formula (8) can be naturally extended
to changes of chronologies—replace p with a pair (p, t).

This is the first place where we can see that chrono-
logical cobordisms indeed require a richer structure than
just a category: the disjoint unions defined above are functorial only up to a change of
a chronology σtW,W ′ : (W W ′, τr)⇒ (W W ′, τ`) that pulls W below W ′. This can be
done by a linear interpolation: σtW,W ′(p, t) := (1− t)τ`(p) + tτr(p).

Theorem 3.8. The 2-category nChCob is Gray monoidal. The monoidal product is
induced by the ‘right-then-left’ disjoint union and the unit is given by the empty ma-
nifold ∅.

Proof. We have to check conditions from Definition B.7. First, is cubical. Indeed,
the conditions from Definition B.5 are trivially satisfied, as σtW,W ′ : W W ′ ⇒ W W ′

does nothing if eitherW orW ′ has no critical points. Next, it is coherent with 2-morphism,
i.e. the square (138) commutes. Indeed, given changes of chronologies α on W and β′

on W ′ we construct a homotopy

hs := σtW,W ′ |[0,s] ? ((1− s)α β′ + sα β′) ? σtW,W ′ |[s,1] (9)

where σtW,W ′ |[a,b] is a restriction of σtW,W ′ to t ∈ [a, b]. The homotopy hs first shifts
W and W ′ a bit towards their final position, then it applies the changes α and β′

on appropriate levels, and after that it shifts W and W ′ further to their final posi-
tions. Finally, commutativity of (139) follows easily: the two changes σt ? (σt ◦ id) and
σt ? (id ◦σt) are homotopic by a linear interpolation.
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The unitarity condition is clear, which leaves only associativity to check. This follows
from the way is defined: the two chronologies on W (W ′ W ′′) and (W W ′) W ′′

are homotopic by a reparametrization of the target interval I.

Σ0 ⊔ Σ1

Σ1 ⊔ Σ0

W

The ordinary category of cobordisms is not only monoidal,
but it possesses a symmetry induced by a family of permutation
diffeomorphisms c : Σ1tΣ0

≈−→ Σ0tΣ1. Namely, take the cylin-
der (Σ0 t Σ1) × I with the standard inclusion as its input and
the diffeomorphism c as its output (see the picture to the side).
In case of chronological cobordisms, these permutation cylinders
form natural transformations between unary functors C ( )
and ( ) C, where C stands for any cylinder. This suggests
the permutation cylinders equip nChCob with a strict symmetry, see Definition B.9.
Indeed, commutativity of the triangle (140) follows easily from this construction.

Corollary 3.9. The Gray monoidal category (nChCob, , ∅) has a strict symmetry
induced by permutation diffeomorphisms c : Σ1 t Σ0

≈−→ Σ0 t Σ1.

There is another operation on chronological cobordisms similar to the disjoint unions–
the connected sum. Given chronological cobordisms W and W ′ remove vertical cylinders
from them (a cylinder C in (W, τ) is vertical if the restriction τ |C is a regular function)
and construct W W ′ by identifying the cobordisms along the newly created boundary.
Likewise for the disjoint unions, there are two connected sums of chronological cobordisms
W and W ′, the ‘left-then-right’ W W ′ and the ‘right-then-left’ one W W ′, related by
a change of a chronology σW,W ′ : W W ′ ⇒W ′ W that permutes the critical points.

Let nChCob◦ be the category of nonempty manifolds with two distinguished points,
and cobordisms between them, decorated with two vertical lines connecting the base-
points of the boundary manifolds. Then the connected sums are well-defined (choose
small neighborhoods of the distinguished lines), and we have the following analog of
Theorem 3.8.

Corollary 3.10. The 2-category nChCob◦ is Gray monoidal. The product is induced
by the ‘right-then-left’ connected sum and the unit is given by the (n− 1)-dimensional
ball.

We end this section with a combinatorial description of 2ChCob.

Proposition 3.11. 2ChCob is a symmetric Gray monoidal category with objects freely
generated by a circle S1 and morphisms freely generated by the following five cobordisms:

a merge a split a birth a positive
death

a negative
death

(10)

with a twist acting as a strict symmetry.
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One should read the pictures above from bottom to top: the bottom circles form
the input of a cobordism, the top ones form the output and the height function determines
a chronology. Orientations of critical points are visualized by arrows.

Proof. Every 1-dimensional manifold is a family of circles, so that objects of 2ChCob
are freely generated under the disjoint union by a single circle S1. Since all orientation
preserving diffeomorphisms of S1 are isotopic to the identity, chronological cobordisms
with no critical points are generated by a permutation of two circles, the symmetry of
the monoidal structure. Morse theory provides a description of cobordisms with a single
critical point. Since the order of critical points is fixed, it remains to analyze orientations
of the critical points.

We need only one merge and one split—an orientation of the saddle point can be
reversed by attaching a twist. The tangent space to a point of index 0 (a birth) is stable,
so that there is only one choice for orientation (the empty frame), but it is unstable at
points of index 2 (deaths). Hence, a choice of an orientation of a death is equivalent to
an orientation of the tangent space, which can be either coherent with the orientation of
the cobordism or not.

We shall use Cerf theory (see Section A) to describe 2-morphisms in terms of genera-
tors and relations. Most of them are easy to draw directly, but for some it will be useful
to use other presentations: movies and surgery diagrams.

A movie presentation of a chronological cobordism is a sequence of its regular levels,
dense enough to capture all topological changes: such a sequence contains at least one
regular level between any two critical ones. Two consecutive diagrams in the sequence
differ in one of the following ways:

• they are isotopic, so that there is no critical level in between,
• one diagram is obtained form the other by a saddle move ; this corresponds

to a merge or a split,
• a one circle component appear (for a birth) or disappear (for a death).

We can add additional information to encode orientations of the critical points: an ori-
ented chord for a saddle move, or a/c for a death oriented anti- or clockwise. We provide
below one example.

= a (11)

Movie presentations are a good way to visualize cobordisms. However, if a cobor-
dism (W, τ) has only saddle points, a more compact description is given by its surgery
diagram: a collection of circles with enumerated oriented chords between them. The cir-
cles illustrate the input of the cobordism W , whereas the chords represent 1-handles in
the handle decomposition of W with respect to the chronology τ . Performing surgeries
along the chords in the specified order results in a movie presentation of W . However, we
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can get more: a diagram with two chords encodes two chronological cobordisms, depend-
ing on the order of the chords, and a change that permutes the two points, see Fig. 3 on
page 296.

Proposition 3.12. Changes of chronologies are generated under composition and dis-
joint union by the following:

(1) creation and annihilation changes

(12)

in which the orientations of deaths are determined by the monotonicity condition
for d3τ at an A2 singularity (take the arrow at the saddle and rotate it towards
the vertical cylinder),

(2) the disjoint sum permutations

···

···

···

···

W ′

W σ⊔
W,W ′

···

···

···

···

W ′

W
(13)

(3) the connected sum permutations

···

···

···

···

W ′

W σ
W,W ′

···

···

···

···

W ′

W
(14)

(4) the exceptional permutation changes, represented by the following movies

and (15)

to which we refer respectively as a ×-change and a ♦-change, because of the shapes
of cobordisms involved.

Proof. According to Cerf theory there are two types of changes:

• those generated by A2-singularies, i.e. creation and annihilation changes, and
• those induced by homotopies Ht, such that Ht0 has two critical points at one level

for some t0.

In the latter case, we refer to the critical level of Ht0 as the singular section of Ht. Its
components carrying the critical points is a four-valent graph ΓH . Consider the connectiv-
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ity of the graph:5 the homotopy H represents a disjoint union permutation if ΓH has two
components, a connected sum permutation if ΓH is 2-connected, or one of the exceptional
changes if ΓH is 4-connected.

Remark 3.13. The surgery diagram of an ×-change consists of two
circles connected by two arrows. However, the arrows can either point
to the same or to different circles, and the two cases lead to surgery di-
agrams encoding non-equivalent changes. Hence, there are two versions
of the ×-change.

On the other hand, reversing one chord in a surgery diagram of a ♦-change results in
the inverse change. Indeed, the only topological information we have is the order of chords
induced by the arc connecting their heads (there is a natural orientation of the circle in
the surgery diagram induced from the orientation of the underlying cobordism). This
order may or may not coincide with the order of critical points, induced by the initial
chronology, and the two cases lead to mutually inverse permutation changes.

We shall now proceed to a description of relations between the generators of the set of
2-morphisms. These are given by homotopies of paths in the space of Igusa functions listed
in Section A. As before, not all of them can be easily drawn, especially the homotopies
relating the two ways of switching levels of three critical points. We shall encode them
with three-chord surgery diagrams—such a diagram represents six cobordisms, depending
on the order of critical points, call them a, b, c, and six permutation changes between
these cobordisms forming a hexagonal diagram

W (b<a<c) W (b<c<a)

W (a<b<c) W (c<b<a)

W (a<c<b) W (c<a<b)

(16)

The notation W (x<y<z) is used for the cobordism with the point x at the lowest critical
level, y in the middle, and z at the highest one. The relation imposed by the homotopy
makes this hexagon commute.

Proposition 3.14. The following is the complete set of relations among the generating
changes of chronologies listed in Proposition 3.12:

(1) the squares below commute for any cobordisms W , W ′, W ′′, and a 2-morphism α:

W W ′ W W ′′

W W ′ W W ′′

id⊔α

σ⊔
W,W ′ σ⊔

W,W ′′

id⊔α

W W ′ W W ′′

W W ′ W W ′′

id α

σ
W,W ′ σ

W,W ′′

id α

(17)

5 A graph Γ is n-connected if at least n edges must be removed to split it into two components.
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(2) hexagons encoded by the following surgery diagrams commute:

(18)

(19)

where the crossings in the last two diagrams are the artifacts of projecting the dia-
grams to the plane (singular levels of the corresponding homotopies are not planar).

Proof. We shall analyze the three groups of homotopies from Section A on page 345.

Group I : two changes occur simultaneously at different levels (126). This is the exchange
law for 2-morphisms, so that this group does not introduce new relations.

Group II : nontransverse changes (127). These imply a change followed by its inverse is
equivalent to the trivial one. Again, no interesting relations.

Group III : several critical points at the same level (128). This group introduces interest-
ing relations between generating 2-morphisms. A homotopy Hs,t from this group admits
a singular level: the critical level of some Hs0,t0 containing all the critical points (either
three Morse singularities, or one Morse and one birth-death point). Denote by ΓH the com-
ponents of the singular level carrying the critical points; it is a graph with two types of
vertices: 4-valent ones for Morse singularies, and 2-valent to birth-death singularities.

If the graph ΓH is disconnected, it must have a component with a single 4-valent ver-
tex. In such a case the relation imposed by H is commutativity of the left square in (17),
where the cobordism W contains the component of ΓH with a single 4-vertex, and α is
a change encoded by the other components (a creation or annihilation if the component
contains one 2-valent vertex, or a permutation otherwise).

If ΓH is 2-connected, break its two edges to obtain two components. The reverse
operation is the connected sum—this shows a homotopy with such a graph impose com-
mutativity of the right square in (17).

b b b

Finally, ΓH can be 4-connected, which requires three 4-valent
vertices. There is only one such graph, shown to the right. Take
a look on a regular level of Hs0,t0 just below the singular one—it is
a collection of circles obtained from ΓH by replacing a neighborhood
of each vertex with two arcs (not necessarily in a planar way). Join the arcs with a chord
to obtain a three-chord surgery diagram for H. All such diagrams are listed in lines (18)
and (19).
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Example 3.15. The sequence of homotopies

···

···

W

···

···

W ···

···
W

···

···

W (20)

represents a trivial change for any cobordism W , not necessarily connected. Indeed, go
around the right square in (17), where α is a creation change. Likewise a similar change
involving a split and a death is trivial.

4. Embedded cobordisms and linearization. In the view of the construction of
odd Khovanov homology it is unfortunate to have only one ♦-change up to inverse, see
Tab. 1. One solution to this issue is to use cobordisms embedded in D2 × I, in which
case we can easily define chronological cobordisms with corners—they are necessary to
construct the generalized Khovanov bracket for tangles. These cobordisms have a natural
Riemannian structure induced from the ambient space.

Definition 4.1. Given a natural number k, define the 2-category ChCobe(k) as follows.

(1) Objects are families of disjoint circles and k intervals properly embedded in a two-
dimensional disk D2.

(2) A morphism is a properly embedded surface W ⊂ D2 × I, such that the restriction
pr|W of the projection pr : D2×I → I to W is a separative Morse function. We call
it a chronology on W and, as before, we orient critical points of pr|W . Moreover, we
assume that ∂W consists of three parts: the input W ∩ (D2×{0}) of W , the output
W ∩ (D2 × {1}), and 2k vertical lines W ∩ (∂D2 × I).

(3) Finally, a 2-morphism is an admissible diffeotopy ϕ : (D2 × I) × I → D2 × I,
i.e. the one that fixes boundary points and at every moment t ∈ I the restriction
pr|ϕt(W ) is an Igusa function.

We call ChCobe(k) the 2-category of embedded chronological cobordisms.

Remark 4.2. We shall refer to orientations of deaths as clockwise or anticlockwise by
comparing them with the standard orientation of D2 × {t} ⊂ D2 × I.

We shall identify cobordisms related by diffeotopies ϕt for which pr|ϕt(W ) is separative
Morse at every moment t ∈ I. In particular, this holds for the following deformations:

• level-preserving diffeotopies: pr ◦ ϕt = pr for every t ∈ I,
• vertical diffeotopies: ϕt(p, z) = (p, ht(z)) for some diffeotopy ht of the interval I.

Another important family consists of locally vertical diffeotopies—they are vertical only
over a collection of disks, while constant beyond them.

Definition 4.3. Choose a family of disjoint vertical cylinders C1, . . . , Cr in D2 × I and
an embedded chronological cobordism W that is vertical in the annular neighborhood
of each ∂Ci. A diffeotopy ϕt is locally vertical if it is vertical on all Ci’s, but fixes all
points outside them except small annular neighborhoods of ∂Ci’s, in which we interpolate
the two behaviors.
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The requirement that W intersects each ∂Ci in vertical lines implies that ϕt cannot
create critical points. Hence, each interpolation (1 − s)ϕ1 + s id induces a chronology
on W , so that locally vertical diffeotopies can be ‘straightened up’ (compare this with
Theorem A.3).
Proposition 4.4. Let ϕt and ϕ′t be diffeotopies locally vertical with respect to the same
family of cylinders. If ϕ1 = ϕ′1, then they are homotopic in the space of admissible
diffeotopies. In particular, a locally vertical diffeotopy ϕt satisfying ϕ1 = id is trivial.
Proof. Take a linear homotopy ht,s := sϕt+(1−s)ϕ′t. Because both ϕt and ϕ′t are locally
vertical, each ht,s is a diffeomorphism of D2×I such that pr|ht,s(W ) is a Morse function.

The proposition above makes it possible to define disjoint unions in ChCobe(0) (more
general operations on all categories ChCobe(k) are defined in Section 6). Given embed-
ded cobordisms W and W ′ with no corners we define the ‘left-then-right’ and ‘right-then-
left’ disjoint unions W W ′ and W W ′ by placing the cobordisms next to each other
and pushing the critical points of W below or above those of W ′ respectively. The dis-
joint union permutation σtW,W ′ : W W ′ =⇒ W W ′ is realized as a locally vertical
diffeotopy, so that it equips with a structure of a cubical functor.
Corollary 4.5. ChCobe(0) is a Gray monoidal category, with a monoidal structure
given by the ‘right-then-left’ disjoint union .
Remark 4.6. This monoidal structure is strictly braided with a braiding induced by

twists and (see Definition B.9). We shall not use this fact in our paper.

The connected sum W W ′ of embedded cobordisms with no corners is formed from
W W ′ by performing a surgery along a vertical curtain in D2 × I with one edge on W

and the other on W ′. Again, there is some choice involved, and to make it a well defined
operation one has to decorate objects and morphisms of ChCobe(0) with additional
data, such as embedded arcs originating at the circles and ending at the boundary of D2.

The 2-category ChCobe(0) is a finer version of abstract cobordisms. For instance,
there are two kinds of merges, depending on whether the input circles are nested or
not, and likewise for splits. We shall usually ignore this additional structure
except one case: we split ♦-changes into two groups using the intersection
number of the two arrows in their surgery description (the two-arrow dia-
grams). In other words, rotate the diagram to make the inner arrow points
upwards, and check the direction of the outer one—it points either to the left
or to the right (as shown in the diagrams to the right), and the two changes
encoded by the diagrams are not equivalent.

Linearization of cobordisms. The 2-category ChCobe(0) is not good for homological
constructions and we shall ‘linearize’ it. More precisely, choose a commutative ring R

with a function ι : 2Mor(ChCobe(0)) → R that is multiplicative with respect to both
compositions of 2-morphisms, and define a category RChCobeι (0) as follows:

(1) the set of objects is not changed and it consists of families of circles in the plane
D2, and
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(2) morphisms are finite linear combinations of chronological cobordisms r1W1 + . . .+
rkWk, with ri ∈ R, modulo chronological relations W ′ = ι(ϕ)W , one per every
2-morphism ϕ : W =⇒W ′.

We extend the composition of cobordisms to formal sums in a linear way. The func-
tion ι can be considered as a part of a 2-functor ChCobe(0) → RChCobeι (0), where
2-morphisms in the target category are scalings by elements of the ring R. We want this
functor to be ‘faithful enough’ to support the construction of odd Khovanov homology.
We start with a few observations.

Lemma 4.7. For any function ι as above there is another one, ι̂, which assigns 1 to
creations and annihilations, such that the linearizations RChCobeι (0) and RChCobeι̂ (0)
are isomorphic.

Proof. Each of the three creations (12) involve different generators. Hence, we can force
the coefficients associated to them to be 1 by scaling births and deaths accordingly.

Lemma 4.8. We have ι(σtW,W ′) = ι(σW,W ′) whenever each of W and W ′ is a merge or
a split.

Proof. It follows from the right square in (17) for the cobordismW and the connected sum
permutation α := σ : M W ′ =⇒ M W ′, where M is a merge. Indeed, commutativity
of the square implies

ι(σW,M )ι(σtW,W ′)ι(σM,W ′) = ι(σM,W ′)ι(σW,W ′)ι(σW,M ) (21)

so that the middle terms must be equal.

As a result, we have to specify ι only for disconnected union permutations and excep-
tional changes. Instead of finding the most general formula, and keeping in mind we want
to regard embedded cobordisms as close to the abstract ones as possible, we shall define
ι(σtW,W ′) using the following bidegree chdegW ∈ Z × Z, which counts critical points of
the cobordism W as follows:

chdegW := (#births−#merges,#deaths−#splits). (22)

The following result shows a connection between this bidegree with other topological
properties of a cobordism.

Lemma 4.9. Given a chronological cobordism W of degree chdegW = (a, b) with n inputs
and m outputs, a+ b = χ(W ) and a+ n = b+m.

Proof. Straightforward, by checking for generating cobordisms (10).

It follows the bidegree is preserved by changes of chronologies, so that RChCobe(0) is
a graded category (morphisms between two objects form an R-module graded by Z× Z,
and the degree function is additive with respect to composition). The following is deter-
mined by the requirement that ι(σtW,W ′) depends only on the degrees of W and W ′.

Proposition 4.10. Choose invertible elements X,Y, Z ∈ R such that X2 = Y 2 = 1 and
define ι on generating changes of chronologies by the following rules:

(1) creations and annihilations are sent to 1,
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(2) the coefficient associated to a disjoint union and connected sum permutation involv-
ing cobordisms of degrees (a, b) and (c, d) is given by λ(a, b, c, d) = XacY bdZad−bc,

(3) a ×-change is sent to Y if the arrows point to the same circle and to X otherwise,
(4) a ♦-change with a diagram in which the inner arrow is oriented upwards is sent to

1 or XY depending on whether the outer arrow is oriented to the left or to the right
respectively.

Then ι : 2Mor(ChCobe(0))→ R is a well-defined multiplicative function.

Proof. First, coherence of ι with the interchange law for 2-morphisms (137) follows from
commutativity of R. Next, ι(α)ι(α−1) = 1 for every elementary change α: this is trivial
for creations and annihilations, and follows easily for disjoint union and connected sum
permutations from the way λ is defined. If α is an exceptional permutations, ι(α−1) = ι(α)
is a square root of 1.

The commutativity of squares (17), in particular the triviality of (20), is preserved
due to the way λ is defined—it is a group homomorphism in each variable. Finally, it
remains to check the relations given by the four planar diagrams in (18). For that see
Tab. 2: the numbers below each diagram indicate how many times a particular elementary
change occurs when we go around the hexagon (16). The product of values of ι is equal
to 1 in each case.

(03|00|300)
(21|00|300)

(10|11|100)
(01|20|100)
(01|02|100)

(10|20|010)
(10|02|010)
(01|11|010)

(30|00|030)
(11|00|030)

Tab. 2. Surgery diagrams of homotopies relating permutation changes. The numbers below
each diagram count how many times various permutations occur: ×-changes with parallel

or opposite arrows (the first group), ♦-changes with outer arrows oriented to the left
or to the right (the second group) and the other changes grouped by the value of ι

(respectively X, Y and Z). Different sequences correspond to different orientations of chords.

W
W ′

birth merge split death
birth X X Z−1 Z
merge X X Z Z−1

split Z Z−1 Y Y
death Z−1 Z Y Y

We shall often use the values of ι for
disjoint union and connected sum permu-
tations; they are gathered in the table to
the right. For instance, we have

X = , Z = .

Corollary 4.11. The following rules for reversing orientations hold:

= X , = Y , = Y . (23)
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Proof. The last rule follows from the following change

(24)

and the first one from

(25)

Reversing an orientation of a split is done in a similar way.

Remark 4.12. We shall usually omit the subscript, writing RChCobe(0) for the lin-
earized category. If the choice of ι is important, we shall write RChCobeabc(0) for the quo-
tient by chronological relations with parameters X, Y , and Z set to a, b, and c accordingly.

Remark 4.13. A choice of parameters X,Y, Z ∈ R as above is equivalent to specifying
a ring homomorphism k → R, where k := Z[X,Y, Z±1]/(X2=Y 2=1). Hence, there is
a base change isomorphism RChCobe(0) ∼= R⊗ kChCobe(0) implying kChCobe(0) is
the universal linearization of ChCobe(0) with respect to the function ι defined as in the
proposition above.

From now on we shall take k as the ring of coefficients. Choose a change of a chronology
ϕ : W =⇒W ′ that is not a ♦-change. Despite ϕ being a diffeotopy of the ambient space,
the value ι(ϕ) depends only the restriction of ϕ to the cobordism W , which is a change of
a chronology in the abstract sense. Even more, given a diffeomorphic cobordism W̃ ≈W
and a corresponding change ϕ̃ on W̃ , ι(ϕ̃) = ι(ϕ).
♦-changes do not introduce essential relations in kChCobe(0)—they force a merge

followed by a split to be annihilated by (1 − XY ), a relation that is a consequence
of the others, see Corollary 4.11. Hence, we can safely forget the ambient space and
identify diffeomorphic cobordisms obtaining another category, which we shall denote by
kChCob(0). Formally, morphisms of kChCob(0) are k-linear combinations of diffeo-
morphism classes of chronological cobordisms modulo the relations induced by ι: we set
W ′ = ι(ϕ)W for any embedding of W and W ′ into D2×I and a diffeotopy ϕ : W =⇒W ′.

Remark 4.14. One should not confuse kChCob(0) with a linearization of 2ChCob—in
the latter one must have X = Y not only because there is only one type, up to inverse,
of a ♦-change, but this equality is also imposed by the additional relations coming from
the non-planar diagrams (19). This is a reason why it is so difficult to extend the definition
of odd Khovanov homology to virtual links, even if we restrict to those on orientable
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surfaces: the non-planar diagrams (19) encode the cube of resolutions for the virtual
Borromean rings, which are realized on a torus.

Because we identify in kChCob(0) diffeomorphic cobordisms, there exists a cobor-
dism W such that W = kW for some k ∈ k. Indeed, it is enough to find a nontrivial
change of a chronology between diffeomorphic cobordisms, such as a permutation of two
spheres:

(26)

Another example is a twice punctured torus—reverse orientations of both saddle points
and then rotate the cobordism. The following result states that nothing more can happen.

Theorem 4.15. Choose an embedded chronological cobordism W in kChCob(0), where
k = Z[X,Y, Z±1]/(X2 = Y 2 = 1), and write Aut(W ) := {k ∈ k |kW = W}. Then

Aut(W ) =
{
{1}, if W has genus 0 and at most one closed component,
{1, XY }, otherwise.

(27)

A proof of this theorem is postponed to Section 10. Notice that elements of Aut(W )
are invertible, since they are products of values of ι.

5. Khovanov complex. Now we go back to the construction of the generalized Kho-
vanov complex. For this section fix a link diagram D with n crossings, among which
there are n+ positive and n− negative ones. We need to make a few choices: enumer-
ate the crossings, and choose for each of them an arrow connecting the two arcs in its
horizontal resolution, i.e. or .

Fig. 1 visualizes the construction for the trefoil knot. We can first see it as a dia-
gram I(D) in the 2-category ChCobe(0): vertices are 1-manifolds (resolutions of the di-
agram D), edges are chronological cobordisms between these manifolds and faces are
decorated with changes of chronologies. It should be obvious how to create such a dia-
gram for a link diagram D (see the discussion about diagrams with holes in Section 2).
This diagram commutes in the 2-categorical sense: a composition of 2-morphisms along
any 3-dimensional subcube is trivial:

000

100

010

001

110

011

111 = 000

100

001

110

101

011

111 (28)

This follows from Proposition 4.4, as the two changes are locally vertical with respect to
small cylinders over the crossings of D.

Apply the function ι : 2Mor(ChCobe(0)) → k from Section 4 to faces of the cube
I(D), where k = Z[X,Y, Z±1]/(X2 = Y 2 = 1); the faces are now decorated with elements
from k∗, the group of invertible elements in k, according to Tab. 1. They define a 2-cochain
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ψ ∈ C2(In;k∗). A 1-cochain ε ∈ C1(In;k∗) is called a sign assignment if dε = −ψ. This
means the corrected cube Iε(D) anticommutes, where Iε(D) has the same vertices as
I(D), but for an edge ζ one has Iε(D)(ζ) = ε(ζ) · I(D)(ζ). Existence of such a cochain
follows easily.

Proposition 5.1. The cochain ψ is a cocycle for any link diagram D. Hence, −ψ = dε

for some sign assignment ε.

Proof. The 2-commutativity of faces (28) of any 3-dimensional subcube in I(D) implies
that d(−ψ) = dψ = 1. The existence of ε follows from the contractibility of In.

Motivated by [BN05] we construct the generalized Khovanov bracket in the additive
closure Mat(kChCob(0)) of the category kChCob(0).

Definition 5.2. The additive closure Mat(C) of an R-linear category C, where R is
a commutative ring, is defined as follows:

• objects are formal direct sums
⊕n

i=1 Ci of objects from C,
• a morphism F :

⊕n
i=1 Ai →

⊕m
j=1 Bj is a matrix (Fij : Aj → Bi) of morphisms

from C,
• the composition of morphisms F ◦G mimics the formula for a product of matrices

(F ◦G)ij :=
∑
k

Fik ◦Gkj . (29)

This category is R-linear with a natural action of R and addition defined as addition of
matrices: (F +G)ij := Fij +Gij .

We can represent objects of Mat(C) by finite sequences (vectors) of objects in C and
morphisms between such sequences by bundles6 (matrices) of morphisms in C, see Fig. 5.
It means each column in Fig. 1 forms a single object Ci, as indicated by the dotted
arrows going downwards, and all edges between two columns form a single morphism
d : Ci → Ci+1. Because every square in Iε(D) anticommutes, d2 = 0.

A1

A2

G

B1

B2

B3

F

C1

C2

Fig. 5. The composition of morphisms in the additive closure of a category.
The component (F ◦G)21 is indicated by solid lines.

There is one more ingredient to Fig. 1: the numbers in curly brackets along the dotted
arrows. As usual, this is a notation for degree shifts.

6 In the colloquial sense, not the mathematical one.
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Definition 5.3. Choose an abelian group G. We say that an R-linear category C is
G-graded, if

(1) for any objects A,B the set Mor(A,B) is a G-graded R-module such that idA is
homogeneous of degree 0 for any object A,

(2) the degree function is additive with respect to composition: deg(f ◦ g) = deg f +
deg g, for homogeneous f and g, and

(3) there is a degree shift functor Ob(C) × G 3 (A,m) 7−→ A{m} ∈ Ob(C) preserv-
ing morphisms, i.e. Mor(A{m}, B{n}) = Mor(A,B), but degrees are changed: if
a morphism f ∈ Mor(A,B) has degree d, then deg f = d + n −m when regarded
as an element of Mor(A{m}, B{n}).

We have already defined a Z×Z-valued degree function for chronological cobor-
disms (22). Here, we shall collapse it to an integral grading, by summing up both num-
bers, so that degW = χ(W ) is the Euler characteristic of a cobordism W . Degree shifts
are introduced artificially: add formal objects Σ{m} for every 1-manifold Σ and m ∈ Z,
and extend the degree map as in the definition above:

degW := χ(W ) + n−m for W : Σ0{m} → Σ1{n}. (30)

All cobordisms in the cube of resolutions have degree −1. Hence, taking Ci{i} at i-th
place results in a complex with a degree 0 differential.

This is the last piece of the construction. Below we summarize everything, giving a full
definition of the bracket.

Definition 5.4. Given a link diagramD with n crossings construct its cube of resolutions
I(D) and choose a sign assignment ε. The generalized Khovanov bracket of D is a chain
complex JDKε with:

JDKiε :=
⊕
‖ξ‖=i

Dξ{i}, (31)

dε|Dξ :=
∑
ζ:ξ→ξ′

ε(ζ) ·Dζ , (32)

where ‖ξ‖ := ξ1 + . . .+ ξn is the weight of a vertex ξ.

Corollary 5.5. The sequence (C, d) at the bottom line of Fig. 1 is a chain complex.

Proof. This follows from anticommutativity of the corrected cube Iε(D).

There are a few choices involved in the construction of JDKε: an order of crossings, ar-
rows at the crossings, and the sign assignment ε. We shall now show that different choices
lead to isomorphic complexes. First, different orientation of the arrows over crossings can
be compensated by an edge assignment.

Lemma 5.6. Let D1, D2 be diagrams of a link L with n crossings, which differ only in
directions of arrows over crossings. Then for any sign assignment ε1 for I(D1) there
exists a sign assignment ε2 for I(D2) such that Iε1(D1) = Iε2(D2).

Proof. Without loss of generality we may assume D1 and D2 differ only in the direction
of the arrow at the i-th crossing. Reversing the arrow changes orientation of critical points
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of cobordisms at edges ζ with ζi = ∗. Let ψi be the commutativity cocycle of the cube
I(Di). Given a sign assignment ε1 for I(D1) we define

ε2(ζ) :=


ε1(ζ), if ζi 6= ∗,

Xε1(ζ), if ζi = ∗ and Dζ is a merge,
Y ε1(ζ), if ζi = ∗ and Dζ is a split.

(33)

A direct computation shows dε2 = −ψ2, and ε2 is the desired sign assignment for I(D2).

A sign assignment for a given cube is unique up to an isomorphism, where an isomor-
phism of cubes η : I → I ′ is a collection of invertible morphisms ηξ : Iξ → I ′ξ such that
the square commutes

Iξ I ′
ξ

Iξ′ I ′
ξ′

ηξ

Iζ I′
ζ

ηξ′

(34)

for every edge ζ : ξ → ξ′.

Lemma 5.7. Let ε and ε′ be two sign assignments for I(D). Then the cubes Iε(D) and
Iε′(D) are isomorphic.

Proof. The equality dε = −ψ = dε′ and contractibility of In implies that ε′ = dη · ε
for some 0-cochain η ∈ C0(In;k∗). The family of morphisms fξ := η(ξ) · id form then
a desired isomorphism f : Iε(D)→ Iε′(D).

An isomorphism of cubes induces an isomorphism of complexes, resulting in the fol-
lowing statement.

Proposition 5.8. The isomorphism class of the Khovanov bracket JDKε depends only
on the link diagram D.

Proof. Changing the order of crossings results in a different parametrization of the cube
I(D), but the chain objects JDKiε are preserved and likewise for the differential. Inde-
pendence of the other choices follows from Lemmas 5.6 and 5.7, as an isomorphism of
anticommutative cubes descends to an isomorphism of complexes.

The generalized bracket, even up to chain homotopies, is not a link invariant, but it is
not very far from it. To construct an invariant we have to take an oriented diagram and
shift degrees (both the internal grading and the homological one) according to the number
of positive and negative crossings.

Definition 5.9. Let D be an oriented link diagram with n+ positive and n− negative
crossings. The generalized Khovanov complex Kh(D) of D is obtained from the bracket
JDK by the degree shifts Kh(D) := JDK[−n−]{n+ − 2n−}, i.e.

Khi(D) = JDKi−n−{n+ − 2n−}.

We shall show invariance of the complex in Section 7, but before that we describe
an extension of the construction to tangles.
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6. Tangles and planar algebras. Tangles have a rich algebraic structure called a pla-
nar algebra [Jo99]: they can be combined together to produce larger tangles, by connecting
some of their endpoints. We follow here the exposition from [BN05].

Definition 6.1.

b

1
b 2 b

3
b

4
b

A planar arc diagram D with d inputs is a disk
D2 missing d smaller disks D2

i , together with a proper embedding
of disjoint circles and closed intervals. Each boundary component
carries a basepoint and meets an even number of intervals. We
say that D is oriented if the embedded circles and intervals are
oriented. Both oriented and non-oriented planar arc diagrams are
considered up to planar isotopies.

We can compose planar arc diagrams by placing one of them in a hole of another.
This operation is associative: when composing more than two diagrams, the final result
does not depend in which order they are composed.

Definition 6.2. A planar algebra P is a collection of sets P(k) together with operators

D : P(k1)× . . .× P(ks)→ P(k), (35)

one for each planar arc diagram D, whose composition is associative and radial diagrams
(i.e. those with a single input and radially embedded intervals) correspond to identity
maps. An oriented planar algebra is defined similarly, using oriented planar arc diagrams.

Example 6.3. Given a planar arc diagram D we can insert into its holes some tangle
diagrams, creating another tangle diagram. This results in a map

D : T 0(k1)× . . .× T 0(ks)→ T 0(k), (36)

where T 0(k) is the set of all tangle diagrams with 2k endpoints embedded in a disk D2

with a basepoint on its boundary (the basepoints make this operation well-defined).
Because Reidemeister moves are local, we can replace T 0(k) with sets of tangles T (k)
and the operation induced by D is still well-defined. In a similar way oriented diagrams
allow us to combine oriented tangles. Here, we group tangles (or tangle diagrams) into
sets T+(~s) (respectively T 0

+(~s)), labeled with finite sequences ~s of +’s and −’s encoding
orientation of the endpoints.

Definition 6.4. A morphism of planar algebras Φ : P1 −→ P2 is a collection of mor-
phisms Φk : P1(k) −→ P2(k) commuting with planar operators, i.e.

D ◦ (Φk1 , . . . ,Φks) = Φk ◦D (37)

for every operator D. In a similar way one defines morphisms of oriented planar algebras.

Example 6.5. There is a natural morphism from the planar algebra of tangle diagrams
to the planar algebra of tangles that maps a tangle diagram into the tangle it represents.

We shall now construct the Khovanov complex for a tangle diagram T with 2k end-
points. As mentioned in Section 2, we can construct the cube of resolutions I(T ) using
cobordisms with corners ChCobe(k). These 2-categories also form a planar algebra, with
a cubical functor

D : ChCobe(k1)× . . .×ChCobe(kd) −→ ChCobe(k) (38)
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associated to every planar arc diagram D as follows.

• The object D(Σ1, . . . ,Σd) is defined in the same way as a composition of tangle
diagrams: simply insert the pictures Σi into holes of D.

•
W1

W2

W3

For cobordisms take a curtain diagram D×I (see Fig. 6 for
an example) and fill its holes with the cobordisms. Here,
one has to do the same trick as with the disjoint sum—
to shift all critical points, placing the critical points of
the first cobordism at the top, below the critical points of
the second one and so on.
• Finally, for changes of chronologies αi : Wi ⇒W ′i there is an induced change

D(α1, . . . , αd) : D(W1, . . . ,Wd) =⇒ D(W ′1, . . . ,W ′d) (39)

defined as a composition ᾱ1 ◦ . . .◦ ᾱd, where ᾱi = D(idW1 , . . . , αi, . . . , idW ′d) is given
by αi in the i-th hole (reparametrized accordingly) and fixed beyond it. Simply
speaking, all changes αi are applied at the same time, but on different regions.7

It follows directly from Proposition 4.4 that the functors defined above are cubical. They
extend naturally to cubes in ChCobe(k).

1
2

3

4

Fig. 6. The planar operator on the set of cobordisms with corners associated
to the planar diagram from Definition 6.1 consists of a cylinder

with hollow tubes and curtains, i.e. properly embedded vertical rectangles.

Corollary 6.6. The function T 7→ I(T ) is a morphism of planar algebras, i.e.

I(T ) = D(I(T1), . . . , I(Td)) (40)

for a planar arc diagram D and tangle diagrams T1, . . . , Td with an appropriate number
of endpoints.

Remark 6.7. We can extend the integral degree to cobordisms with corners by setting
degW := χ(W )− k for W ∈ ChCobe(k), and this degree is preserved by planar algebra
operators. However, cobordisms with corners do not admit a natural Z×Z-grading defined
in Section 4.

The main problem when defining the Khovanov complex for tangles is to understand
the commutativity cocycle ψ. For instance, a single saddle is a part of both a merge

7 A change defined in this way might not be generic.
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and a split:

b
split merge

(41)

and any of the diagrams in Tab. 1 is a closure of two saddles. Therefore, a coefficient
associated to a change of a chronology cannot be a single element of the ring k, but it
must be a gadget that returns such an element after all corners and vertical boundaries
are connected in pairs.

Definition 6.8. A closure planar diagram is a planar arc diagram with one input (hence,
it is an annulus) and embedded intervals only with endpoints on the input boundary.

Denote by CPO(k) the set of all closure planar diagrams. If T is a tangle diagram
with 2k endpoints and D ∈ CPO(k) is a closure operator, then D(T ) is a link. A diagram
D ∈ CPO(k) induces a strict 2-functor8

ChCobe(k)→ ChCobe(0)→ kChCob(0), (42)

which suggests the commutativity cochain ψ takes values in k(k) := {f : CPO(k)→ k},
the ring of all functions from the set of closure planar operators to k. To compute ψ(S)(D)
identify the picture D(S) in Tab. 1 on page 297 (an example is given in Tab. 3). It follows
immediately that ψ is a cocycle and that JT Kε, up to an isomorphism, does not depend
on a sign assignment ε.

Closure diagram
b b

ψ




b




X Y

ψ




b




Z−1 XY

Tab. 3. Values of ψ for some diagrams with four endpoints.

Remark 6.9. For simplicity, the linearization of ChCobe(k) with coefficients in k(k)
will be written as kChCob(k).

Remark 6.10. It can be shown that categories kChCob(k) form a planar algebra. How-
ever, there is no analogue of Corollary 6.6 for signed cubes: planar operators are only

8 A cubical functor taking one argument is automatically strict.



A 2-CATEGORY OF CHRONOLOGICAL COBORDISMS 319

cubical functors and as such they do not preserve anticommutativity. In particular, we
cannot use planar operators to combine generalized brackets together as it was done
in [BN05].

7. Proof of invariance. The Khovanov complex Kh(T ) is not a tangle invariant. For
example, it depends on the number of crossings in a chosen diagram. This dependence
disappears after passing to the homotopy category of complexes and imposing modified
versions of Bar-Natan’s S, T, and 4Tu relations [BN05] explained below.

(S)
= 0

The S relation replaces with 0 all cobordisms that have a sphere
as a connected component. The number and orientations of critical
points do not matter.

(T )

= Z(X + Y )

The T relation allows us to remove a standard torus
component at a cost of multiplying the cobordism with
Z(X+Y ). Here, the standard torus is defined as a torus
with four critical points and an arrow at the merge point-
ing to the circle originating on the left hand side of the split. The death is oriented
clockwise.

(4Tu)
Z + Z = X + Y

The four tube relation 4Tu in-
volves four cobordisms from two
circles to two circles. Each of
them consists of a tube and two
caps, but the position of the tube is different in each picture: for the first two
cobordisms the tube is a vertical cylinder over one of the two circles, while in
the remaining two cases it connects either the input or the output circles. Notice
the choice of framing for saddle points and heights of caps (the left caps are smaller
than the right ones). Again, all deaths are oriented clockwise.

The relations above, especially T and 4Tu, are local. This means all other critical points
can appear only above or below the pictures shown.9 All relations are homogeneous—
the degree of the standard torus is zero, whereas each cobordism involved in 4Tu has de-
gree (−1,−1)—so that they are coherent with changes of chronologies. Let kChCob/`(k)
be the quotient of kChCob(k) by these relations.

Theorem 7.1. Let T be a tangle with 2k endpoints. The homotopy type of the generalized
Khovanov complex Kh(T ), regarded as an object of Kom(kChCob/`(k)), is an invariant
of T , i.e. complexes for two tangle diagrams related by any of the Reidemeister moves
are chain homotopy equivalent.

We shall first prove this theorem locally, for the tangles defining Reidemeister moves.
Using the planar algebra of chronological cobordisms we shall then extend the homotopy
equivalences to complexes for bigger tangles. Proofs will be done on pictures of cobordisms
and for simplicity we omit some details, keeping in mind the following conventions:

9 This is exactly how the right disjoint union of chronological cobordisms behaves.
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(1) basepoints should be chosen in the same place for all pictures involved in each
proof,

(2) all deaths are oriented clockwise, and
(3) arrows orienting saddles are directed either to the right or to the front.

In particular, we can cancel at no cost a merge or a split with a birth or a death respec-
tively on its right-hand side, while a left-hand cancellation costs a multiplication by X

or Y .

Definition 7.2. We say that a chain complex D is a strong deformation retract of a chain
complex C if there are chain maps f : D → C and g : C → D such that gf = id and
fg − id = dh + hd for a homotopy h such that hf = 0.10 The chain map f is called
an inclusion into a deformation retract.

Lemma 7.3. The bracket
q y

{1} is a strong deformation retract of
q y

. Hence,
Kh( ) and Kh( ) are homotopy equivalent for any orientation of the tangle.

Proof. The second statement follows from the first one, because no matter how the tangle
is oriented, its crossing is positive. Consider now the diagram below. Rows together
with morphisms pointing to the right represent the Khovanov brackets

q y
(the top

row) and
q y

(the bottom row), whereas the morphisms pointing to the left are chain
homotopies in these complexes (zero at the top and a curtain with a birth at the bottom).
The coefficient ε comes from a sign assignment—although we could take ε = 1, this more
general situation turns out to be useful when extending the proof to the global case.s {

:

s {
:

00

0

d= ǫ

h=−ǫ−1

Y


X −Z


= f0

g0 =XZ−1

Vertical arrows define chain maps f :
q y

→
q y

and g :
q y

→
q y

, which is
obvious for g, but requires the following short computation for f :

ǫ−1df0 = XY − Y Z = Y Z − Y Z = 0. (43)

10 We will often omit the composition sign ◦.
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When the degree shifts are applied, both f and g have degree 0. They are chain homotopy
equivalences, as the relation T implies gf = id:

g0f0 = Y Z−1 −XY = (Y (X + Y )−XY ) = id, (44)

whereas 4Tu makes f0g0 − id = hd:

0 = Z + Z −X − Y

= Y Z +XZ −XZ − = −XZ(f0g0 − id−hd).

After expanding f0g0 we can see that the last cobordism should appear with the co-
efficient −XY . The equality holds, because the cobordism has a handle, hence, it is
annihilated by (1 − XY ). Together with dh = − id = f1g1 − id (remove the birth),
this shows that the maps f and g are mutually inverse homotopy equivalences. To finish
the proof, notice that hf = 0 trivially.

Remark 7.4. Suppose is a part of a bigger tangle diagram T and consider the cor-
rected cube of resolutions Iε(T ). If we replace edges dζ corresponding to the crossing in

with homotopies hζ defined as in Lemma 7.3 (this reverses directions of the edges),
the new cube still anticommutes. Indeed, as dζ is always a merge and hζ is a birth,
checking anticommutativity reduces to comparing the following squares.

•

•

•

•
sa
dd
le

m
erge

m
erge

sa
dd
le

•

•

•

•

sa
dd
le birth

birth
sa
dd
le

(45)

Whatever the saddle is, the relation between the top and the bottom cobordism in the left
square is exactly the same as the relation between the left and the right cobordism in
the right square. Because we corrected hζ with the inverse of the coefficient for dζ , coeffi-
cients along the circular arrows are the same and anticommutativity of one of the squares
implies anticommutativity of the other.

Lemma 7.5. The bracket
q y

{1} is a strong deformation retract of
q y

[1]. Hence,
Kh( ) and Kh( ) are homotopy equivalent for any orientation of the tangles involved.
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Proof. As before, the second claim follows from the first one, as the two crossings in
have different signs for any orientation of the tangle. The first sentence follows from

the diagram in Fig. 7. As before, ε’s come from some sign assignment (so that the lower
square anticommutes). The nontrivial components of f and g are chosen as compositions
f0 := h∗1d1∗ and g0 := d∗0h0∗. Again, both f and g have degree 0 after the degree shifts
are applied.

The morphisms f and g are chain maps: the equalities df = 0 and dg = 0 either are
trivial or they follow easily from the chronological relations. The relation S makes both
gf = id and hf = 0 and it remains to show that h is a chain homotopy between fg and
the identity morphism. The only nontrivial case is in the middle, were we have to check
the matrix equality(

g0f0 f0

g0 I

)
−
(id 0

0 id
)

=
(
h∗1d∗1 + d0∗h0∗ h∗1d1∗

d∗0h0∗ 0
)
. (46)

It follows from definitions of f0 and g0 and the 4Tu relation:

0 = Z + Z −X − Y

= XZ +XY Z −XZ −XY Z

= XZ − γϕXZ −XZ −XY Z

= XZ(−f0g0 + id+h∗1d∗1 + d0∗h0∗).

The coefficient X at the first term appears, because the birth is canceled with a merge
from the left side. The same happens in the last two terms, but in the third one we also
have to reverse an orientation of the lower merge. Finally, to modify the second term,
we first used chronological relations and then anticommutativity of the lower square in
Fig. 7 (erase the caps to see compositions of differentials).

Remark 7.6. As before, if we take a cube for a bigger tangle diagram the homotopies h0∗
and h∗1 anticommute with edges corresponding to other crossings than the two involved
in the second Reidemeister move. This can be shown similarly as in Remark 7.4: the two
homotopies are paired with edges that are always a merge or a split, however we close
the diagram.
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s {
:

s {
[ 1] :

g

f

h d

0

s {
0

00

s {

01

s {

10

s {

11

s {

0 0

ǫ∗0
ǫ1∗

ǫ0∗ ǫ∗1

−ǫ−1
0∗ Y

−ǫ−1
∗1

0 0

id

γ

ϕ

γ=−ǫ∗0ǫ
−1
0∗ Y

ϕ=−ǫ1∗ǫ
−1
∗1

Fig. 7. Invariance under the R2 move.

The case of the third move is the simplest one, although it deals with the largest
complex. This is because it can be derived from the invariance under the second move, as
it is done in the case of the Kauffman bracket. For this, we need one property of mapping
cone complexes.

Definition 7.7. The mapping cone of a chain map ψ : C → D is the chain complex
C(ψ) defined as

C(ψ)i := Ci+1 ⊕Di, d =
(−dC 0
ψ dD

)
. (47)

Lemma 7.8. The homotopy type of a mapping cone is preserved under compositions with
inclusions into strong deformation retracts. More precisely, given a pair of strong defor-
mation retracts

Ca

ga

fa
Da and Cb

gb

fb
Db (48)

and a chain map ψ : Ca → Cb, the mapping cones C(ψfa) and C(fbψ) are strong defor-
mation retracts of C(ψ).

Proof. Let h be the homotopy associated to the retract D. Then there is a diagram with
commuting squares

C(ψfa) :

C(ψ) :

· · · Dr
a ⊕ Cr−1

b Dr+1
a ⊕ Cr

b · · ·

· · · Cr
a ⊕ Cr−1

b Cr+1
a ⊕ Cr

b · · ·

d

d

h

f̃r
a

g̃r
a f̃r+1

ag̃r+1
a (49)
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with morphisms f̃a, g̃a, and h̃ given by matrices

f̃ra =
(
fa 0
0 id

)
, g̃ra =

(
ga 0
−ψh id

)
, h̃r =

(−h 0
0 0

)
. (50)

A quick computation shows h̃f̃a = 0, g̃af̃a = id, and f̃ag̃a − id = dh̃ + h̃d, which proves
C(ψfa) is a strong deformation retract of C(ψ). The other case is shown similarly.
Lemma 7.9.

Ψ
y

The complexes
q y

and
q y

are ho-
motopy equivalent and so are Kh( ) and Kh( )
for any orientation of tangles.
Proof. Again, the second part follows from the first
one, because and have same crossings, regard-
less of orientation. The complex J K is a mapping
cone of the chain map Ψ := J K : J K → J K vi-
sualized by the four vertical morphisms to the right.
Consider the chain map f from the proof of Lemma 7.5. It is an inclusion into a strong
deformation retract and Lemma 7.8 implies J K is homotopy equivalent to the mapping
cone of ΨL := Ψ ◦ f given in Fig. 8. For the same argument J K is homotopy equiva-
lent to ΨR. Since tangle diagrams and are isotopic, the mapping cone complexes
C(ΨL) and C(ΨR) are isomorphic.

ΨL : ΨR :

Fig. 8. Morphisms describing complexes for the two tangles defining the R3 move.

Proof of Theorem 7.1. It remains to show that the above local proofs extend to diagrams
of bigger tangles. Each case follows the same pattern. Assume there is a chain map
ψ : Kh(T1) → Kh(T2) defined for whichever sign assignments were chosen to construct
the complexes. Choose a tangle T and a planar arc diagram D with two inputs, and
construct a corrected cube Iε1(D(T, T1)) using some sign assignment ε1. We can collapse it
partially to obtain a cube of complexes as in Fig. 9. Namely, a resolution Tξ of the tangle T
picks a subcube Iε1|ξ(D(Tξ, T1)), which collapses to the complexKh(D(Tξ, T1)). Put these
complexes in vertices of an n-dimensional cube, where n is the number of crossings of T .
Since the original cube Iε1(D(T, T1)) anticommutes, the edge morphisms corresponding
to changing resolutions of T induce ‘anti-chain’ maps

dζ : Kh(D(Tξ, T1))→ Kh(D(Tξ′ , T1)), (51)
i.e. morphisms that anticommute with differentials.
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We can do the same with the tangle T2, obtaining a cube of complexes Kh(D(Tξ, T2)).
Because planar operators with one input are strict 2-functors, Kh(D(Tξ, T1)) =
D(Tξ,Kh(T1)) and there are chain maps

D(Tξ, ψ) : Kh(D(Tξ, T1))→ Kh(D(Tξ, T2)), (52)

one for each resolution Tξ. Hence, we have two cubes of complexes and a morphism
between them. Collapsing these cubes (while taking care about homological grading of
complexes in vertices11) results in the complexesKh(D(T, Ti)). If the chain mapsD(Tξ, ψ)
commute with the edge morphisms dζ , they induce a chain map Ψ : Kh(D(T, T1)) →
Kh(D(T, T2)). In particular, if all ψ are homotopy equivalences, so is Ψ.

Kh(D( , T ))

Kh(D( , T ))

Kh(D( , T ))

Kh(D( , T ))

d0∗

d∗0

d∗1

d1∗

Fig. 9. The cube of complexes for a tangle T induced by a planar diagram D and a tangle
with 2 crossings. Each arrow is a degree 0 morphism that anticommutes with differentials.

There is nothing to do for the second Reidemester move. If a tangle diagram T can
be reduced to T ′ by this move, consider I(T ′) as a subcube of I(T ). Remark 7.6 implies
that both homotopies h0∗ and h∗1 from Lemma 7.5 anticommute with edge morphisms
from I(T ′), so that the morphisms f0 := h∗1d1∗ and g0 := d∗0h0∗ commute with them.

Invariance under the third Reidemeister move follows from the same argument as
the one used to prove Lemma 7.9: the chain map f from the previous paragraph is again
an inclusion into a strong deformation retract.

The first Reidemeister move is the most challenging one. As before, choose a diagram T

that can be reduced to T ′ by this move, and consider I(T ′) as a subcube of I(T ).
The morphisms f and g does not commute with the edge morphisms of I(T ′): for an edge
ζ : ξ → ξ′ decorated with a morphism dζ we have

dζgξ = λ(chdeg dζ , chdeg (a birth))gξ′dζ (53)

and similarly for f . To fix it, we define a 0-cochain η ∈ C0(In−1;k∗) in the following
way. Pick any oriented path in I(T ′) from the origin (0, . . . , 0) to a vertex ξ. It represents
some chronological cobordism W , whose degree chdegW depends only on ξ, but not on
the path. Define η(ξ) := λ(chdegW, chdeg (a birth)). Then

η(ξ′)gξ′dζ = η(ξ)λ(chdeg dζ , chdeg (a birth))gξ′dζ = η(ξ)dζgξ. (54)

Hence, ηg commutes with edge morphisms. In a similar way we show that η−1f induces
a chain map.

11 This can be achieved for instance by shifting a homological degree of a complex
Kh(D(Tξ, Ti)) by −‖ξ‖ and then taking a direct sum of complexes over all vertices.
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8. Basic properties. Directly from its definition the generalized Khovanov bracket
satisfies the following properties, similar to the rules of the Kauffman bracket:

(KB1) J∅K = ∅,
(KB2) JT t T ′K = JT K t T ′, if T ′ has no crossings12, and
(KB3) J K = C (J K : J K J K{1}) [1].
In the last property, the symbols , and represent three tangle diagrams that are
identical except the indicated region and the morphism J K is induced by edge maps in
the cube I( ) at which the resolution of the distinguished crossing is changed.

The property (KB3) implies a long exact sequence of generalized Khovanov complexes
that mimics the Jones skein relation. Say that a sequence . . .→ Ai → Ai+1 → Ai+2 → . . .

in Mat(kChCob) is exact if its image under any additive functor F : Mat(kChCob)→ A
is exact, where A is any abelian category.

Proposition 8.1. There is an exact sequence of complexes
0 −→ Kh( )[2]{1} −→ Kh( )[2]{2} −→ Kh( ){−2} −→ Kh( ){−1} −→ 0. (55)

Proof. The property (KB3) for diagrams and implies the following sequences are
exact:

0 −→ J K[1]{1} −→ J K −→ J K −→ 0, (56)
0 −→ J K[1]{1} −→ J K −→ J K −→ 0. (57)

Gluing them together results in an exact sequence

0 −→ J K[2]{1} −→ J K[1] −→ J K{−1} −→ J K{−1} −→ 0, (58)

which is the same as (55) up to grading shifts.

Next, the generalized Khovanov complex Kh(T ) depends on the orientation of T in
a well understood way.

Proposition 8.2. Choose an oriented tangle T . Denote by −T the same tangle with
reversed orientation of all its components and by T ′ the tangle when only the orientation
of a single component T0 is reversed. Then

Kh(−T )r ∼= Kh(T )r, (59)
Kh(T ′)r ∼= Kh(T )r−2`{−6`}, (60)

where ` = lk(T −T0, T0) is the linking number of T0 with the remaining components of T .

Proof. For (59) it is enough to see that after reversing orientation of all components
the signs of crossings are the same. If we reverse the orientation only of one component T0,
then the crossings of T0 with other components change signs, so that n+(T ′) = n+(T )−2`
and n−(T ′) = n−(T ) + 2`.

Given a tangle diagram T we form its mirror image T ! by replacing every crossing with
the other one—think about placing a mirror below the diagram. It follows the cube of

12 Think of ( ) t T ′ as a functor on embedded cobordisms, which we extend naturally to
complexes. It maps an object Σ to Σ t T ′ and a cobordisms W to W t (T ′ × I).
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0 1

1 0

!

resolutions of T ! is a reflection of I(T ): we start in the terminal state of T , which is
the initial state of T !, and proceed backwards (see the pic-
ture to the right). Formally the symmetry comes from a du-
ality functor ( )∗ : kChCob(k) → kChCob(k) induced by
the vertical flip of D2 × I. We must be careful with defining
orientations of critical points in W ∗: if p is a critical point
of W , its orientation determines an orientation of the stable
part of TpW ∗. We choose for the unstable part the complementary orientation with re-
spect to the outward orientation of the cobordism W . The only exception is a death, as
there is only one orientation of births: if W is a negatively oriented death, we first rewrite
it as a positively oriented death scaled by Y , and then we make the flip.

The convention for orientation of critical points can be described also diagrammati-
cally in the following way. Color each region in the complement of W black or white, so
that the unbounded region is white and regions with same colors do not meet. Then for
a saddle point p rotate the framing arrow in W ∗ clockwise, if the region below p ∈W is
white, and anticlockwise otherwise:

(
b

w

)∗
=

(

b

w

)∗
=

(
w

b

)∗
=

(

w

b

)∗
=

Since we want the duality functor to be coherent with annihilations and creations,
there is no choice left for births and deaths:

(

b

w

)∗
=

(
b

w

)∗
=

(
b

w

)∗
= Y

(

w

b

)∗
=

(
w

b

)∗
=

(
w

b

)∗
= Y

Flipping a cobordism permutes its degree components, chdegW ∗ = (b, a) if chdegW =
(a, b), but it also intertwines the two disjoint unions, (W W ′)∗ = W ∗ W ′∗. Hence, in
the linearized case, the roles of X and Y are exchanged, but the role of Z is preserved.
Therefore, the flipping operation is a functor ( )∗ : kChCobXY Z(k)→ kChCobY XZ(k)
between two different categories. It is coherent with all chronological relations, as well
as with relations S, T, and 4Tu. We extend it to categories of complexes, by reflecting
the homological grading, i.e. we set (C∗)i := (C−i)∗.

Proposition 8.3. The generalized Khovanov complexes of a tangle T and its mirror
image T ! are dual to each other: KhXY Z(T !) ∼= KhY XZ−1(T )∗, where Khabc stands for
a Khovanov complex constructed in the category kChCob/`(k) with chronology change
coefficients X, Y , and Z set to a, b, and c respectively.
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Proof. Choose a diagram of T with n enumerated crossings and arrows over them. To
obtain a diagram for T ! replace first each crossing with the opposite one , and
rotate the arrows over crossings using the same convention as for ( )∗: color regions
black and white and rotate an arrow anticlockwise, when it is placed over white regions,
and clockwise otherwise. With this choice of diagrams I(T !) = I(T )∗, which follows
directly from the construction of the cube of resolutions. Moreover, a sign assignment
ε ∈ C1(In;k∗) for I(T ) is automatically a sign assignment for I(T )∗. Therefore,
(JT Kε)∗[n] = JT !Kε and the proposition follows.

9. Homology. Although the complex Kh(T ) is an invariant of the tangle T , it is
a difficult problem to determine whether two complexes in kChCob/` are homotopy
equivalent. One can obtain a partial answer, by applying a functor F : kChCob/` → A
to some abelian category A. Such a functor extends naturally to complexes
F : Kom(kChCob/`)→ Kom(A) and the homology H(FKh(T )) is an invariant of
the tangle T .

For simplicity, we will consider only functors F : kChCob/`(0)→Modk, producing
invariants of links. If we restrict to Z×Z-graded k-modules and F preserves degrees of
morphisms, then homology groups Hi(FKh(T )) are Z-graded (recall, that in Kh we
collapse the Z×Z-grading into the Z-grading, by replacing (a, b) with a+ b).

Even Khovanov homology. Denote by Zev the ring of integers with the trivial action
of k, i.e. all X, Y , and Z act as 1. Then Zev ⊗ kChCob is the category of ordinary
cobordisms, so that all invariants described in [BN05] can be computed from Kh(L). In
particular, we can take a functor Fev that sends a family of s circles in D2 into an s-folded
tensor product13 A⊗s of a rank 2 module A = Zevv+⊕Zevv−, graded with deg v+ = (1, 0)
and deg v− = (0,−1). For cobordisms we define Fev as below

Fev





 : A⊗A A,

{
v+ ⊗ v+ v+, v− ⊗ v+ v−,

v+ ⊗ v− v−, v− ⊗ v− 0,
(61)

Fev





 : A A⊗A,

{
v+ v− ⊗ v+ + v+ ⊗ v−,

v− v− ⊗ v−,
(62)

Fev

( )
: Zev A,

{
1 v+, (63)

Fev

( )
: A Zev,

{
v+ 0,

v− 1.
(64)

13 Strictly speaking, one should think of A⊗s as an orderless tensor product, which makes
sense in any symmetric monoidal category. Otherwise, Fev is defined on objects only up to
an isomorphism, since it requires ordering of circles. However, there is a canonical isomorphism
induced by the symmetric structure, and coherence result for symmetric monoidal categories
implies it is unique. The same issue arises in other examples of functors described in this paper.
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The above turns A into a Frobenius algebra, so that Fev is well-defined. Compatibility
with the three relations S, T, and 4Tu is easy to check [BN05]. The resulting homology
Hev(L) := H(FevKh(L)) is the categorification of the Jones polynomial from [Kh99].

Odd Khovanov homology. Assume now that X and Z act on integers as 1, but Y
as −1, and denote this k-algebra by Zodd. This choice provides a framework for the odd
Khovanov homology [ORS13]. The functor Fodd : kChCob/`(0) → Modk associates
to a family of s circles in D2 the exterior algebra Λs :=

∧∗ Zodd〈a1, . . . , as〉 with one
generator ai for each circle. A merge of circles labeled ai and aj is realized by the canonical
projection Λs

Λs

/
(ai − aj)

∼= Λs−1 that identifies appropriate generators. Dually,

splitting a circle into two, labeled ai and aj , is given as

Λs−1 ∼= Λs
/

(ai − aj) 3 [w] 7−→ (ai − aj) ∧ w ∈ Λs, (65)

assuming the i-th circle in the target configuration is to the left of the framing arrow
and the j-th one is to the right. A birth is an inclusion of algebras and an anticlockwise
death of an i-th circle is the Kronecker delta function aj 7→ δi,j wedged with identity, i.e.
it strips off ai from the element w from the left hand side, if it is present, or sends w to 0
otherwise.

One can directly check that Fodd defined in this way is a functor. It is shown in [ORS13]
that Hodd(L) := H(FoddKh(L)) is an invariant of a link L. The group Λs is graded with
an element ai1 ∧ . . .∧ air in degree s− 2r, which makes Fodd a degree-preserving functor.
Both a sphere and a torus evaluate to zero (ai−aj becomes 0 after merging i-th and j-th
circles) and 4Tu follows from the table below.

−

1 0 0 0 0
a1 0 1 1 0
a2 1 0 1 0

a1 ∧ a2 −a1 a2 0 a2 − a1

Therefore, invariance of FoddKh(L) also follows from Theorem 7.1.

10. Chronological Frobenius algebras. We shall now construct a natural target for
a chronological TQFT functor. Choose a commutative ring R and a category of symmetric
R-bimodules graded by an abelian group G.

Definition 10.1. Choose a function λ : G×G→ U(R) that is a group homomorphism
in each variable, where U(R) is the group of invertible elements in R. Define the graded
tensor product for G-graded modules in the ordinary way, but for homogeneous homo-
morphisms f and g we define the product f ⊗ g by the formula

(f ⊗ g)(m⊗ n) := λ(deg g,degm)f(m)⊗ g(n). (66)
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There is a braiding σM,N : M ⊗N → N ⊗M , m ⊗ n 7→ λ(degm,degn)n ⊗m, which is
a symmetry if λ(a, b)λ(b, a) = 1 for all a, b ∈ G.

The graded tensor product generalizes the Koszul product (G = Z2 and λ(a, b) =
(−1)ab), and the anyonic braiding (G = Z and λ(a, b) = ζab for some root of unity ζ).

Lemma 10.2. The following hold

(f ′ ⊗ g′) ◦ (f ⊗ g) = λ(deg g′,deg f)(f ′ ◦ f)⊗ (g′ ◦ g), and (67)
σM ′,N ′ ◦ (f ⊗ g) = λ(deg f, deg g)(g ⊗ f) ◦ σM,N (68)

for any homogeneous homomorphisms M f→M ′
f ′→M ′′ and N g→ N ′

g′→ N ′′.

Proof. Straightforward.

Example 10.3. The category Modk of Z×Z-graded modules over a commutative ring
k = Z[X,Y, Z±1]/(X2=Y 2=1) is a graded tensor category in the above sense with λ

defined as λ(a, b, c, d) = XacY bdZad−bc.

There is a nice graphical interpretation of the formulas (67) and (66). We represent
a homomorphism f : M → N by a box labeled f with two legs: one at the bottom,
labeled with M , and one at the top, labeled with N . Composition of morphism is given
by placing the boxes one over the other and a tensor product of homomorphisms by
placing them side by side, the left on the higher level than the right one. Then we have
the following relation for homogeneous morphisms f and g:

f

g

= λ(deg g, deg f)
f

g

. (69)

For example, (66) is coherent with the following simple calculation, where we represent
an elementm ∈M of a module M by a box with no input (think of it as a homomorphisms
R→M taking 1 to m):

f

g

m

n

·λ

f

m

g

n

=

f(m)

g(n)

(70)

where ·λ→ indicates that the picture to the right must be scaled by λ(deg g,degm).
If λ(a, b)λ(b, a) = 1 for all a, b ∈ G, we represent the symmetry σM,N : M ⊗ N →

N ⊗M by a crossing:

m

n

= m

n

= λ(degm, deg n) n

m

(71)
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This does not work in the braided case. Indeed, one can first change the heights of boxes
labeled m and n, which results in σ(m⊗n) = λ(degn, degm)−1n⊗m. Comparing the two
values we conclude it must be λ(degn, degm)λ(degm,degn) = 1. One solution to this
issue is to add horizontal lines originating at all boxes and pointing leftwards, in which
case the relation (69) appears in two versions

f

g

=
f

g

, and (72)

f

g

=
f

g

. (73)

Decorating the horizontal lines with degrees of the boxes, we add untwisting relations
b

a
= λ(a, b)

b

a
and

b

a
= λ(b, a)−1

b

a
(74)

This can be done only at the left edge of the diagram. The product f⊗g is then represented
by the diagram in which the line originating from g passes over the input for f , and we
can represent σ by the positive crossing . However, the composition of boxes becomes
more complicated—one cannot simply join two boxes, unless their horizontal lines pass
all other lines in the same way. We shall not go deeper into the braided case, as all graded
tensor products considered in this paper are symmetric.

Definition 10.4. Choose a ring S that is a G-graded k-algebra, and consider the cate-
gory of G-graded modules over S. We say that

(1) the ring S is commutative if rs = λ(deg r, deg s)sr for homogeneous elements
r, s ∈ S,

(2) a G-graded bimodule M over S is symmetric if sm = λ(deg s,degm)ms for ho-
mogeneous elements s ∈ S, m ∈M , and

(3) a homogeneous function f : M → N between G-graded bimodules over S is
right linear if f(ms) = f(m)s, but left linear if f(sm) = λ(deg f, deg s)sf(m) for
a homogeneous element s ∈ S.

If we think of linearity as a commutativity of a map f with the action of S, then
the last definition follows easily from the graphical calculus (notice that the actions of S
are degree 0 maps):

s

m

f

=

s

m

f
·λ s

m

f

= s

f(m)

(75)
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With these conventions we can define a tensor product of G-graded bimodules M⊗SN in
the usual way, with actions of S given as s(m⊗n) := (sm)⊗n and (m⊗n)s := m⊗ (ns).
If both M and N are symmetric in the graded sense, so is M ⊗S N .

By an analogy to ordinary cobordisms, a chronological TQFT F : kChCob(0) →
Modk is determined by the pair (F(∅),F( )), a variant of a Frobenius system over k.
Definition 10.5. Choose an abelian group G and a commutative ring R. A chronological
Frobenius system in the category ModR with a symmetric G-graded tensor product of
type λ is a pair (S,A) of two R-modules such that S is a graded ring and A a symmetric
S-bimodule, together with four homogeneous operations, a unit η : S → A, a counit
ε : A → S, a multiplication µ : A ⊗S A → A, and a comultiplication ∆ : A → A ⊗S A,
subject to the following conditions:

µ ◦ (µ⊗ id) = λ(degµ,degµ)µ ◦ (id⊗µ), (76)
(∆⊗ id) ◦∆ = λ(deg ∆,deg ∆)(id⊗∆) ◦∆, (77)

µ ◦ (η ⊗ id) = id, (ε⊗ id) ◦∆ = id, (78)
µ ◦ σ = λ(degµ,degµ)µ, σ ◦∆ = λ(deg ∆,deg ∆)∆, (79)
(µ⊗ id) ◦ (id⊗∆) = λ(degµ,deg ∆)∆ ◦ µ = (id⊗µ) ◦ (∆⊗ id). (80)

We call A a chronological Frobenius algebra over S.
The conditions for a chronological Frobenius algebra reflect the chronological relations:

(76), (77) and (80) are like the connected sum permutations changes, (78) mimics the cre-
ation and the annihilation changes, whereas (79) is the orientation reversion. Therefore,
this is not a surprise that they give chronological TQFT functors.
Proposition 10.6. Choose a chronological Frobenius system (S,A) in the category of
G-graded modules ModR of type λ. Then there is a group homomorphism ψ : Z×Z→ G,
a k-algebra structure on R, and a k-linear functor FA : kChCob → ModR that sends
a family of s circles to the tensor product A⊗s and

FA

( )
=
(
µ : A⊗A A

)
, FA

( )
=
(
η : S A

)
, (81)

FA

( )
=
(
∆ : A A⊗A

)
, FA

( )
=
(
ǫ : A S

)
. (82)

This functor is graded in the sense that degF(W ) = ψ(degW ) for a cobordism W .
Proof. The condition degF(W ) = ψ(degW ) requires ψ(1, 0) = deg η and ψ(0, 1) = deg ε,
while the ring homomorphism k→ R is determined by λ as below:

X 7→ λ(degµ,degµ), Y 7→ λ(deg ∆,deg ∆), Z 7→ λ(degµ,deg ∆).
It remains to check that FA preserves the chronological relations. Most cases follow
from (66) and conditions (76)–(80), with the exception of ×- and ♦-changes. The former
follows from (79), as an ×-change adds a twist on one side of the cobordism. In the latter
both cobordisms are equivalent, so it is enough to show that 1−XY annihilates µ ◦∆.
This follows from (79): µ ◦∆ = XY (µ ◦ σ) ◦ (σ ◦∆) = XY µ ◦ σ2 ◦∆ = XY µ ◦∆.
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Example 10.7 (Covering Khovanov homology). Let S := k and take A := kv+ ⊕ kv−.
As before, we grade A by setting deg v+ = (1, 0) and deg v− = (0,−1), and we equip it
with the following operations

µ : A⊗A→ A,

{
v+ ⊗ v+ 7→ v+, v− ⊗ v+ 7→ XZv−,

v+ ⊗ v− 7→ v−, v− ⊗ v− 7→ 0,
(83)

∆ : A→ A⊗A,

{
v+ 7→ v− ⊗ v+ + Y Zv+ ⊗ v−,
v− 7→ v− ⊗ v−,

(84)

η : k→ A, {1 7→ v+, (85)

ε : A→ k,

{
v+ 7→ 0,
v− 7→ 1.

(86)

One can directly check that conditions (76)–(80) hold. The induced functor Fcov clearly
satisfies the sphere relation and a direct calculation shows that a standard torus evaluates
to Z(X + Y ). Finally, the 4Tu relation follows from the table below.

Z Z X Y

v+ ⊗ v+ 0 0 0 0
v+ ⊗ v− Xv+ ⊗ v+ 0 Xv+ ⊗ v+ 0
v− ⊗ v+ 0 Zv+ ⊗ v+ Zv+ ⊗ v+ 0
v− ⊗ v− Y v− ⊗ v+ Zv+ ⊗ v− 0 Y v− ⊗ v+ + Zv+ ⊗ v−

Therefore, this algebra defines a functor F : kChCob/` →Modk. We call the invariant
Hcov(L) := H(FcovKh(L)) the covering Khovanov homology of the link L.

Recall we defined two k-module structure on Z, depending on the actions of the gen-
erators X,Y, Z ∈ k: all three act as 1 in Zev, but Y acts as −1 in Zodd. The following
proposition explains the name covering homology.

Proposition 10.8. For any link L there are isomorphisms

Hev(L) ∼= Hcov(L;Zev) and Hodd(L) ∼= Hcov(L;Zodd), (87)

where Hcov(L;M) := H(FcovKh(L)⊗M) for any k-module M .

Proof. The first isomorphism follows directly from the construction: replacingX, Y and Z
with 1’s in the definition of the algebra A results in the Khovanov algebra. For the second
one it is enough to show that functors Fcov( ) ⊗ Zodd and Fodd are equivalent. This
follows from applying an isomorphism i : A⊗s ⊗ Zodd → Λs that sends any v+ into 1
and v− at the i-th position to ai. Comparing the two definitions, one can easily see that
Fodd(M) = i ◦ (Fcov(M)⊗ Zodd) ◦ i−1 for any generating cobordism M .

The above proposition is an example of a more general operation called a base change:
given a chronological Frobenius system (S,A) in ModR and a symmetric R-module S′,
which is also a ring, together with a degree zero homomorphism of R-algebras S → S′,
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the pair (S′, A′) with A′ := A ⊗S S′ is another chronological Frobenius system, called
a base change of (S,A). Clearly, H(FA′) ∼= H(FA;S′).

Example 10.9. One of the consequences of the 4Tu relation is the following equality

Z(X + Y ) = + , (88)

called a neck-cutting relation. Again, we omitted the orienting arrows, but the convention
is to orient all death clockwise, merges with arrow pointing leftwards, and splits with
arrows pointing to the back. If we impose the relation X + Y = 0, we can use (88)
to move handles freely between components of a cobordism (up to multiplication by
XZa). A similar theory over the two-element field F2 was analyzed in [BN05], suggesting
we have found its lift to Z in the odd setting. Namely, we have an algebra AH :=
Mor( , ) over the ring RH := Z[H,X,Z±1]/(2H,X2−1), whereH has degree (−1,−1)
and represents a handle. Unfortunately, H is a torsion element, as it is annihilated by
1−XY = 1 +X2 = 2. One can check that AH is a free module generated by v+ and v−
of degrees (1, 0) and (0,−1) respectively, with multiplication and comultiplication given
by the formulas

µ : AH ⊗AH → AH ,

{
v+ ⊗ v+ 7→ v+, v− ⊗ v+ 7→ XZv−,

v+ ⊗ v− 7→ v−, v− ⊗ v− 7→ Hv−,
(89)

∆ : AH → AH ⊗AH ,

{
v+ 7→ v− ⊗ v+ +XZv+ ⊗ v− −HXZ−1v+ ⊗ v+,

v− 7→ v− ⊗ v−.
(90)

The generator v+ is represented by a death followed by a birth and v− by a vertical
cylinder. In tensor products, each v+ is represented by a birth and all other circles are
boundaries of a single component built from splits only (or a single death, if there is
no v−). See [BN05] for details.

We shall end this section with a proof of the nondegeneracy result for chronological
cobordisms. For that we define a universal rank 2 Frobenius system, with scalars in
a Z×Z-graded commutative ring

RU := k[a, c, e, f, t, h]
/(

(XY − 1)h, (XY − 1)t, af + ce,
ae+ ceh+ Y Zcft− 1

)
(91)

where deg a = deg e = (0, 0), deg c = deg f = (1, 1), deg h = (−1,−1) and deg t =
(−2,−2). The element XY − 1 annihilates not only polynomials in h and t, but also
c2 and f2 due to the graded commutativity, see Definition 10.4. Consider a rank two
chronological Frobenius algebra AU over RU with the following operations:µ(v+ ⊗ v+) = v+, µ(v− ⊗ v+) = XZv−,

µ(v+ ⊗ v−) = v−, µ(v− ⊗ v−) = hv− + tv+,
(92)



A 2-CATEGORY OF CHRONOLOGICAL COBORDISMS 335∆(v+) = (ft− Y Z−1eh)v+ ⊗ v+ + e(v− ⊗ v+ + Y Zv+ ⊗ v−) + Z2fv− ⊗ v−,

∆(v−) = Z−2etv+ ⊗ v+ + ft(Y Z−1v− ⊗ v+ + v+ ⊗ v−) + (e+ fh)v− ⊗ v−,
(93)

{
η(1) = v+, (94)ε(v+) = c,

ε(v−) = a.
(95)

It is a graded version of the system (R4, A4) in [Kh04] and it has the same universality
property. The following proposition is proven in the same way as Proposition 4 in [Kh04].

Proposition 10.10. Let (R′, A′) be a homogeneous chronological Frobenius system in
Modk of rank two. Then there is a unique graded ring homomorphism RU → R′ such
that A′ ∼= A⊗RU R′.

We are now ready to prove the nondegeneracy result for kChCob(0).

Proof of Theorem 4.15. Given a chronological cobordism W , we want to compute
the group Aut(W ) := {k ∈ k |kW = W}; its elements are products of values of ι,
hence, they are invertible.

We shall first show that Aut(W ) is a subgroup of {1, XY }. For that take a graded
ring R1 = RU/(X − Y, a, e, h) = Z[X,Z±1, c, f, t]/(X2 = XZcft = 1), and consider
a chronological Frobenius system (R1, A1) with A1 = AU ⊗ R1. It has the following
operations:µ(v+ ⊗ v+) = v+, µ(v− ⊗ v+) = XZv−,

µ(v+ ⊗ v−) = v−, µ(v− ⊗ v−) = tv+,

{
η(1) = v+, (96)

∆(v+) = ftv+ ⊗ v+ + Z2fv− ⊗ v−,

∆(v−) = ftv+ ⊗ v− +XZ−1ftv− ⊗ v+,

ε(v+) = c,

ε(v−) = 0.
(97)

In particular, µ(∆(v+)) = (1 +Z2)ftv+. Since c, f , and t are invertible and polynomials
in Z are not zero divisors, it follows F1(W ) is not a zero divisor for any closed surface W .
This implies Aut(W ) is a subgroup of {1, XY }. If ∂W 6= ∅, create a closed surface Ŵ by
capping its boundary components with births and deaths. Then Aut(W ) ⊂ Aut(Ŵ ), as
every 2-morphism ϕ : W =⇒ W in ChCobe(0) extends to Ŵ in a way that preserves
the value of ι (juxtapose ϕ with the identity 2-morphisms on the caps).

Now assume W is a surface of genus 0 with at most one closed component. Choose
the graded ring R2 := RU/(c2, a − 1, e − 1, h) ∼= k[c, t]/(c2, (XY − 1)t) and consider
a chronological Frobenius system (R2, A2) with A2 = AU ⊗ R2. In particular, the unit
and counit are given by formulas

η(1) = v+, ε(v+) = c, ε(v−) = 1, (98)

and a sphere is evaluated to c. Create Ŵ by capping some inputs and outputs of W
so that, up to a change of a chronology, Ŵ is a disjoint union of caps and at most one
spherical component. The homomorphism F2(Ŵ ) : A⊗k → A⊗` takes (v−)⊗k to (v+)⊗`
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or c(v+)⊗`, perhaps multiplied by a monomial in X, Y and Z. Since none of r ∈ k
annihilates c, (1− r)W = 0 implies r = 1, which shows the group Aut(Ŵ ) is trivial.

11. Dotted cobordisms. A very generic example of a chronological Frobenius algebra
is given by the tautological functor Mor(Σ, ), where Σ is any object of kChCob(0).

Proposition 11.1. Given an object Σ ∈ kChCob(0), the group of morphisms Mor(Σ, ∅)
is a ring with multiplication induced by the ‘right-then-left’ disjoint sum and Mor(Σ, )
is a chronological Frobenius algebra over Mor(Σ, ∅).

The case Σ = was analyzed in Example 10.9 under the assumption X + Y = 0, in
which case Mor( , ) was a free rank 2 module over

Mor( , ∅) ∼= Z[H,X,Z±1]/(2H,X2 − 1).

However, the rank of Mor(Σ, ) over Mor(Σ, ∅) is in general infinite, but the neck-cutting
relation (88) suggests a way how to reduce it to the finite case.

Definition 11.2. The category kChCob•(k) consists of chronological cobordisms (with
2k vertical boundary lines) and dots on regular levels. A single dot has a degree (−1,−1)
and two dots cannot lie on the same level. In addition to chronological relations, we allow
dots to move past other dots and critical points at the cost specified by λ, and we impose
the following three local relations:

(S ) = 0, (D)
b

= 1,

(N ) =

b

+

b

− b

b
,

where all deaths are oriented clockwise.

Dots are a part of the chronological structure and one can think of them as ‘in-
finitesimal’ handles, which are ‘frozen’, so that a dot is not annihilated by 1−XY . But
a cobordism with two dots on one component is, because permuting two dots costs XY .
All relations are homogeneous, thence coherent with changes of chronologies. Even more:
the neck cutting relation N together with the cubical structure of the disjoint sum de-
termines all coefficients for changes of chronologies, except the ♦-change. For example,

=

b

+ Z2

b

−

b
b

b

b

b
b

b

b

b
b
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b

b
b

= X

b

+XZ2

b

−X

b
b

= X

b

+XZ2

b

−X

b
b

= X

where we moved dots in the middle pictures from the birth to the top by the cost of Z2.
Dotted cobordisms satisfy also the other relations from kChCob/`(k). Hence, we can
think of kChCob•(k) as an abelian extension of kChCob/`(k).

Lemma 11.3. Relations T and 4Tu follow from S, D and N. Therefore, there are natural
functors kChCob/`(k)→ kChCob•(k).

Proof. For the T relation take a standard torus and cut its handle. In the resulting
expression, one term has a sphere as its component and the other two can be reduced to
dotted spheres by changing chronologies:

=
b

+
b

− b
b = (XZ + Y Z)

b
(99)

The 4Tu relation is proved in a similar way, by cutting the unique tube in each term.
Again, by changing chronologies we can reduce each term to four caps, with left caps
smaller than the right ones, possibly with a two-dotted sphere in the middle:

Z = X

b

+ Y

b

−XY Z b
b

, (100)

Z = Z
b

+ Z
b

− Z b
b

, (101)
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X = X

b

+ Z
b

−XY Z b
b

, (102)

Y = Y

b

+ Z
b

−XY Z b
b

. (103)

Because a two-dotted sphere is annihilated by (XY − 1), the sum of right hand sides of
(100) and (101) is equal to the sum of right hand sides of (102) and (103).

The additive closure Mat(kChCob•(0)) is equivalent to a category of finitely gener-
ated free graded symmetric bimodules over a certain ring. This follows from the propo-
sition below.

Proposition 11.4 (Delooping). The following two morphisms

∅{−1}

∅{+1}

⊕

−
b
b

+ b

b

(104)

form a pair of inverse isomorphisms in the additive closure Mat(kChCob•).

Proof. Call the left map f and the right one g. The equality g◦f = id is exactly the neck-
cutting relation N, whereas the other composition is the identity 2×2 matrix—this follows
directly from relations D and S.

Corollary 11.5. The tautological functor Mor(∅, ) : kChCob•(0) → ModR′ is full
and faithful, where R′ := Mor(∅, ∅). Hence, we can identify kChCob•(0) with the category
of finitely generated free graded symmetric Mor(∅, ∅)-bimodules.

We shall now compute a presentation of the ring Mor(∅, ∅).

Proposition 11.6. There is an isomorphism of graded commutative rings

Mor(∅, ∅) ∼= R• := k[h, t]
/(

(XY−1)t, (XY−1)h
), (105)

where deg h = (−1,−1) and deg t = (−2,−2), such that

b
b h and b

b

b XZt+ h2. (106)

Proof. It is enough to show that the above defines a homomorphism—it is clearly invert-
ible if it exists. We begin with constructing a graded monoidal functor F• : kChCob• →
ModR• . For that take a free rank two symmetric bimodule A• = R•v+ ⊕ R•v− with
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deg v+ = (1, 0) and deg v− = (0,−1) as usual. This module is a chronological Frobenius
algebra with operations

µ : A• ⊗A• → A•,

v+ ⊗ v+ 7→ v+, v− ⊗ v+ 7→ XZv−,

v+ ⊗ v− 7→ v−, v− ⊗ v− 7→ tv+ + hv−,
(107)

∆ : A• → A• ⊗A•,

v+ 7→ v− ⊗ v+ + Y Zv+ ⊗ v− − Y Z−1hv+ ⊗ v+,

v− 7→ v− ⊗ v− + Z−2tv+ ⊗ v+,
(108)

η : R• → A•,
{

1 7→ v+, (109)

ε : A• → R•,

{
v+ 7→ 0,
v− 7→ 1.

(110)

These tell us how to define F• on all generators except one, a cylinder decorated with
a dot. Associate to it the following homomorphism:

θ : A• → A•,

{
v+ 7→ v−,

v− 7→ XZ−1(tv+ + hv−) = v+tXZ + v−h.
(111)

Clearly, ε ◦ η = 0 and ε ◦ θ ◦ η = 1, so that F• preserves relations S and T. It remains
to show that F• is also coherent with the neck-cutting relation N. This follows from
computing the terms on the right hand side of N :

b

: A• A•,

{
v+ v+,
v− v+ · h, (112)

b

: A• A•,

{
v+ 0,
v− v−,

(113)

b
b : A• A•,

{
v+ 0,
v− v+ · h. (114)

Summing the first two and subtracting the last homomorphism results in the identity
on A•. The functor F• induces a homomorphism ϕ : Mor(∅, ∅) → R• by associating
an element from the ring to any closed surface with dots. In particular, we compute

ϕ
(

b
b

)
= h and ϕ

(
b
b

b

)
= XZt+ h2, (115)

which is the desired homomorphism.

Remark 11.7. Similarly to the even case, dotted cobordisms lead us to a deformation
of odd theory, although both t and h are torsion elements: 2t = 2h = 0 if XY = −1.
In particular, we cannot set t = 1 to obtain Lee deformation, unless we work with Z2
coefficients.
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The homology theory defined by the algebra A• is universal: it carries the most infor-
mation among all chronological Frobenius algebras producing link homology. The proof
follows the argument from [Kh04] and it is based on the following observation.

Given a chronological Frobenius algebra A and an invertible element y ∈ A of degree
(1, 0), we can twist its coalgebra structure by y as follows:

ε′(a) := ε(ya), ∆′(a) := ∆(y−1a). (116)
If ∆ and ε are homogeneous, so are their twisted version ∆′ and ε′. The degrees are not
changed. Because deg y = −degµ, there is an equality ∆(y−1a) = y−1∆(a):

∆

µ

y−1

= Z−1 ∆

µ

y−1

=

∆

µ

y−1 (117)

Lemma 11.8 (cf. [Kh04]). Assume that F and F ′ are two functors induced by an algebra A
and its twisted version A′. Then the complexes FKh(L) and F ′Kh(L′) are isomorphic.

Proof. Consider cubes FIε(L) and F ′Iε(L), both corrected by a sign assignment ε. They
have the same R-modules in vertices and the only difference is in edges labeled with
comultiplications. The isomorphism is constructed inductively, starting with the identity
homomorphism on the initial vertex (0, . . . , 0) and applying the following rule at every
face:

FIξ F ′Iξ′

FIξ′ F ′Iξ

f

µ µ

f

FIξ F ′Iξ′

FIξ′ F ′Iξ

f

∆ ∆

y−1·f

(118)

where in the case of a split we multiply by y−1 the element from the copy of A corre-
sponding to the circle that appears to the left of the split.

Theorem 11.9. Any homogeneous rank two chronological Frobenius system (R′, A′) in
ModR is obtained from (R•, A•) by a base change and a twist. In particular, H•(L) :=
H(F•Kh(L)) is the most general link homology theory in our framework.

Proof. Recall the Frobenius system (RU , AU ) is universal with respect to the base change
operation. An element y = ev+ + Y Zfv− ∈ AU is invertible and of degree (1, 0), with
an inverse y−1 = (a + ch)v+ − Y Zcv−. The dotted algebra A• arises as the twisting of
(RU , AU ) by this element.

12. Odds and ends

Tangle cobordisms. Let Cob4(k) be the category of tangles with 2k endpoints and
tangle cobordisms between them, i.e. surfaces W ⊂ D3×I with its boundary decomposing
into the input and the output tangles Ti ⊂ D3×{i}, i = 0, 1, and vertical lines on ∂D3×I.
In particular, cobordisms between empty links are 2-knots.
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There is a presentation of Cob4(k) due to Carter and Saito [CS98] using movies:
sequences of sections of W cutting the cobordism into simple pieces, each with at most
one singularity. There are nine singularities, corresponding to nine generators: the three
Reidemeister moves (each represents two generators), a saddle move, a birth, and a death
(see Fig. 10). They are subject to a number of relations, called movie moves, that represent
isotopic cobordisms, see [CS98].

Reidemeister I move Reidemeister II move Reidemeister III move

b

Birth/death Saddle move

Fig. 10. Movie diagrams for generator of Cob4(k). Each diagram represents
up to two generators, depending on the direction in which the movie is watched.

The even Khovanov homology Hev(L) was proven to be functorial up to sign [Ja04,
Kh02, BN05], and corrected later to a functor [CMW09, Bla10]. This means there is
a chain map Kh(W ) : Kh(L0)→ Kh(L1) for any surface W ⊂ R3 × I with L0 and L1 as
its boundary, Li ⊂ R3 × {i}.

It is not obvious how functoriality should be understood for odd homology. For in-
stance, consider a cobordism W : =⇒ ∅ from the two-component unlink to an empty
diagram given by two deaths. Depending on how we decompose W into simple pieces (i.e.
which link component vanishes first), we obtain two chain maps that differ by Y . One
can try to show Kh is a weak 2-functor, where movie moves are 2-morphisms in Cob4(k).
However, this approach requires understanding of higher singularities of embedded cobor-
disms.

Functoriality up to ‘sign’ of the generalized Khovanov complex Kh( ), where by
a ‘sign’ we mean any degree 0 invertible element of k, is more promising. One can try
to modify the proof of the even case presented in [BN05], showing that for most tangles
the automorphism groups of Kh(T ) are multiplies of the identity map. We can define
the chain maps for generators as in the table below.

Movie Chain map on Kh(D)
Reidemeister moves Homotopy equivalences from Theorem 7.1
Saddle move The chain map J K : J K → J K{1} obtained from

the cube or resolutions of the tangle .
Birth/death move The chain maps induced by births and clockwise deaths.

The last chain map requires some explanation. Consider a morphism b : Iε(T ) →
Iε(T t ) of anticommutative cubes with each component bξ given by a birth. They do
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not commute with edge morphisms of the cubes, but we can fix it by the same argument
we used in the proof of Theorem 7.1: scale bξ by λ((1, 0), chdegW ), where W ⊂ D2 × I
is a cobordism given by any path from the initial vertex (0, . . . , 0) to ξ. In a similar way
we define the chain map for a death.

Unfortunately, the proof of functoriality in [BN05] does not translate immediately
to our setting—the problem is with Lemma 8.8, which states that a tangle T is
Kh-simple (i.e. the only automorphisms of Kh(T ) are ± id) if TX is such (TX is the tan-
gle obtained from T by adding one extra crossing along its boundary). Functoriality of
planar operations is used in the original proof, the property that does not hold in our
setting. However, we believe this can be fixed with some generalization of the argument
used in the proof of Theorem 7.1.

Conjecture 12.1. The above defines a ‘functor’ Kh : Cob4(k)→ Kom(kChCob/`(k))
that assigns to a tangle T the generalized Khovanov complex Kh(T ) and to a tangle
cobordism W a chain map Kh(W ) : Kh(T ) → Kh(T ′), defined up to a global invertible
scalar.

♦-change revisited. The choice we used to assign a coefficient for a ♦-
change is not the only one. We might as well assign 1 to the diagram with
the outer arrow pointing to the right and XY for the other case, and ι

would still be coherent with all relations between elementary changes of
chronologies. The new commutativity cocycle ψ has the same values as ψ, except that

ψ





 = XY and ψ





 = 1. (119)

We shall now prove that the corrected cube of resolutions does not depend on which
commutativity cocycle we choose. Unfortunately, there is a gap in the original proof from
[ORS13], noticed by Cotton Seed: given a sign assignment ε with dε = ψ the authors
of [ORS13] constructed ε with dε = ψ, but an isomorphism of cubes Iε(T ) ∼= Iε(T ) is
missing. We found such an isomorphism only when T is a link and the cube Iε(T ) is
regarded as a diagram in kChCob(0),14 which is enough for the odd theory, but leaves
the case of nested theories open.

Proposition 12.2. Given a link diagram D choose sign assignments ε and ε for the cube
I(D) with respect to the cocycles ψ and ψ respectively. Then there is an isomorphism of
cubes Iε(D) ∼= Iε(D), regarded as diagrams in kChCob(0).

Proof. Instead of constructing ε we shall alter the diagram D into D′, so that δε = ψ

for D′. Color the diagram D black and white in a checkerboard fashion. Given a set of

14 This step requires us to enumerate circles in each resolution, since the disjoint union in
kChCob(0) is not strictly symmetric. The cube, however, is independent of these choices: differ-
ent orders of circles are related by canonical isomorphisms, which in turn induce an isomorphism
of cubes.
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arrows orienting crossings, reverse every arrow between white regions:

(120)

to obtain a new decorated diagram D′. This operation preserves all the diagrams from
Tab. 1, except the two shown in (119), which are exchanged. Hence, δε := ψ̄ for D′. We
construct an isomorphism s : Iεgr(D) ∼= Iεgr(D′) as follows. The coloring of D induces
a coloring of its resolutions Dξ such that every circle is a boundary of a unique black
region. Take the boundary circles of a black region and apply a half-twist to them;
the component sξ : Dξ → D′ξ is a composition of such half-twists for all black regions
in Dξ. It is an isomorphism of cubes, since what it does is exactly to reverse the arrows
connecting white regions.

In fact, the only condition for ι to be coherent with relations between changes of
chronologies is that the quotient of its values on the two ♦-changes is equal to XY .
Hence, we can set

ι

( )
= αX ι

( )
= αY (121)

where α is an additional generator. This new parameter is useless from the point of view
of Frobenius algebras: it will give only an additional restriction, that αX− 1 and αY − 1
annihilate µ ◦∆. However, it may be used to produce odd versions of nested homology
theories (the two cobordisms related by a ♦-change are diffeomorphic, but not isotopic),
see [SW10, BW10].

Rotating arrows and sl(2) foams. In the original construction of odd Khovanov ho-
mology, the small arrow over a crossing frames not only the negative eigenspace E−(p)
of a saddle point p, but also its positive eigenspace E+(p) and the latter is used to dis-
tinguish between the two output circles of a split. Because of the convention that every
arrow rotates clockwise when going up, one framing arrow is enough.

a|c

a|c

a|c

c|a

a|c

a|c

a|c

c|a

Y 1 X XY

a|c

a
c

c|a

a
c

a|c

a
c

c|a

a
c

1 Y XY X

Tab. 4. Coefficients assigned to ×- and ♦-permutation, when each arrow can rotate either
clockwise or anticlockwise. The symbols a|c and a

c
stand for two alternative ways of rotating

an arrow and one has to make the same choice (left/top or right/bottom) for both arrows.
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If we allow an arrow to rotate in any direction, i.e. when we orient both E−(p) and
E+(p) independently, we will create a richer category with two versions of each generating
cobordism. It is not difficult to find out chronological relations: the coefficients assigned
to changes do not depend on how the arrows rotate, except ×-and ♦-changes, in which
cases the coefficients are multiplied by Y , if the arrows rotate in different directions, see
Tab. 4.

Remark 12.3. This is not the most general solution. For instance, one can assign different
coefficients to changes permutating merges that are differently oriented. In the most
general case one obtains a system of nine independent parameters.

A choice of how a single arrow rotates introduces another datum to the construction
of the generalized Khovanov complex. The isomorphism class of the complex does not
depend on this additional chain, which follows from the commutativity of the following
square:

a

c

X

c

a
(122)

where the left vertical cobordism is an isomorphism in kChCob(0) and its inverse is
given by the same picture, but with different orientations of critical points:

c

a

a

c

X

a

c

c

a

1

a

a
X

(123)

and similarly for the other composition. The vertical morphisms are homogeneous in
degree 0, which implies they commute with all other edge morphisms in the cubes. Hence,
(122) induces an isomorphism between complexes obtained from two diagrams of a tangle,
that differ only in the way a single arrow rotates.

The author was encouraged to investigate rotations of arrows by M. Hempel, who com-
puted several circular movies for the odd theory and noticed, that if arrows over crossings
with opposite signs rotate differently, movies consisting of Reidemeister II moves induce
identity chain maps. This suggests a connection with sl(2) foams, i.e. singular cobordisms
with two types of saddle points, one for positive and one for negative crossings.
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A. Framed functions. Let W be a smooth compact manifold, possibly with boundary.
Definition A.1. An Igusa function is a smooth function f : W → R, such that at every
point p ∈W one of the following conditions holds:

IF1: p is regular, i.e. the derivative dfp does not vanish, or
IF2: f has a Morse singularity (or A1 singularity) at p, i.e. dfp = 0 but the Hessian

Hessp(f) is nondegenerate, or
IF3: f has a birth-death singularity (or A2 singularity) at p, i.e. dfp = 0 and Hessp(f)

has a 1-dimensional kernel N(p) ⊂ TpW , but d3fp is nonzero on N(p).
Morse and birth-death singularities of a function f have the following local models:

f(x1, . . . , xn) = f(p)− x2
1 − . . .− x2

k + x2
k+1 + . . .+ x2

n, (124)
f(x1, . . . , xn) = f(p)− x2

1 − . . .− x2
k + x2

k+1 + . . .+ x2
n−1 + x3

n. (125)
In the latter case the nullspace N(p) of Hessp(f) is spanned by ∂

∂xn
. The number k = µ(p)

is called the index of p.
Igusa functions arise naturally if one considers homotopies between smooth func-

tions: a generic function on W is Morse (conditions IF1 and IF2) and separative (critical
points lie on different levels), but a space of such functions is not even connected. How-
ever, a transversality argument implies a generic homotopy ft is separative Morse except
finitely many moments 0 < t1 < . . . < tk < 1, at which either two critical points are
permuted or a birth-death singularity occurs [Ce68]; we refer to them as events. We can
visualize them by drawing the singular locus S(f) := {(t, ft(x)) |x ∈ crit(ft)}, see Fig. 11.

ft

t

k

kℓ

ℓ

a permutation

ft

t

bk

k+1

k

a creation

ft

t

b

k+1

k

k

an annihilation

Fig. 11. Singular loci for elementary homotopies of Igusa functions. Cusps represent
A2-singularities, and labels are the indices of critical points.

Choose a generic two-parameter family ft,s : W → R of Igusa functions, t, s ∈ I.
The path t 7→ ft,s is a generic homotopy of Igusa functions for all except finitely many
s ∈ I, at which one of the situations described below occurs, see [Ig84, EM11].
Case I Two events can occur at the same time ti. For example, we have homotopies

(126)
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where dashed lines indicate singular values of t. See also Fig. 12 for singular loci
of the left two homotopies.

ft,s

s

t

Fig. 12. Examples of singular loci, when two events occur at the same times.

Case II A non-transverse event occurs, i.e. the singular set is not transverse to some
level set {t = a}. Up to direction of the change, there are 3 such homotopies

b ∅

(127)

and their singular loci are shown in Fig. 13.

ft,s

s

t

Fig. 13. Singular loci of non-transverse events.

Case III Either three Morse singularities or an A2-singularity and a Morse one meet at
the same critical level. There are three types of such homotopies

(128)
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with singular loci of two of them visualized in Fig. 14 (the case of an annihilation
is symmetric to the one of a creation).

ft,s

s

t

Fig. 14. Singular loci of exceptional events from the third group.

The space of Igusa functions is not simply connected, which is manifested by the lack
of the dove tail singularity in the list above. Indeed, this singularity is modeled by
a biquadratic polynomial and as such it cannot appear. We introduce framing to ob-
tain a simply connected space.15 In fact, the space of framed functions is contractible
[Ig87, Lu09, EM11], but we will not use this result in this paper. The following definition
comes from [EM11].

Choose a Riemannian metric on W and a critical point p ∈ W of an Igusa function
f : W → R. We shall write E−(p) and E+(p) for the negative and positive eigenspaces
of the Hessian of f at the point p, regarded as a linear map Hessp(f) : TpW → TpW .

Definition A.2. Let f : W → R be an Igusa function. A framing on f is a choice of
a Riemannian metric on W and an orthonormal frame v1, . . . , vµ(p) of E−(p) at every
critical point p. If p is an A2-singularity, we add an extra vector vµ(p)+1 ∈ N(p) in
the positive direction of d3τ .

The topology on the space of framed functions Funfr(W ) was described indirectly in
[Ig87] by constructing a simplicial complex homotopy equivalent to this space. Here we
only remind how homotopies look like, following [EM11].

Choose a smooth function f : W × Im → R such that each slice ft : W → R for
t ∈ Im is an Igusa function. Denote by V ⊂ W × Im the set of critical points of all slice
functions ft and let Σ be the subset of all A2 points. Genericly, V is an m-dimensional
submanifold of W × Im, Σ has codimension 1 in V , and V is transverse to each slice
W ×{t} at the set V −Σ, see [EM11]. Let V −Σ = V 0∪ . . .∪V n and Σ = Σ0∪ . . .∪Σn−1

be decompositions of V − Σ and Σ with respect to the index. Then

• Σk is the intersection of the closures of V k and V k+1, and
• for z = (p, t) ∈ V k one has TpW = E−(z)⊕ E+(z), and
• for z = (p, t) ∈ Σk one has TpW = E−(z)⊕N(z)⊕ E+(z),

15 Framed functions were introduced to overcome the problem of lost information, when re-
placing a manifold with a Morse function: although a Morse function decomposes W into cells,
one cannot build W back, unless a parametrization of each cell is given. This is the additional
information a framing provides [Ig87].
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where E±(z) stands for the positive or negative eigenspace of Hessp(ft) and N(z) is its
nullspace. It follows that for z0 ∈ Σk and z ∈ V k

lim
z→z0

E+(z) = N(z0)⊕ E+(z0) and lim
z→z0

E−(z) = E−(z0), (129)

whereas for z0 ∈ Σk and z ∈ V k+1

lim
z→z0

E−(z) = E−(z0)⊕N(z0) and lim
z→z0

E+(z) = E+(z0). (130)

A framing on f : W × Im → I forms a collection of sections (v1, . . . , vn), where each vk
is defined only over the union Σk−1 ∪ V k ∪ . . . ∪ Σn−1 ∪ V n, such that vk(z) ∈ N(z) for
z ∈ Σk−1 and at z ∈ V k ∪ Σk the vectors v1(z), . . . , vk(z) form an orthonormal frame of
E−(z). In particular, when we approach a birth-death singularity, framings of canceling
points agree with the framing of the limiting point, see Fig. 15. For more details see
[EM11].

b
A0

2
b

A1
1

b

A0
1

Fig. 15. A cancelation of framed A1 points.

Theorem A.3 (cf. [EM11, Lu09]). The space of framed Igusa functions Funfr(W ) is
contractible for any compact manifold W .

There is a natural action of SO(k) on the set of all framings of a critical point of
index k. The quotient by this action, one per each critical point, results in a much smaller
space of functions, which is still simply connected.

Definition A.4. An orientation of an Igusa function is a choice of an orientation of
the negative eigenspace E−(p) at every critical point p. The space of oriented Igusa
functions on W will be denoted by Funor(W ).

Theorem A.5. Funor(W ) is simply connected for any compact manifold W .

Proof. Consider the canonical projection π : Funfr(W )→ Funor(W ). It is easy to see that
it has connected fibers (a product of SO(k)’s). Hence, if we can show it has a path-lifting
property, then any loop γ can be lifted to a loop up to reparametrization (lift γ as a path
and connect its endpoints in a fiber). Then a contracting homotopy upstairs descends to
a contracting homotopy of γ.

Pick a path γ : [0, 1]→ Funor(W ). The compactness of [0, 1] implies the existence of
a sequence 0 = t0 < t1 < . . . < tk = 1 such that γ|[ti−1,ti] looks like one of the homotopies
listed in Fig. 11. Since π has connected fibers, it is enough to lift each of the three
homotopies.

• If γ has only Morse singularities, for each critical point of γ(0) choose any framing
with a given orientation and transport it along the path.
• If γ has a birth singularity of index k at p, pick any framing at this point agreeing

with its orientation. Then transport it along the path of points with index k and
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for the path of index k + 1 add to the framing the additional vector coming from
the nullspace N(p).

• For a death singularity do the same but with the time reversed.

Hence, every path in Funor(W ) lifts to Funfr(W ).

Remark A.6. The group SO(k) is not simply connected, and there is a choice for a path
connecting the endpoints of the lift. In particular, π2(Funor(W )) may be nontrivial. This
is not a problem for us, as we never go beyond π1(Funor(W )) in this paper.

B. 2-categories

B.1. Basic definitions. This section provides basic definitions from the theory of
2-categories [Be67, Gr74] and monoidal structures on them [BaNe95, KV94]. The shortest
way to define a 2-category is to say that it is a category enriched over Cat. This means
the following:

• for every two objects A and B there is a category of morphisms Mor(A,B); mor-
phism of this category are called 2-morphisms16 and composition is denoted by ?,

• the composition is given by functors

◦A,B,C : Mor(B,C)×Mor(A,B)→ Mor(A,C),

• the identity morphisms are picked by functors 1lA : ∗ → Mor(A,A), where the cat-
egory ∗ consists of a single object ∗ and a single morphism id∗,

• the unitarity and associativity axioms are replaced with three invertible 2-mor-
phisms ρf : f ◦ idA =⇒ f , λf : idB ◦f =⇒ f , and αf,g,h : f ◦ (g ◦ h) =⇒
(f ◦ g) ◦ h for any f ∈ Mor(A,B), g ∈ Mor(B,C), and h ∈ Mor(C,D), fitting into
the commutative diagrams

f ◦ (g ◦ (h ◦ k)) f ◦ ((g ◦ h) ◦ k)

(f ◦ g) ◦ (h ◦ k) (f ◦ (g ◦ h)) ◦ k

((f ◦ g) ◦ h) ◦ k

id ◦α

α α

α α◦id

(131)

f ◦ (id ◦g) (f ◦ id) ◦ g

f ◦ g

α

id ◦λ ρ◦id
(132)

They are called the MacLane’s coherence conditions [ML98].

A 2-category is strict, if all α, ρ and λ are identities. Otherwise, it is weak.

16 We use the double arrow notation for 2-morphisms, i.e. α : f =⇒ g, to distinguish them
from the regular ones.
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Example B.1. Given two small categories C and D there is a category [C → D] of
functors from C to D, where the role of morphisms is played by natural transformations.
Therefore, we have a 2-category of all small categories. This 2-category is strict, because
composition of functors is associative.

Example B.2. Consider a category ModR of modules over a fixed commutative ring R.
We can extend it to a 2-category with 2-morphisms given by elements of R as follows.
Choose module homomorphisms f, g : M → N and r ∈ R. We write r : f =⇒ g if g(m) =
f(rm) for any m ∈ M . Both compositions of 2-morphisms are given as multiplication
in R. The 2-category defined this way is again strict.

If we represent objects by points on a plane and 1-morphisms by oriented edges, then
2-morphisms decorate regions. With this interpretation, a picture of a typical 2-morphism
looks as follows:

A B

f

g

α (133)

There are two ways of composing 2-morphisms: a vertical composition, induced by
the internal composition in morphism categories Mor(A,B)

A B

f

g

α

β

= A B

f

g

β⋆α (134)

and a horizontal composition, given by the composition functors ◦A,B,C

A B C

f

g

f ′

g′

α α = A B

f ′◦f

g′◦g

β◦α (135)

Moreover, the two ways of composing 2-morphisms are compatible, which means that
the diagram

A B C

α

β

α′

β′
(136)

produces the same 2-morphism no matter whether we first compose the 2-morphisms
vertically or horizontally. In other words,

(β′ ? α′) ◦ (β ? α) = (β′ ◦ β) ? (α′ ◦ α). (137)
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This property, called the interchange law, together with the obvious associativity and
unitarity axioms, is another way how to define a 2-category [Be67].

Example B.3. Chronological cobordisms form a strict 2-category:

• objects are smooth (collared) oriented manifolds,
• morphisms are (collared) cobordisms with chronologies,
• 2-morphisms are homotopy classes of changes of chronologies.

The vertical composition of 2-morphisms is given by concatenation of homotopies,
whereas the horizontal one by juxtaposition. A routine check shows both operations
are compatible, i.e. the interchange law holds.

The higher structure of 2-categories affects a notion of a functor: we no longer assume
that it preserves identities nor compositions of morphisms. Instead, both properties should
hold up to some 2-morphisms, which are part of the data, subject to some coherence
relations.17

Definition B.4. A functor F : C → D between 2-categories consists of a function of
objects F0 : ObC → ObD, a collection of functors FA,B : Mor(A,B) → Mor(FA,FB),
and 2-morphisms ιA : idFA =⇒ F (idA) and ϕf,g : F (f) ◦ F (g) =⇒ F (f ◦ g) satisfying
certain coherence relations. A functor F is strict, if both 2-morphisms are equalities.

A famous result states that every 2-category can be strictified: every 2-category
is equivalent to some strict 2-category. Hence, we do not have to care about weak
2-categories. On the other hand, this does not apply to functors: there are functors
between strict 2-categories that cannot be replaced by strict ones. However, most func-
tors used in this paper will be strict, with the only exception being the cubical functors
[GPS95].

Definition B.5. A functor F : C1 × . . . × Cr −→ D between strict 2-categories18 is
cubical if the following conditions hold:

(1) F (idA1 , . . . , idAr ) = idF (A1,...,Ar), and
(2) F (f1 ◦ g1, . . . , fr ◦ gr) = F (f1, . . . , fr) ◦F (g1, . . . , gr) if there is k such that fi = id

and gj = id for all i > k > j.

In other words, ι is the identity 2-morphism and so is ϕ, unless we have to ‘permute’
nontrivial morphisms fi and gj with i > j.

In the case of a cubical functor, the coherence relations mentioned in Definition B.4
reduce to two commuting diagrams of 2-morphisms

17 See [Be67] for details. The most general definition does not even assume invertibility of ι
and ϕ, but we will never need such functors.

18 There is also a more general notion of a cubical functor between weak 2-categories.
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F (f) ◦ F (g) F (f ′) ◦ F (g′)

F (f ◦ g) F (f ′ ◦ g′)

F (α)◦F (β)

ϕ ϕ

F (α◦β)

(138)

F (f) ◦ F (g) ◦ F (h) F (f ◦ g) ◦ F (h)

F (f) ◦ F (g ◦ h) F (f ◦ g ◦ h)

ϕ◦id

id ◦ϕ ϕ

ϕ

(139)

where we used a shortcut notation f = (f1, . . . , fr) for morphisms in a product of
2-categories, and similarly for 2-morphisms. The latter condition has the following in-
terpretation when r = 2: whenever we have three pairs of morphisms, passing from
a composition of values of F on them to the value of F on their composition requires two
‘transpositions’ of ‘inner’ arguments and it can be done in two different ways. The con-
dition (139) says, it does not matter which way we choose.

Example B.6. The ‘right-then-left’ disjoint sum is a cubical functor, whereas the ‘left-
then-right’ one is cocubical (i.e. ϕ in Definition B.5 is identity if for some k we have
fi = id and gj = id for i < k < j).

B.2. Gray products. A Gray monoidal structure on a 2-category is an analogue of
a strict monoidal one for ordinary categories: there is a more general definition of a (weak)
monoidal 2-category, but each such category is equivalent (in a monoidal sense) to a Gray-
monoidal one [GPS95]. Because of that it is sometimes called a semi-strict monoidal
2-category [BaNe95, La05].

Definition B.7. A Gray monoidal structure in a strict 2-category C consists of an as-
sociative cubical functor ⊗ : C×C→ C and a unit object I ∈ C such that both I ⊗ ( )
and ( )⊗ I are identity 2-functors.

Example B.8. Consider a (non-additive) subcategory ModhR ⊂ModR of all G-graded
R-modules and only homogeneous morphisms. The graded tensor product, when re-
stricted to this subcategory, is a cubical functor: the 2-morphism ϕ : (f ′⊗g′)◦(f⊗g) =⇒
(f ′ ◦ f)⊗ (g′ ◦ g) is given as multiplication by λ(deg g′,deg f). This example shows that
graded monoidal categories are very close to Gray categories.

It is much harder to describe braiding in a monoidal 2-category: writing down all
coherence conditions takes usually a few pages [BaNe95, KV94]. Since we will never
use this notion in such generality, we provide here a very simplified version with all
2-morphisms being identities. That is why we call it a strict braiding.
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Definition B.9. A strict braiding in a Gray monoidal category (C,⊗, I) is a collection
of isomorphisms σA,B : A ⊗ B → B ⊗ A such that each σA, and σ ,B is a natural
transformation and the triangle below commutes

A⊗B ⊗ C A⊗ C ⊗B

C ⊗A⊗B

id⊗σB,C

σA⊗B,C σA,C⊗id
(140)

for any object C. If in addition σA,B ◦ σB,A = id, we call σ a strict symmetry.
A natural transformation η : F → G in a 2-categorical setting must be coherent with

2-morphisms. This means the following compositions of 2-morphisms are equal

F (A) F (B)

G(A) G(B)

F (f)

F (f ′)

ηX ηY

G(f ′)

F (α)

id
=

F (A) F (B)

G(A) G(B)

‘F (f)

ηX ηY

G(f)

G(f ′)

G(α)

id
(141)

for any 2-morphism α : f =⇒ f ′.
Example B.10. The category ModhR from Example B.8 is strictly braided, with
the braiding isomorphism σA,B(a⊗ b) := λ(deg a,deg b)b⊗ a.
Example B.11. The 2-category ChCob of chronological cobordisms is a strictly sym-
metric Gray monoidal category, with a product given by the ‘right-then-left’ disjoint
sum , the empty manifold ∅ as a unit object, and a permutation cylinder as a symme-
try. On the other hand, the 2-category ChCobe(0) of cobordisms embedded in D2× I is
only strictly braided.
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