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Av. Rovisco Pais, 1049-001 Lisbon, Portugal

E-mail: pelopes@math.ist.utl.pt

Abstract. For any link and for any modulus m we introduce an equivalence relation on the
set of non-trivial m-colorings of the link (an m-coloring has values in Z/mZ). Given a diagram
of the link, the equivalence class of a non-trivial m-coloring is formed by each assignment of
colors to the arcs of the diagram that is obtained from the former coloring by a permutation of
the colors in the arcs which preserves the coloring condition at each crossing. This requirement
implies topological invariance of the equivalence classes. We show that for a prime modulus the
number of equivalence classes depends on the modulus and on the rank of the coloring matrix
(with respect to this modulus).

2010 Mathematics Subject Classification: 57M27.
Key words and phrases: links, colorings, equivalence classes of colorings.
The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc103-0-2 [63] c© Instytut Matematyczny PAN, 2014



64 J. GE, S. JABLAN, L. H. KAUFFMAN AND P. LOPES

1. Introduction. Given a diagram D of a link and a modulus m > 1, a (Fox) coloring
([3, 9]) is an assignment of integers modulo m to the arcs of D such that at each crossing
twice the color assigned to the over-arc equals the sum of the colors assigned to the under-
arcs, modulo m (see Figure 1). For each diagram and for each modulus m > 1 there is

ci

ci+1

cji

ci + ci+1 − 2cji = 0

Fig. 1. Arcs at a crossing and the equation read off it. The coloring system of equations
is formed by each of these equations, one per crossing of the diagram under study.

always at least one solution to this problem namely by assigning the same color (i.e.,
integer modulo m) to each and every arc of the diagram; thus there are exactly m such
solutions modulo m. These are the trivial solutions modulo m, i.e., the so-called trivial
m-colorings of the diagram. The non-trivial m-colorings are the solutions, modulo m,
which involve at least two distinct colors.

Remark. We remark that it is well known that this system of equations is also a system
of relations for the first homology group of the 2-fold branched covering along the link
([14], Theorem 3.3). In fact, the fundamental group of the 2-fold branched covering along
a link is presented by labeling the arcs of the unoriented link diagram and having relations
of the form c = ba−1b read off at each crossing when b is the label of the over-crossing
line. It then follows that H1(M2(L))⊕Z (the first homology group of the 2-fold branched
covering along the link L) has presentation with C = B − A + B = 2B − A, where
A,B,C are the corresponding elements in the abelianization of the fundamental group
([14, 19, 20]). Should one set the color of one of the arcs equal to 0 then there would be
a bijective correspondence between this set of colorings and H1(M2(L)). It is interesting
to remark that the fundamental group of the 2-fold branched covering along the link is
itself a non-abelian generalization of the Fox coloring. While we do not use this aspect
of the topology here, we are aware of it and it may be of use in later work. For more
background on this material see [5, 8, 15, 17].

If a diagram endowed with an m-coloring undergoes a Reidemeister move, there is a
unique reassignment of colors to the arcs involved in the move such that the new assign-
ment is an m-coloring of the resulting diagram. Since these reassignments are reversible
there is a bijection between the m-colorings before and after the performance of a fi-
nite number of Reidemeister moves. Furthermore, these reassignments preserve trivial
m-colorings and thus they preserve also non-trivial m-colorings.

Therefore the number of m-colorings is a link invariant; the fact that a diagram of
a link admits or not non-trivial m-colorings is an invariant of that link. It is known
that there are links which do not admit non-trivial colorings over a given modulus. For
example, the trefoil only admits non-trivial colorings over moduli divisible by 3.

In the course of our work on colorings, we have observed that for some choices of a
modulus m > 1 and a link admitting non-trivial m-colorings, the following occurs. There
are distinct non-trivial m-colorings, C, C′ (realized on an otherwise arbitrary diagram D
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of this link) and there is a permutation γ of the m colors such that, for each arc a of D,
the colors assigned to a in the coloring C, say C(a), and in the coloring C′, say C′(a),
satisfy:

C′(a) = γ
(
C(a)

)
.

Two such colorings will be said “related”. An instance where this occurs is depicted in
Figure 2. On the other hand it is not true that any permutation transforms the colors of
a coloring into the colors of another coloring (see Figure 3).
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Fig. 2. Two identical diagrams of 940 but endowed with distinct non-trivial 5-colorings.
However, the colors of the one on the right are obtained from those of the one on the left

by applying the permutation (0)(1 2 4 3). These two 5-colorings are related.

0

0

0

0 1

1

1

1 2

2

2

2

3

3

3
3

4

4

Fig. 3. On the left, knot 940 endowed with the 5-coloring generated by the triplet (0, 1, 2).
On the right the action of permutation (01)(234) on the colors of the coloring on the left:

the result is not a 5-coloring (at the circled crossings the coloring condition is not satisfied).

Moreover, given non-trivial m-colorings C and C′, realized on the same diagram, it
may happen that there is no permutation γ of the m colors such that for each arc a of D

C′(a) = γ
(
C(a)

)
.

We will then say “C′ is essentially distinct from C”, in the given modulus, and the col-
orings split into equivalence classes (to be elaborated upon below). In Figure 4 we list
representatives of the distinct equivalence classes of the non-trivial 5-colorings of 940.
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c1

c2 c3
c1 c2 c3
0 0 1
0 1 0
0 1 1
0 1 2
0 1 3
0 1 4

Fig. 4. On the left, knot 940. Assigning colors to the indicated ci’s will generate a coloring
of the diagram (in the sense that the other colors of this coloring are uniquely determined
by c1, c2, c3—we elaborate on this issue below in the text). The table on the right displays

six triplets (c1, c2, c3) which generate essentially distinct 5-colorings on the diagram on the left.

We will be primarily concerned with permutations that preserve the coloring equation
at each crossing for these are the ones that actually give us a corresponding coloring of the
link and we will show that the relation sketched above among m-colorings of a diagram
is an equivalence relation (see below).

We remark that the articles [2] and [1] address the same topic as the current article.
Their definition of equivalent colorings assumes one has a list of all non-trivial m-colorings
for a given diagram and states simply that any two of these colorings are equivalent
provided there is a permutation of the m colors that, for each arc in the diagram, sends
the color in this arc in the source coloring to the color in the same arc in the target
coloring. This is equivalent to our definition. Unfortunately, for the purposes of counting
equivalence classes of colorings in generic cases, the methodology in [2] and [1] seems to
resort to generating classes of colorings by letting the symmetric group on the m colors
act on a given m-coloring. As we see in Figure 3, there are assignments of colors to
a diagram obtained in this way that do not constitute colorings. The formulas in the
articles referred to above predict in general less equivalence classes than ours due to their
over-counting of the elements on each orbit.

The equivalence classes of colorings constitute a topological invariant and in this
article we provide combinatorial information about them. We hope this will prove to be
useful for topological purposes.

In Section 2 we discuss preliminaries such as the nullity and the generating arcs of a
coloring (Subsection 2.1), and the definition of the equivalence classes (Subsection 2.2).
In Section 3 we calculate the number of equivalence classes in an infinite number of
instances.

2. Preliminary material

2.1. Nullity and generating arcs of a coloring on a diagram. Consider a link, L,
along with a diagram DL for that link. Regarding the arcs of this diagram as algebraic
variables we write the homogeneous system of linear equations consisting of the equations
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read off each crossing as illustrated in Figure 1. We call the matrix of the coefficients of
this homogeneous system of linear equations the coloring matrix of DL.

Any coloring matrix is made up of integers. Specifically, along each row one finds
exactly two 1’s and one −2, the rest being perhaps 0’s. Thus, adding all the columns of
a coloring matrix we obtain a column made up of 0’s. It follows that the determinant of
any coloring matrix is 0.

Upon performance of Reidemeister moves on a diagram, the changes on the origi-
nal coloring matrix are realized by operations that constitute a subset of the following
operations on integer matrices. These operations are generated by

1. multiplication of a row (column) by −1;
2. addition to one row (column) of integer linear combinations of other rows (columns);
3. insertion (deletion) of a row and column made up of 0’s except for a 1 at the

diagonal entry;
4. permutations of rows (columns).

These are the operations which relate equivalent matrices over the integers (see [11],
p. 50). So the equivalence class of a coloring matrix is a topological invariant of the link
under study. For each of these equivalence classes of matrices over the integers there is an
outstanding representative which is called the Smith Normal Form (see [18]). Although
the Smith Normal Form (SNF) is a familiar object we elaborate here slightly about it in
order to bring out some connections with colorings of knots which we do not find in the
literature.

An integer matrix in Smith Normal Form is a matrix such that its entries are all
zero except perhaps along the diagonal. Along the diagonal the entries are non-negative
(without loss of generality) and the i-th entry divides the (i+ 1)-th entry, up to a certain
index l, and after that, the entries are all 0’s:

d1, d2, . . . , dl, 0, 0, . . . , 0 with di|di+1 1 ≤ i ≤ l − 1

The di’s are called the invariant factors of the equivalence class; their name reflects
the fact that the multi-set formed by them is an invariant of the equivalence class. This
multi-set is then a topological invariant if it originates from a coloring matrix. Moreover,
the Smith Normal Form of a coloring matrix is sure to have a 0 at the last entry of
the diagonal since we proved above that the determinant of a coloring matrix is 0. The
product of the remaining entries of the diagonal of the Smith Normal Form of a coloring
matrix is the determinant of the link under study. This is also a topological invariant.
(In passing, it is known that for knots, i.e., 1-component links, the determinant of the
knot is an odd integer, see [16].)

We denote the Smith Normal Form of a matrix M by S(M). Being an element of
the equivalence class of M , S(M) is obtained by a finite number of the operations listed
above. We may then collect all the information concerning the row operations into an
invertible matrix called R and likewise for the column operations into an invertible matrix
called C to state ([18])

S(M) = RMC (1)
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with the juxtaposition of pairs of consecutive symbols on the right-hand side of the
equation denoting matrix multiplication.

Let us now fix an otherwise arbitrary link along with one of its diagrams. Let us then
relate the Smith Normal Form (and its invariant factors) of the coloring matrix of this
diagram to the corresponding system of linear homogeneous equations and its solutions.
There are always solutions of this system of equations namely by assigning the same
integer to each arc. This corresponds to the fact that the determinant of the coloring
matrix is 0. One of the algebraic variables may take on any value and if there is no other
zero entry along the diagonal of the Smith Normal Form, then the remaining variables
are uniquely determined once the former variable has been assigned a value. Going back
to the original system of equations we obtain the so-called trivial solutions, i.e., those
solutions that assign the same value to each and every arc of the diagram.

The invariant factors associated to our coloring matrix via its Smith Normal Form
allow us to do something else. Suppose we choose a factor m of one of these invariant
factors and decide to work over the integers modulo m. Then our Smith Normal Form in
this new setting acquired at least one more 0 along the diagonal. Then, there is at least
one more variable which can take on any value, modulo m. Going back to the original
system of equations, there are at least two arcs which can take on any value modulo m.
Hence, we now have polychromatic colorings, i.e., solutions where at least two distinct
arcs take on two distinct colors that is, values modulo m. Had we chosen an m which
does not possess common factors with the invariant factors, then modulo m there would
have been only trivial colorings.

Proposition 2.1. Let p be an odd prime. Let D be a link diagram. The number of 0’s
(modulo p) along the diagonal of the Smith Normal Form of the coloring matrix, M , of D,
equals the least number of arcs of D that can independently receive colors modulo p, and
generate each p-coloring of D.

Proof. If the Smith Normal Form exhibits n 0’s modulo p, this means that the space of
solutions has dimension n; working modulo a prime implies we are doing Linear Algebra
over a field so it makes sense to talk about dimensions of spaces and bases. Then matrix C
in (1) above operates a change of basis taking us back to algebraic variables equivalent to
the arcs of the original diagram. Then n of these arcs have to generate all the colorings
(i.e., all the solutions of the indicated system of equations modulo p) in terms of a basis
of coloring vectors.

Definition 2.1. The number n in the proof of Proposition 2.1 is called the p-nullity (or
the rank mod p) of the coloring matrix of D. Any set of n arcs that can independently
receive colors modulo p and so generate each p-coloring of the diagram under study is
said a set of generating arcs (of this diagram, with respect to this modulus).

Corollary 2.1. We keep the notation of Proposition 2.1. If the p-nullity of a link is n
then there are pn p-colorings of the link, and (pn − p) non-trivial p-colorings of this link.

Proof. There are p integers mod p so there are always p trivial p-colorings and pn

p-colorings.
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Corollary 2.2. Let m be a composite positive integer. Let D be a link diagram. Each
zero (modulo m) along the diagonal of the Smith Normal Form of the coloring matrix,
M , of D contributes with a factor m for the number of solutions. Each zero divisor, z,
of m along the diagonal contributes with a factor gcd(z,m) to the number of solutions.
With nZ for the number of 0’s (modulo m) along the diagonal in S(M), and IZ(M) for
the set the of invariant factors of M which are zero divisors of m, the formula for the
number of m-colorings of D is

mnZ

∏
z∈IZ(M)

gcd(z,m)

Proof. The contribution of the nZ zero’s (modulo m) along the diagonal of the Smith
Normal Form to the number of solutions is clear. For the contribution of the zero divisors
along the diagonal to the number of solutions see [10], page 40. This concludes the proof.

2.2. Equivalence classes of colorings. In this section we introduce equivalence classes
of colorings as orbits of actions of certain groups of permutations on the set of colorings
of a diagram. In order for this notion to be topological we require a special kind of per-
mutation which we call a coloring automorphism. These are permutations which comply
with the coloring operation,

a ∗ b := 2b− a

in a pre-assigned modulus m. This operation generalizes to the quandle operation, gen-
eralizing also the notion of coloring ([7, 13]). In the particular instance a ∗ b = 2b− a we
are dealing with the so-called dihedral quandles, one per integer modulus m.

Definition 2.2 (coloring automorphism of Zm). Given an integer m ≥ 3, we define a
coloring automorphism of Zm to be a permutation, f , of Zm such that

f(a ∗ b) = f(a) ∗ f(b)

for all a, b ∈ Zm, with x ∗ y = 2y − x (mod m), for every x, y ∈ Zm.

In [4] we find the following facts. For a given integer m ≥ 3, each coloring automor-
phism of Zm is given by

fλ,µ(x) = λx+ µ

with µ ∈ Zm and λ ∈ Z∗m, the set of units of Zm. The set of all these coloring automor-
phisms of Zm equipped with composition of functions, constitutes a group isomorphic
to the affine group over Zm, i.e., isomorphic to the semi-direct product Zm o Z∗m. We
denote it by Autm.

For any integer m ≥ 3 the inner coloring automorphism group of Zm is generated by
the automorphisms of the form fb(x) = x ∗ b. It is easy to see that this group consists of
the elements of the form

f±,µ(x) = ±x+ µ

If m is even this subgroup is isomorphic to the dihedral group of order m and µ can take
on only “even” values from Zm. If m is odd, this subgroup is isomorphic to the dihedral
group of order 2m and µ can take on any value from Zm. We denote it by Innm. This
information about coloring automorphisms of Zm is contained in [4].
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In the sequel, we will write “automorphism” (respectively, “inner automorphism”)
instead of the longer “coloring automorphism of Zm” (respectively, “inner coloring au-
tomorphism of Zm”) since these are the only automorphisms of Zm we consider in this
article, i.e., the permutations of elements of Zm that comply with the coloring operation.

Specifically, we will use the expression automorphism to designate a permutation of
the form

fλ,µ(x) = λx+ µ

with µ ∈ Zm and λ ∈ Z∗m, and inner automorphism to designate a permutation of the
form

f±,µ(x) = ±x+ µ

with µ taking on only “even” values from Zm if m is even; with µ taking on any value
from Zm if m is odd.

We remark that it is well known that for a quandle (Q, ∗) and a diagram D, the set of
diagram colorings by elements of Q, ColQ(D) is a Q-quandle set, where the action of Q
on ColQ(D) is given by C ∗ q for a coloring C ∈ ColQ(D) and q ∈ Q (Kamada was the
first proponent of this language). Our considerations for dihedral quandles are related to
this.

Definition 2.3. Let m > 1 be an integer. Let L be a link admitting non-trivial
m-colorings. Let D be a diagram of L. We let mCD stand for the set of non-trivial
m-colorings of D.

Proposition 2.2. Let m > 1 be an integer. Let L be a link admitting non-trivial
m-colorings and let D be a diagram of L. Let G be a subgroup of Autm. Then G acts on
mCD by permutations.

Specifically, given g ∈ G and C, an m-coloring of D with colors ci, then gC is the
m-coloring of D obtained by replacing each color ci by g(ci).

Moreover, this action is faithful and if m is prime this action is also free.

Proof. We keep the notation of the statement. We regard C ∈ mCD as the map which
assigns colors to the arcs of D in such a way that C(ai+1) = 2C(aji) − C(ai), where ji
designates the index of the over-arc of the crossing where under-arcs with indices i and
i+ 1 meet, see Figure 1 (where now each ck should be read C(ak)).

So, given g ∈ G and C ∈ mCD, then gC is such that

g
(
C(ai+1)

)
= g
(
2C(aji)− C(ai)

)
= 2g

(
C(aji)

)
− g
(
C(ai)

)
so gC is again an m-coloring of D.

Clearly, the identity element 1G ∈ G is such that 1GC = C. Furthermore, for any two
g1, g2 ∈ G, the composition of functions guarantees that (g1g2)C = g1

(
g2C
)
.

We now prove that this action is faithful, i.e., we prove that given a non-identity
g ∈ G there exists a coloring C ∈ mCD such that gC ∈ mCD 6= C ∈ mCD. We recall
that the elements of G are, in particular, permutations of the elements of Zm. So given a
non-identity element of G which moves i ∈ Zm, then the coloring obtained by assigning i
to one of the generating arcs of the diagram is transformed via g into a coloring where
now this generating arc is assigned g(i) 6= i.
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We now prove that this action is free, i.e., that if given g, h ∈ G there exists a coloring
C ∈ mCD such that g

(
C
)

= h
(
C
)

then g = h. We recall that, for some λ, λ′ ∈ Z∗m and
µ, µ′ ∈ Zm, g(x) = λx + µ, h(x) = λ′x + µ′ for any x ∈ Zm. Since g

(
C
)

= h
(
C
)

then
there exists two distinct colors in Zm, say a 6= b, such that g(a) = h(a) and g(b) = h(b).
More precisely, {

0 = (λ− λ′)a+ (µ− µ′)
0 = (λ− λ′)b+ (µ− µ′)

⇐⇒

{
λ = λ′

µ = µ′

since a 6= b and m is prime. Thus g = h.
This concludes the proof.

Definition 2.4 (G-equivalence classes of m-colorings of D). Let G be a subgroup of
Autm. The G-equivalence classes of m-Colorings of D are, by definition, the G-orbits
over mCD.

We will next prove that this notion provides topological invariants (in particular, the
number of equivalence classes of m-colorings of a link).

It is well known that, given any two diagrams of the same link, there is a bijection
between the two sets of m-colorings of these diagrams ([12], [14], Lemma 2.2). Moreover,
this bijection takes trivial m-colorings to trivial m-colorings and non-trivial m-colorings
to non-trivial m-colorings. This bijection is realized by the “Colored Reidemeister Moves”.
The Colored Reidemeister Moves apply to a diagram endowed with an m-coloring;
a Reidemeister move is applied to the diagram and a local adjustment of the coloring is
performed. These adjustements are unique and reversible thereby proving the bijection
between the two sets of m-colorings of any two diagrams of the same link.

Proposition 2.3. Let m be an integer greater than 1. Let L be a link admitting non-
trivial m-colorings and let D and D′ be two diagrams of L. Let G be a subgroup of Autm.

There is a bijection from mCD to mCD′, which preserves the G-equivalence classes.

Proof. From [12] we know that the Colored Reidemeister Moves realize a bijection from
the set of m-colorings of D to the set of m colorings of D′, taking non-trivial colorings to
non-trivial colorings. We now prove that the Colored Reidemeister Moves take distinct
elements of mCD along a G-equivalence class, to distinct elements of mCD′ along a
G-equivalence class. Specifically, for g ∈ G and C ∈ mCD, we prove that the “Colored
Reidemeister moves” take C ∈ mCD to C′ ∈ mCD′ and gC ∈ mCD to gC′ ∈ mCD′. The
proofs of these statements for the individual “Colored Reidemeister Moves” of type I, II,
and III are displayed in Figures 5, 6, and 7. The ∼ associates horizontally colorings on
distinct diagrams related by a Colored Reidemeister move. Vertically we display colorings
C and gC (C′ and gC′, respect.) for diagram D (D′, respect.).

In Figures 5 and 6 circles with dotted lines were drawn to bring out the local nature
of the transformation. This was not done in Figure 7 in order not to overburden the
figure.

Remark. Proposition 2.3 can also be seen by regarding mod-m colorings as elements of
(H1(M (2)

L ), Z/m) ∼= Hom(H1(M (2)
L ), Z/m).
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D D′

C(r) = x

g
(
C(r)

)
= g(x)

C ′(r′1) = x = C ′(r′2)

g
(
C ′(r′1)

)
= g(x) = g

(
C ′(r′2)

)

r
r′1

r′2

∼

∼

Fig. 5. Colored Reidemeister move of type I and G-equivalence relation of colorings
on the same diagram.

D D′

C(r) = x

C(s) = y

g
(
C(r)

)
= g(x)

g
(
C(s)

)
= g(y)

C ′(r′1) = x C ′(s′) = y

C ′(r′2) = 2C ′(s′)− C ′(r′1) = 2y − x

C ′(r′3) = . . . = 2y − (2y − x) = x

g
(
C ′(r′1)

)
= g(x) g

(
C ′(s′)

)
= g(y)

g
(
C ′(r′2)

)
= g(2C ′(s′)− C ′(r′1)) = 2g(y)− g(x)

g
(
C ′(r′3)

)
= . . . = g(2y − (2y − x)) = g(x)

r s s′

r′1

r′2

r′3

∼

∼

Fig. 6. Colored Reidemeister move of type II and G-equivalence relation of colorings
on the same diagram.

Theorem 2.1. Let L be a link and D one of its diagrams. Let m > 1 be an integer.
The number of G-equivalence classes of m-colorings of D is a topological invariant.

The multi-set whose elements are the number of m-colorings per G-equivalence class of
m-colorings of D is a topological invariant.

Proof. This is a straight-forward consequence of Proposition 2.3.

We remark that in the sequel G, the subgroup of Autm, will be either Autm itself
or Innm. Figure 8 illustrates the fact that in general there are more inner equivalence
classes than equivalence classes (for the same link and for the same modulus).
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D D′

C(r1) = x C(s1) = y C(t) = z

C(r2) = . . . = 2y − x

C(s2) = . . . = 2z − y

C(r3) = . . . = 2z − (2y − x) = 2z − 2y + x

C ′(r′1) = x C ′(s′1) = y C ′(t′) = z

C ′(r′2) = . . . = 2z − x

C ′(s′2) = . . . = 2z − y

C ′(r′3) = . . . = 2z − 2y + x

g
(
C(r1)

)
= g(x) g

(
C(s1)

)
= g(y)

g
(
C(t)

)
= g(z)

g
(
C(r2)

)
= . . . = 2g(y)− g(x)

g
(
C(s2)

)
= . . . = 2g(z)− g(y)

g
(
C(r3)

)
= . . . = 2g(z)− 2g(y) + g(x)

g
(
C ′(r′1)

)
= g(x) g

(
C ′(s1)

)
= g(y)

g
(
C ′(t)

)
= g(z)

g
(
C ′(r′2)

)
= . . . = 2g(y)− g(x)

g
(
C ′(s′2)

)
= . . . = 2g(z)− g(y)

g
(
C ′(r′3)

)
= . . . = 2g(z)− 2g(y) + g(x)

t t′r1

r2

r3

r′1

r′2

r′3

s1 s′1

s2 s′2

∼

∼

Fig. 7. Colored Reidemeister move of type III and G-equivalence relation of colorings
on the same diagram.

5

a = 0 a = 0b = 1

1

b = 2

2

3

4

Fig. 8. Two 5-colorings of the Figure-8 knot (which has determinant 5). These colorings are
representatives of the two distinct 5-coloring inner equivalence classes. On the other hand there
is only one 5-coloring equivalence class. These facts will be clear from the results in Section 3.

3. Formulas for numbers of equivalence classes. In this section we apply the theory
developed above to specific situations. We use p-nullity as in Definition 2.1.

3.1. Equivalence classes
Proposition 3.1. Let p be an odd prime and n an integer greater than 1. A link L with
p-nullity n has

pn−1 − 1
p− 1

equivalence classes of p-colorings.
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Proof. As discussed right after Definition 2.2, an automorphism of Zp
fλ,µ(x) = λx+ µ

depends on two parameters λ ∈ Z∗p and µ ∈ Zp. Since |Zp| = p and |Z∗p| = p − 1, there
are then exactly p(p− 1) automorphisms for Zp.

Now suppose C is in pCD, where D is a diagram of L. Since the action of Autp is
free (2.2) each orbit of the action has exactly p(p − 1) elements. Since there are pn − p
elements in pCD, there are then

pn − p
p(p− 1) = pn−1 − 1

p− 1
orbits of this action which is the number of equivalence classes of p-colorings for link L.
Corollary 3.1. We keep the notation of Proposition 3.1.

1. If a diagram D of link L admits a non-trivial p-coloring with the least number of
colors (over all diagrams, over all non-trivial p-colorings), then there are at least
p(p− 1) such p-colorings of D.

2. If the nullity of Lmod p is 2 and a diagram D of L admits a non-trivial p-coloring
with k colors, then any other non-trivial p-coloring of D uses k colors. In particular,
if D is a diagram of L where a non-trivial p-coloring is realized with the least number
of colors, then any other non-trivial p-coloring of this diagram uses also the least
number of colors.

Proof. 1. Since the automorphisms are permutations of the p colors they preserve the
number of distinct colors. So if a non-trivial p-coloring of a diagram uses k colors, then
along its equivalence class the non-trivial p-colorings use k colors each and there are
p(p − 1) non-trivial p-colorings per equivalence class. If a diagram D of link L admits a
non-trivial p-coloring with the least number of colors then along its equivalence class the
non-trivial p-colorings use the same number of colors each.

2. If the nullity of L mod p is 2 then there is only one equivalence class (mod p). Then
the arguing of 1. is valid for the p(p− 1) non-trivial p-colorings in this orbit.
Corollary 3.2. Let L be a link with the following property.

The Smith Normal Form of a(ny) coloring matrix of L has only one 0 and only one
0 6= d 6= 1 along the diagonal.

Then for any prime p such that p |d, there is only one equivalence class of p-colorings.
In particular, rational links satisfy this property.
Proof. Working mod p the Smith Normal Form of the coloring matrix will exhibit exactly
two zeros. Hence the p-nullity is 2 and the result follows from Proposition 3.1.
Corollary 3.3. The following links have only one class of p-colorings for each prime p
for which they admit non-trivial p-colorings.

1. Links whose determinant is prime.
2. Links of non-zero determinant whose SNF of the coloring matrix displays different

primes on different diagonal entries (besides the 0 entry and possible 1’s).
3. Knots whose knot group can be presented using one relator (in particular, torus

knots).
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Proof. 1. and 2. are particular cases of Corollary 3.2. As for 3., since the deficiency of
knot groups is one then knot groups which can be presented with one relator only need
two generators. Then the Smith Normal Form of the coloring matrix is diag (d, 0) where
d is the determinant of the knot.

3.2. Inner-equivalence classes

Proposition 3.2. Let p be an odd prime and n an integer greater than 1. A link L with
p-nullity n has

pn−1 − 1
2

inner-equivalence classes of p-colorings.

Proof. As discussed right after Definition 2.2, an inner-automorphism of Zp is of the form

f±,µ(x) = ±x+ µ

with µ ∈ Zp. There are then exactly 2p inner-automorphisms for Zp.
The rest of the proof goes through as in the proof of Proposition 3.1 leading to the

following number of inner-orbits
pn − p

2p = pn−1 − 1
2 .

Corollary 3.4. Let L be a link with the following property.
The Smith Normal Form of a(ny) coloring matrix of L has only one 0 and only one

0 6= d 6= 1 along the diagonal.
Then for any prime p such that p |d, there are p−1

2 inner-equivalence classes of p-
colorings. In particular, rational links satisfy this property.

Proof. Adapt the proof for Corollary 3.2.

Corollary 3.5. The following links have p−1
2 classes of p-colorings for each prime p

for which they admit non-trivial p-colorings.

1. Links whose determinant is prime.
2. Links of non-zero determinant whose Smith Normal Form of the coloring matrix

displays different primes on different diagonal entries (besides the 0 entry and pos-
sible 1’s).

3. Knots whose knot group can be presented using one relator (in particular, torus
knots).

Proof. Adapt the proof for Corollary 3.3.

4. Directions for future work. In the context of quandles this work has to do with
homomorphisms from the fundamental quandle of the knot to the dihedral quandles
([7, 13]). We organize these homomorphisms into equivalence classes. In future work we
plan to generalize this work to other classes of target quandles, other than the dihedral
quandles.
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