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Abstract. In this note, we prove the existence of a tri-graded Khovanov-type bicomplex (The-
orem 1.2). The graded Euler characteristic of the total complex associated with this bicomplex
is the colored Jones polynomial of a link. The first grading of the bicomplex is a homological one
derived from cabling of the link (i.e., replacing a strand of the link by several parallel strands);
the second grading is related to the homological grading of ordinary Khovanov homology; finally,
the third grading is preserved by the differentials, and corresponds to the degree of the variable
in the colored Jones polynomial. In particular, we introduce a way to take a small cabling link
diagram directly from a big cabling link diagram (Theorem 3.2).

1. Introduction. Throughout this paper we work in the smooth category. A link is
a closed one-dimensional submanifold of R3 and a knot is a one-component link. The
equivalence of links is given by an ambient isotopy. A link diagram is a regular projection
of the link to a plane, where each double point is specified by over-crossing and under-
crossing branches. The term regular projection here means a projection to a plane in
which every singular point is a transversal double point.

For every link diagram, we can naturally consider a framing that is a non-vanishing
normal vector field on the link considered up to isotopy. An isotopy class of framings
contains those annihilated by the projection and those whose vectors are projected to
nonzero vectors. We choose the latter type and call them blackboard framings if their
normal vectors are sufficiently short.

Let m = (m1,m2, . . . ,ml) be a finite sequence of nonnegative integers. The
(m1,m2, . . . ,ml)-cable of a link diagram D of an oriented l-component link L is the
diagram D(m1,m2,...,ml), defined by replacing the i-th component of D by mi-oriented
parallel strands, as shown in Figs. 1 and 2. This replacement procedure is performed by
using the link diagram and its blackboard framing. Every point is pushed in the direction
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of the normal vector n, where for every tangent vector t that is tangential to D, the pair
(t, n) is positively oriented on the plane (this description is taken from [10, 11]).

n

2

·
·
·

1

…

…

…

…

…

Fig. 1. Orientation of the cable of a diagram.
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Fig. 2. A link diagram D (left) and the (2, 3)-cable of D, denoted by D(2,3) (right).

For a l-component link L, the colored Jones polynomial Jn(L) can be written as
follows:

Jn(L) =
bn/2c∑
k=0

(−1)|k|
(

n− k
k

)
J(Dn−2k) (1)

where n = (n1, n2, . . . , nl), k = (k1, k2, . . . , kl) for arbitrary ni, ki ∈ Z≥0, |k| =
∑
i ki,(n−k

k
)

=
∏l
i=1
(
ni−ki

ki

)
, the sum

∑bn/2c
k=0 is the sum over all 0 ≤ ki ≤ bni/2c for all i, and

J(D) is the Jones polynomial of a link diagram D that has J(D0) = 1 (for more details
of Jn, see [7], [9], and [6]).

In [5], Khovanov defined a bigraded chain complex whose graded Euler characteristic
is the Jones polynomial and whose homology group, known as the Khovanov homology, is
a link invariant. In [6], Khovanov made two proposals for an analogous homology theory
for the colored Jones polynomial. However, the first homology theory proposed in [6] was
defined over only Z2, and the second one, for another normalization of the colored Jones
polynomial, works only for knots. Later, Beliakova and Wehrli developed the Khovanov
theories of colored links over Z[1/2]. Furthermore, Mackaay and Turner [8] independently
proposed another approach to constructing homology theories over Z2 for colored links,
in which they calculated Bar-Natan’s version of the Lee homology groups of knots and
links.

In [2, 11], Beliakova and Wehrli defined colored Khovanov brackets of colored links
using formal Khovanov brackets, which are universal objects introduced by Bar-Natan [1]
that reconstruct the Khovanov and Lee homologies. They pointed out that the colored
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Khovanov bracket is not a bicomplex and speculated as to whether it was indeed possible
to construct a bicomplex.

In these constructions, we require a direct definition of a coboundary operator between
certain complexes of the link diagrams inducing the Khovanov-type homology whose
graded Euler characteristic is the colored Jones polynomial of a link.

With this background, the present note discusses the following problem.

Problem 1.1. Is there a Khovanov-type bicomplex whose homological gradings are de-
rived from cabling and from the homological grading of Khovanov homology, which can
be viewed as a nontrivial categorification of the colored Jones polynomial?

Here, the term Khovanov-type bicomplex is used to mean that it possesses the prop-
erties of the Khovanov homology with respect to Euler characteristics, has a differential
defined by the Frobenius calculus. The following theorem provides a positive answer to
Problem 1.1.

Theorem 1.2. For each diagram D of a link L, there exists a nontrivial tri-graded bi-
complex {Ck,i,jn (D), d′, d′′} whose differentials preserve the grading j such that

Jn(L) =
∑
j

qj
∑
i,k

(−1)i+k rankHk(Hi(C∗,∗,jn (D), d′′), d′). (2)

The proof of Theorem 1.2 is presented in Section 6 using results that we obtain in
Sections 2–5. On the basis of Theorem 1.2, we define a colored Khovanov bicomplex and
its homology.

Definition 1.3. From Theorem 1.2, the coboundary operator d′ causes the map

d′
∗ : Hi(Ck,∗,jn (D))→ Hi(Ck+1,∗,j

n (D))

to imply Hk(Hi(C∗,∗,jn (D))). The complex {Ck,i,jn (D), d′, d′′} is called the colored Kho-
vanov bicomplex, and its cohomology Hk(Hi(C∗,∗,jn (D))) is called the colored Khovanov
homology.

2. Preliminaries

L+ L− L0
Fig. 3. Neighborhoods of the same part of an oriented link diagram.

The three exteriors of these neighborhoods are the same.

2.1. Jones polynomial and colored Jones polynomial. In this paper, the Jones
polynomial J(L) of variable q of an oriented link L in R3 is defined by the skein relation

q−2J(L+)− q2J(L−) = (q−1 − q)J(L0) (3)
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for three arbitrary links L+, L−, and L0 that differ as shown in Fig. 3, and its value on
the unknot is q+q−1. Another definition of the Jones polynomial of an oriented link that
has a diagram D is given by

J(L)|q=−A−2 = (−A)−3w(D)〈D〉 (4)

where w(D) is the number of crossings of L+ minus that of L−. 〈·〉 is the Kauffman
bracket of the link diagram D neglecting its orientation, and is defined by

〈D×〉 = A〈D0〉+A−1〈D∞〉 (5)

for three arbitrary link diagrams D×, D0, and D∞ that differ as shown in Fig. 4, and its
value on the Jordan curve in R2 is −A−2 −A2.

D× D0 D∞
Fig. 4. Neighborhoods of the same part of an unoriented link diagram.

The three exteriors of these neighborhoods are the same.

In a similar manner to Khovanov [5], we define the colored Jones polynomial as follows.

Definition 2.1. The colored Jones polynomial is defined by formula (1) using the Jones
polynomial J(L) defined in Section 2.1.

For further details of formula (1), see [7, 6].

2.2. Khovanov homology of the Jones polynomial. In this section, we recall the
definition of the Khovanov homology of the Jones polynomial in the style of Viro [10].

2.2.1. The Z2 Khovanov homology. Two cases are available for understanding the con-
structions of the desired bicomplex. One entails using the coefficient Z, and the other case,
which is comparatively simpler, entails using the coefficient Z2. Then, first, we recall the
Khovanov homology with coefficients in Z2.

Let us consider a link diagram and place a small edge (Fig. 5(b) or (c)), called a
marker, for every crossing (Fig. 5(a)) on the link diagram.

(a) (b) (c) (d) (e)
Fig. 5. A crossing (a) of a link diagram showing a positive marker (b), a negative marker (c),

and a simple notation (d) ((e)) corresponding to (b) ((c)).

Every marker and its sign are defined by the direction of smoothing for every crossing
of the link diagram, as in Fig. 6. In the rest of this paper, we use the simple notation of
Fig. 5(d) ((e)) corresponding to the marker of Fig. 5(b) ((c)).
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Fig. 6. Smoothing along markers.

The smoothed link diagram consists of Jordan curves, and is called the Kauffman state
of the link diagram, or simply the state in this paper. It is well known that Kauffman
states determine the Kauffman bracket as follows. For an arbitrary link diagram D, we
denote the result of the smoothing by s and the number of circles by |s|. The number of
positive markers minus the number of negative markers for an arbitrary s is denoted by
σ(s). The Kauffman bracket is written as

〈D〉 =
∑

states s
Aσ(s)(−A2 −A−2)|s|. (6)

As the next step of defining the Khovanov homology, we assign label x or 1 for every
Jordan curve of the state. We define the degrees of x and 1 by the map “deg” from {x, 1}
to {−1, 1} such that deg(x) = −1 and deg(1) = 1. The state whose Jordan curves have
the labels x or 1 is called an enhanced state, and is denoted by S. Clearly, we can extend
the definition of σ for every enhanced state S corresponding to s, therefore do so. For
y = x or y = 1, set τ(S) =

∑
y inS deg(y). For an oriented link diagram D of a link L,

the Jones polynomial J(L) defined in Section 2.1 is obtained as

J(L) =
∑

enhanced states S
(−1)i(S)qj(S) (7)

where i(S) = (w(D) − σ(S)) and j(S) = w(D) + i(S) + τ(S). Here, we would like to
remark that

J(L) = (−A)−3w(D)〈D〉

=
∑

states s
(−A)−3w(D)Aσ(s)(−A2 −A−2)|s|

=
∑

enhanced states S
(−1)−3w(D)+|S|A−3w(D)+σ(S)−2τ(S)

=
∑
S

(−1)w(D)+τ(S)(A−2)w(D)+(w(D)−σ(S))/2+τ(S)

=
∑
S

(−1)(w(D)−σ(S))/2(−A−2)w(D)+(w(D)−σ(S))/2+τ(S)

=
∑
S

(−1)(w(D)−σ(S))/2qw(D)+(w(D)−σ(S))/2+τ(S) =
∑
S

(−1)i(S)qj(S)

(8)

where we use the formula |S| ≡ τ(S) (mod 2) for the number |S| of circles in S. We
consider the abelian group Ci,j(D;Z2) with the coefficient Z2 generated by the enhanced
states S of a fixed link diagram D satisfying i(S) = i and j(S) = j. For D = ∅, we
consider that C0,0(∅;Z2) is generated by only one generator; and then, an enhanced state
S = ∅ and C0,0(∅;Z2) is equal to Z2.
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Next, we define the coboundary operator d2, usually called the differential in the case
of the Khovanov homology. We consider every enhanced state, denoted by T , obtained
when the neighborhood of a single crossing with a positive marker is replaced by that of
a negative marker in each of the cases listed in Fig. 7. For an arbitrary enhanced state S,

(a)

(b)

(c)

(d)

(e)

(f)

S

11

1x

x1

T

1

x

x

S T

1 1

x

1 x

1

x

x

x

Fig. 7. Each figure to the left of an arbitrary arrow is S and that to the right is T
for formula (9). Each tuple of the enhanced states S and T defines the incidence number

(S : T )2 = 1 in formula (9). The neighborhood of a positive marker of S is replaced
by that of a negative marker of T . The dotted arcs are the common fragments of S and T .

According to convention, we can represent the above figures using homomorphisms m and ∆
such as (a): m(1⊗ 1) = 1, (b): m(x⊗ 1) = x, (c): m(1⊗ x) = x,

(d) and (e): ∆(1) = 1⊗ x + x⊗ 1, (f): ∆(x) = x⊗ x.
In these formulae, each circle corresponds to Z21⊕ Z2x over Z2.

the map d2 is defined by

d2(S) =
∑

enhanced states T
(S : T )2 T (9)

where the incidence number (S : T )2 is unity in each of the cases listed in Fig. 7 and
(S : T ) is 0 otherwise. The map d2 is extended to the homomorphism from Ci,j(D;Z2)
to Ci+1,j(D;Z2), since j(S) = j(T ) for the tuple of enhanced states listed in Fig. 7
corresponding to (S : T )2 = 1. The homomorphism is denoted by the same symbol d and
becomes the coboundary operator of the Khovanov homology: that is, d2

2 = 0 (for the
proof of this formula, see [10]).

Theorem 2.2 (Khovanov). Let L be an arbitrary link with a diagram D. For arbitrary i
and j, the cohomology group Hi(C∗,j(D;Z2), d2) is invariant under an ambient isotopy
for L, so this cohomology group can be denoted by Hi,j(L;Z2) and satisfies

J(L) =
∑
j

qj
∑
i

(−1)irankHi,j(L;Z2). (10)

From this definition, H0,0(∅;Z2)=Z2 and H0,1(unknot;Z2)=H0,−1(unknot;Z2)=Z2.
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2.2.2. Extension to the coefficient Z case. We consider the order of all the negative
markers that belong to an enhanced state up to every permutation, and call this order the
orientation. The orientation is the opposite (resp. same) if two orders of negative markers
differ by an odd (resp. even) permutation. We consider the relation among enhanced
states with the orders such that one enhanced state is another enhanced state multiplied
by −1 (1) if the orders of these enhanced states have the opposite (same) orientations.
We call an enhanced state with this relation an oriented enhanced state. We extend
the relation to that of the abelian group generated by the oriented enhanced states S
satisfying i(S) = i and j(S) = j in a fixed link diagram D. We denote the abelian group
over the coefficient Z by Ci,j(D).

We now define the coboundary operator d that is analogous to the d2 given in Sec-
tion 2.2.1. For oriented enhanced states S and T , we set the incidence number (S : T ) = 1
if S and T satisfy (S : T )2 = 1 and are oriented by the orders of their negative markers
such that the orders coincide on the common markers followed by the changing marker
in the order of T . We define the map on oriented enhanced states as follows:

d(S) =
∑

oriented enhanced states S
(S : T ) T. (11)

We extend the map d to that of Ci,j(D)→ Ci+1,j(D), and denote this extended map by
the same symbol d. The extension of the coefficient from Z2 to Z is assured by the result
of Viro [10, Section 5.4] (originally given by Khovanov [5]), which we outline below.

Theorem 2.3 (Viro). The homomorphism d satisfies d2 = 0.

Then, we have one of Khovanov’s results [5].

Theorem 2.4 (Khovanov). Let L be an arbitrary link diagram. For arbitrary i and j,
the cohomology group Hi(C∗,j(D), d) is invariant under an ambient isotopy for L, so this
cohomology group can be denoted by Hi,j(L) and satisfies

J(L) =
∑
j

qj
∑
i

(−1)irankHi,j(L). (12)

3. Technique for taking up small cabling diagrams from a big cabling dia-
gram. In this section, we introduce a technique for directly taking up a small cabling
diagram from a big one. Recall the definition of a k-cable provided in Section 1; we denote
“(k)-cable” in the case of a knot diagram simply by a “k-cable”.

Theorem 3.1. Let D be a knot diagram and Dk be the k-cable of D. The knot diagram Dk

can be taken from Dk+2 by smoothing the crossings of two neighboring strands of Dk+2.

Proof. Take any two neighboring strands from Dk+2, henceforth referred to as contracted
strands, and choose any direction for them. Strands that do not belong to contracted
strands are called non-contracted strands. Along the chosen direction, we smooth the
crossings of the contracted strands according to the rule shown in Fig. 8. If contracted
strands meet another pair of contracted strands, we smooth four crossings, as shown in
Fig. 8(a). If contracted strands meet a non-contracted strand, we smooth two crossings,
as in Fig. 8(b). After smoothing, we have the knot diagram Dk and a finite number
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of Jordan circles, called contracted circles. This is because any arcs in the right-hand
images of Figs. 8(a) and (b) will connect simple arcs or other non-contracted strands as
in Fig. 9. Finally, the obtained diagram Dk does not depend on the choice of direction
and contracted strands, since the smoothing rule shown in Fig. 8(a) does not depend on
these choices and the rule of Fig. 8(b) does not change the diagram Dk using Fig. 9. This
concludes the proof.

(a) (b)

Fig. 8. Rule for smoothing the crossings of two neighboring strands, called contracted strands.
The small arrows show the directions of two neighboring strands.

(a) Four crossings consisting of contracted strands.
(b) Two crossings consisting of contracted strands and non-contracted strands.

Fig. 9. Possible arcs after smoothing the crossings in Fig. 8.

Extending the above discussion to that of the link case, we have the following.

Theorem 3.2. The (k1, k2, . . . , ki, . . . , kl)-cable of a l-component link diagram D can be
taken from the (k1, k2, . . . , ki + 2, . . . , kl)-cable of D.

Proof. Let us choose an arbitrary i-th component of two neighboring strands, also called
contracted strands, and their direction.

For the link case, contracted strands meet other components. All strands of the other
components are non-contracted strands. In this case, we apply smoothing of the kind
shown in Fig. 8(b). After smoothing, considering Fig. 9, other components do not change
the link diagram. Let us call these Jordan circles contracted circles, as in the proof of
Theorem 3.1. At their crossings, no new contracted circles arise, and the choice of con-
tracted strands and their direction does not change the link diagram D(k1,k2,...,kl) up to
plane isotopy. In the case of smoothing crossings of contracted strands as illustrated in
Fig. 8(a) in the proof of Theorem 3.1, the choices of contracted strands and their direc-



A COLORED KHOVANOV BICOMPLEX 119

tion does not change the link diagram D(k1,k2,...,kl) up to plane isotopy and contracted
circles, which are a finite number of Jordan circles.

Definition 3.3. For the (k1, k2, . . . , ki+2, . . . , kl)-cable of a l-component link diagramD,
the (k1, k2, . . . , ki, . . . , kl)-cable of D with contracted circles defined in the above construc-
tion is called a Type 1 diagram, or simply Type 1.

Proposition 3.4. The number of contracted circles is even.

(a)

k l

j

i
-

?

(c)

k l

j

i �� ���� ��
(b; j, l > 0)
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k l
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Fig. 10. The thin lines denote one-cable strands. The numbers i, j, k, and l (≥ 0) with thick
lines indicate the number of parallel strands. (a) has i + 1, j + 1, k + 1, and l + 1-cable strands.

Circles in (b) and (c) represent contracted circles. In the case of knot diagrams, there are
always has two cases: 1) i = l and 2) j = k, i = k, and j = l.

Proof. Knot case. First, we will show that “the number of contracted circles is even (∗)”
in the case of knot diagrams. Every set of crossings of the cable diagram of a knot can
be represented as in Fig. 10(a) or as its mirror image (see Fig. 8). Below, we explain the
details of considering Type 1 with the help of Fig. 10 (bottom left of Fig. 8(a)); it should
be noted that we must consider not only those cases in Fig. 10, but also their mirror
images (top left of Fig. 8(a)), for which the discussion is similar. After considering the
Type 1 of Fig. 10(a), we obtain one of Fig. 10(b). Consider the four pairs of neighboring
crossings connecting as shown in Fig. 10(a). Then, this part (i.e., (a)) of Type 1 has
to be connected to two simple arcs located to the right and the bottom of Fig. 10(b).
Similarly, each of the other two simple arcs, located to the left and top of Fig. 10(b) (or
its mirror image), connects to other sets of crossings in other panels. The dashed lines
in every (b)-type panel of Fig. 10 represent simple arcs connecting with other panels. By
shortening the dashed lines with the use of a plane isotopy, we see that Type 1 consists
of the set of crossings shown in Fig. 10(c) and their mirror images. This proves (∗) in
the case of knot diagrams. In summary, noting that the terms of “(b)-type” (“(c)-type”)
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contain not only (b)-types ((c)) of Fig. 10 but also their mirror images,

Type 1 of a diagram consisting of (a)-type crossings
= a diagram consisting of (b)-type crossings and contracted circles
∼ a diagram consisting of (c)-type crossings and contracted circles

(13)

where ∼ is a plane isotopy.

l

(a)

?

l

(b)

?

l

(c)

Fig. 11. (a), (b): Contracted strands encountered by l parallel non-contracted strands.
(c): Type 1 corresponding to both (a) and (b).

Link case. Second, we consider the case of link diagrams. In this case, the sets of cross-
ings arise as shown in Figs. 11(a) and (b), but they do not produce any contracted circles,
because these sets of crossings change to Fig. 11(c) when we consider Type 1 for panels
(a) and (b), as in the proof of Theorem 3.2. In addition, the discussion concerning Fig. 10
in the previous paragraph also applies to the case of a link. Thus, following a similar
argument as above for the dashed lines, (∗) still holds in the case of link diagrams.

3.1. Enhanced Kauffman states of Type 1 preserving grading j

3.1.1. Definition of Type 1j. On the basis of Theorem 3.2 and Proposition 3.4, we can
define a map preserving grading j between complexes of the Khovanov homology from a
complex of a big cabling diagram to that of a small cabling diagram. To do so, we must
choose “good” enhanced states for Type 1, as defined below.

Let us fix the tuple of nonnegative integers k = (k1, k2, . . . , ki + 2, . . . kl) and an
l-component link D. By choosing markers that give a Type 1 smoothing of Dk, we have
a (k1, k2, . . . , ki, . . . , kl)-cable of D. Here, we have an even number of contracted circles
(by Proposition 3.4). We can define x and 1 of these contracted circles in Type 1 that
preserves j. For every panel of the kind in Fig. 10(c) of Type 1 or its mirror image, we
associate x (1) with the bottom (right) circle in the rectangle of Fig. 10(c) or its mirror
image as one of the cases shown in Fig. 12. In other words, proceeding along contracted
strands, every time we take the markers of crossings of contracted strands of Dk giving
Type 1 smoothing, we choose either x or 1 for the contracted circles from Fig. 12. We then
assign arbitrary markers for all crossings of non-contracted strands, and choose x or 1 for
non-contracted strands that meet contracted strands as in (a-5) or (a-7) of Fig. 18. Next,
we arbitrarily choose x or 1 for the other circles of the enhanced state. The enhanced
state given by the above process is called Type 1j (Fig. 12). For these enhanced states
of Type 1j , local neighborhoods of crossings of contracted strands are characterized by
(a-1) and (a-2) in Fig. 14, (a-3) and (a-4) in Fig. 17, and (a-5)–(a-8) in Fig. 18.
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Fig. 12. Type 1j .

3.1.2. Definition of Type 2j for Type 1j. To define the chain map d′ : Ci,j(Dk+2) →
Ci,j(Dk), consider an enhanced state S such that d(S) = ± Type 1j + other terms.
We have d′(±Type 1j) + d′(other terms) = d′(d(S)) = d(d′(S)) = 0 if d′(S) = 0. Then,
“other terms” must then contain a term such that d′(the term) and d′(±Type 1j) cancel
out.

Considering the above, let us define Type 2j for Type 1j using Figs. 14, 17, and 18. The
correspondences of the above cancelations is assured by Lemmas 3.5–3.7 given below. For
readers who need a categorification with the coefficient Z, the definition of the orientation
of the order of negative markers provided in Section 2.2.2 is required (see Definition 5.4).

a

c

b

d

S of Tables 1–4

-

?

b

a

c

d

S of Tables 5–8

-

?

Fig. 13. Enhanced states S (characterized by the local part), in order from the left,
S of Tables 1–4 and S of Tables 5–8.

p

q

x

1� �
�
�

(a-1)

-

?

p

q

1

x� �
�
�

(a-2)

p

qr

(b-1)

p

q

(b-2)
Fig. 14. (a-1), (a-2): Type 1j . (b-1), (b-2): Type 2j .

Lemma 3.5. Let d be the coboundary operator of the Khovanov homology of Section 2
and let S be one of the enhanced states of the panels shown in Fig. 13. If d(S) contains
either (a-1) or (a-2) of Fig. 14, one of the following is established:

d(S) = (a-i) + (b-j) + other terms, i, j ∈ {1, 2} (14)
where “other terms” contain neither (a-i) nor (b-j) for arbitrary i, j ∈ {1, 2}.
Proof. Every case in Fig. 13 is verified using Tables 1–8 (see Appendix, page 138). The
latter part of the claim is proved using the types of markers of S in Fig. 13.
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For example, when we consider an enhanced state S of the left of Fig. 13 that will
result in Fig. 32(a), i.e., (a-1) or (a-2), we refer to Table 1. If the labels of S are distributed
as a = x, b = 1, and c = x, we see the third row of Table 1, which shows (14) in the case,
since all possible types — (a-1), (a-2), or (b-1) — appear in the third row by the calculus
of Fig. 7. Other cases for Fig. 13 and Figs. 32(a)–(d) can be seen by following the order
of the tables.

c b

a

d

S of Tables 9–12

-

?

Fig. 15. Enhanced states S (characterized
by the local part) of Tables 9–12.

a

c

b

S of Tables 13–16

-

?

Fig. 16. Enhanced states S (characterized
by the local part) of Tables 13–16.

Lemma 3.6. Let d be the coboundary operator of the Khovanov homology of Section 2,
and let S be an enhanced state of the panel shown in Fig. 15. If d(S) contains either (a-3)
or (a-4) of Fig. 17, one of the following is established.

d(S) = 2(a-i) + (b-3) + (b-4) + other terms for i = 3 or 4,
d(S) = (b-3) + (b-4) + other terms, and
d(S) = (a-i) + (b-j) + other terms for i, j ∈ {3, 4}.

(15)

where the “other terms” in (15) do not contain the terms (a-3), (a-4), (b-3), or (b-4).

Proof. Every case of Fig. 15 is checked by Tables 9–12.

p

q

x

1� �
�
�

(a-3)

-

?

p

q

1

x� �
�
�

(a-4)

-

?

p

q

(b-3)

p

q

r

(b-4)
Fig. 17. (a-3), (a-4): Type 1j . (b-3), (b-4): Type 2j .

Lemma 3.7. Let d be the coboundary operator of the Khovanov homology of Section 2,
and let S be an enhanced state of the panel shown of Fig. 16. If d(S) contains (a-3) in
Fig. 17, the following formula is established.

d(S) = (a-3) + (a-4) + other terms (16)

where the “other terms” do not contain (b-3) or (b-4).

Proof. Every case in Fig. 16 is verified by using Tables 13–16. The latter part of the
claim is given by the types of markers of S in Fig. 16.
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Now, we provide definitions for Types 1j and 2j .

Definition 3.8. Let us fix the tuple of nonnegative integers n corresponding to the
colored Jones polynomial Jn. Consider the enhanced states of Type 1j in the link diagram
Dn−2k. Using Tables 1–8, we locally replace exactly one arbitrary (a-1) or (a-2) panel
in Fig. 14 by (b-1) or (b-2) placed on the same line in each table. The enhanced state
given by this replacement is called Type 2j . Similarly, using Tables 9–12, we can locally
replace an (a-3) or (a-4) panel in Fig. 17 with a (b-3) or (b-4) panel to give the Type 2j
enhanced state. In this case, (b-3) and (b-4) in the eighth and ninth lines of Table 9 are
defined by the third–sixth lines of the same table. Using Fig. 18, locally replacing (a-i)
by (b-i) at one place for every i ∈ {5, 6, 7, 8} gives us the Type 2j enhanced state.

p

q

� �
(a-5)
?

q′� �
(b-5)

p′

?

p� �
(a-6)
?

q′� �
(b-6)
?

p′ r′

q

p

� �
(a-7)
?

q′� �
(b-7)

p′

?

p� �
(a-8)
?

q′� �
(b-8)
?

r′ p′

Fig. 18. Enhanced states related to contracted strands. The arrows indicate the orientation
of the contracted strands. In these figures, p, q, r, p′, q′, and r′ = x or 1.

(a-5) or (a-7): A part of Type 1jp⊗ q.
(b-5) ((b-7)): The part of Type 2j corresponding to (a-5) ((a-7)).

(a-6) or (a-8): A part of Type 1j generating only one circles.
(b-6) ((b-8)): The part of Type 2j corresponding to (a-6) ((a-8)).

4. Operators on abelian groups of graphs of cables of a link diagram

4.1. Case of knots and the coefficient Z2. To understand the concept of construction
of a Khovanov complex of the colored Jones polynomial, we first consider the case of knots
and Z2. From (1), the colored Jones polynomial Jn of a knot diagram D is written as

Jn(D) =
bn/2c∑
k=0

(−1)k
(
n− k
k

)
J(Dn−2k). (17)

The binomial coefficient
(
n−k
k

)
is the number of ways in which k pairs of neighbors can

be selected from n dots placed on a vertical line, where each dot appears in at most one
pair. Fig. 19 shows an example for n = 4. In Fig. 19, (a) corresponds to the binomial(4−0

0
)

= 1; (b), (c), and (d) correspond to
(4−1

1
)

= 3; and (e) corresponds to
(4−2

2
)

= 1.
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(a) (b) (c) (d) (e)

Fig. 19. Graphs correspond to binomials in the case n = 4.
(a): k = 0; (b), (c), (d): k = 1; and (e): k = 2.

Thus, for a knot K oriented as in Fig. 1 and its diagram D,

J4(K) = J(D4)− 3J(D2) + 1. (18)

Here, note that w(D4) = w(D2) = 0.
The abelian group over Z2 generated by graphs associated with the cables Dn−2k of

a diagram D of an oriented knot K is denoted by Γn(D;Z2). The subgroup of Γn(D;Z2)
generated by each graph with k edges is denoted by Γkn(D;Z2), and its edged graph
with k edges is called a k-pairing, or simply a pairing. Further, to avoid our confusion,
we can refer to an m-pairing, where m = k + l, as (k + l)-pairing. Since the definition
of a k-pairing depends only on the integer n and the number of components of Dn−2k,
k-pairings are knot invariants.

For the k-pairings s ∈ Γkn(D;Z2) and t ∈ Γk+1
n (D;Z2), we define the homomorphism

d′2 : Γkn(D;Z2)→ Γk+1
n (D;Z2) as

d′2(s) =
∑

t: an edge added to s

t. (19)

If s is as shown in Fig. 19(a), d′2((a)) = (b) + (c) + (d). Similarly, d′2((b)) = (e),
d′2((c)) = (e), d′2((d)) = 0, and d′2((b) + (c) + (d)) = (e) + (e) + 0 = 0, as in Fig. 20. The
map d′2 was introduced by Khovanov [6] and satisfies the following.

Proposition 4.1. The map d′2 satisfies d′2
2 = 0.

Proof. Let us consider the k-pairing s, two (k+1)-pairings t, t′, and the (k+2)-pairing u
satisfying the following condition (∗): if we remove one edge from u (e.g., (e) of Fig. 19),
we have t and t′ (e.g., (b) and (c) of Fig. 19); if we remove the two edges corresponding
to those added to s to give t and t′, we have s (e.g., (a) of Fig. 19). When we take
an arbitrary s, there exists a pairing u satisfying (∗). When we have such a pair as the
k-pairing s and (k + 2)-pairing u, there exist exactly two (k + 1)-pairings, i.e., t and t′,
satisfying (∗). Thus, we have

d′2(t) = u1 + u2 + . . .+ ul such that ui 6= uj for arbitrary i, j (1 ≤ i < j ≤ l),
d′2(t′) = u′1 + u′2 + . . .+ u′m such that u′i 6= u′j for arbitrary i, j (1 ≤ i < j ≤ m).

(20)

By the condition (∗), there exist ui and u′j such that ui = u′j = u. Then, for an arbitrary
k-pairing s, we have d′2

2(s) =
∑

u 2u = 0 (e.g., Fig. 20).
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(c)

(a)

(b)

(d)

(e)

0

0

Fig. 20. Example of the map d′
2 on

k-pairings of the cable D4 of knot diagram
D for k = 0, 1, and 2. The 0-map is usually

omitted as the arrow from (d) or (e).

+

+

+

−

+

Fig. 21. Example of operator d′ on Γ4(D).
Sign + (−) corresponds to 1 (−1).

When we write the map d′ as in this
figure, the arrows corresponding to 0-maps

are often omitted.

4.2. Extension to the case of coefficient Z. The additional consideration of the sign
of a k-pairing implies the Z case. To do this, we consider replacing (19) by another formula.
Recall the abelian group Γn(D;Z2) of Section 4.1 for an oriented knot diagram D. We
consider the abelian group Γkn(D) over the coefficient Z generating every k-pairing and
set Γn(D) =

⊕∞
k=0 Γkn(D). We define an operator Γkn(D)→ Γk+1

n (D) by the map between
the k-pairing s and the (k + 1)-pairing t:

d′(s) =
∑

t : an edge added to s

(s : t) t (21)

where the incidence number (s : t) = (−1)t, and t is the number of edges in t on the
above from the “new” edge in t which is not in s (Fig. 21).

Proposition 4.2. d′2 = 0.

Proof. For an arbitrary k-pairing s, it is sufficient to prove d′(d′(s)) = 0. Let us consider
the (k + 2)-pairing u that has exactly two edges more than s. If we delete only one edge
of the graph u, we have only two (k+ 1)-pairings t and t′, each of which has exactly one
edge more than s. This is the same discussion as for the proof of Proposition 4.1. By the
definition of the incidence number, (s : t)(t : u) = −(s : t′)(t′ : u) and so

d′(d′(s)) =
∑

u
{(s : t)(t : u) + (s : t′)(t′ : u)}u = 0. (22)

4.3. Extension to the case of links. We can now consider a natural extension of
the discussions in Sections 4.1 and 4.2 to the case of (unframed) links. For a fixed tuple
of nonnegative integers n = (n1, n2, . . . , nl), the colored Jones polynomial Jn of a link
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diagram D is written as

Jn(L) =
bn/2c∑
k=0

(−1)|k|
(

n− k
k

)
J(Dn−2k) (23)

where k = (k1, k2, . . . , kl), ki ∈ Z≥0, |k| =
∑
i ki,

(n−k
k
)

=
∏l
i=1
(
ni−ki

ki

)
, the sum

∑bn/2c
k=0

is the summation over all 0 ≤ ki ≤ bni/2c for all i, and J(D) is the Jones polynomial of
a link diagram D of L with J(D0) = 1.

I
II I II

1
2

3

1

2

I II

1

2

1

2

3

Fig. 22. The (2, 3)-cable D(2,3) of an oriented link diagram D. The numbers I and II indicate
those of components. The numbers 1, 2, and 3 indicate those of the strands in a component.

I
II I

II

1
2

3

1

2

I II

1

2

1

2

3

Fig. 23. Another example of the (2, 3)-cable of an oriented link and its associate graph Γ(2,3).
Note that the graph is the same as that in Fig. 22.

Then, for each link diagram Dn−2k (e.g., Figs. 22 and 23), we can consider the Kho-
vanov homology groups of the diagram, and for the set of all diagrams of Dn−2k, we
consider Γn as follows. First, we give the definition in the case of the coefficient Z2 in the
same way as done in Section 4.1.

Recall the definition of the graph k-pairing in Section 4.1. The k-pairing has dots in
only one vertical line, since a knot consists of one component. Extending the definition
of a k-pairing to an l-component link, we consider dots in l vertical lines. The rule of
adding edges is the same. It is possible to add one edge connecting two neighborhood
dots, but any single dots can connect with at most one other dot. Let n = (n1, n2, . . . , nl)
and k = (k1, k2, . . . , kl) for nonnegative integers ni, ki. Then, for a given n, the n − 2k
cable Dn−2k of the l-component link diagram D determines the set of graphs having
l vertical lines, with ni dots and ki edges along the i-th vertical line. The graphs of the set
depending on n and k are denoted by |k|-pairings, simply pairings where |k| =

∑l
i=1 ki.

The expression ”(k + l)-pairings” is permitted also for nonnegative integers k and l.
The abelian group over Z2 generated by k-pairings associated with the n− 2k ca-

ble of a diagram D of an oriented link L is denoted by Γn(D;Z2). The subgroup of
Γn(D;Z2) generated by each graph with k edges is denoted by Γkn(D;Z2). Considering
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every k = (k1, k2, . . . , kl) such that |k| = k, we have Γn(D;Z2) =
⊕
|k|=k Γkn(D;Z2). As

the definition of a |k|-pairing depends only on the integer tuple k and the number of
components of Dn−2k, |k|-pairings are link invariants. For the pairings s ∈ Γkn(D;Z2)
and t ∈ Γk+1

n (D;Z2), we define the homomorphism d′2 : Γkn(D;Z2)→ Γk+1
n (D;Z2) by

d′2(s) =
∑

t : an edge added to s

t. (24)

Example 4.3. Let us consider the graph in Fig. 24, where s = (a). Then, d′2((a)) =
(b) + (c) + (d) and d′

2
2((a)) = d′2((b) + (c) + (d)) = (e) + (f) + (f) + (e) = 0 (mod 2).

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 24. (a): 0-pairing. (b), (c), (d): 1-pairings. (e), (f): 2-pairings. The arrows indicate maps:
d′

2((a)) = (b) + (c) + (d) and d′
2((d)) = (e) + f . d′

2((c)) = (f). d′
2((b)) = (e).

0-maps are omitted, e.g., d′
2((e)) = 0.

In general, we have the following.

Proposition 4.4.
d′2

2 = 0. (25)

Proof. The proof is similar to that of Proposition 4.1. Let us consider an arbitrary pairing
s with k edges. When we arbitrarily add exactly two edges to s, we have a pairing with
(k+2) edges denoted by u. Below, we consider such a pair (s,u). There exist exactly two
pairings with (k+1) edges between s and u, meaning that when one of the two edges of u
is added to s, we get a pairing with (k+ 1) edges, and there are exactly two possibilities
for adding an edge. These two pairings are denoted by t and t′. For any |k|-pairing s and
(|k|+ 2)-pairing u such that u is formed by adding two edges to s, we see that d′2(d′2(s))
contains terms u = ui such that d′2(t) =

∑
m um (um 6= u if m 6= i) and u = u′j such

that d′2(t′) =
∑
m u′m (u′m 6= u if m 6= j). Therefore, the other terms, i.e., um (m 6= i),

u′m (m 6= j), do not reach u by d′2. Then, the image d′2(d′2(s)) contains 2u that is 0 for
each pair (s,u). If we consider another pair (s,u′) consisting of the same |k|-pairing s and
another (|k|+ 2)-pairing u′ formed by adding exactly two edges to s, the image d′2(d′2(s))
contains 2u′ by the same discussion. Then,

d′2(d2(s)) =
∑

u
2u = 0.

Linearly extending the above formula completes the proof.
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Let us now consider extending the above discussion to the case of the coefficient Z.
For a given n = (n1, n2, . . . , nl) and k = (k1, k2, . . . , kl), we consider the n− 2k cable
of an l-component link diagram D of an oriented link L (Figs. 22 and 23) in a manner
similar to Section 4.3. The group Γn(D) over the coefficient Z is defined as the abelian
group generated by |k|-pairings. We denote by Γkn(D) the subgroup of Γn(D) generating
|k|-pairings such that |k| =

∑l
i=1 ki = k, and then, Γn(L) =

⊕∞
k=0 Γkn(L).

Next, we define an operator Γkn(D) → Γk+1
n (D) by the homomorphism between

Γkn(D) 3 s 7→ t ∈ Γk+1
n (D):

d′(s) =
∑

t : an edge added to s

(s : t) t (26)

where the incidence number (s : t) = (−1)t and t is the number of edges in t on the right
or above from the “new” edges in t which are not in s (Fig. 25).

+
+

+

+
+
−

−

(a)

(d)

(c)

(b)

(f)

(e)

Fig. 25. Examples of the k-pairings of Γk
(2,3)(D) corresponding to the cable D(2,3)

of a link diagram D. (a): 0-pairing, (b), (c), (d): 1-pairings, (e), (f): 2-pairings.
In this case, the set Ik of pairings such that |k| = k1 + k2 = k is as follows:

I0 = {(a)}, I1 = {(b), (c), (d)}, I2 = {(e), (f)}.

Example 4.5. We calculate d′ for the pairings shown in Fig. 25. Then, d′((a)) = (b) +
(c) + (d), and so, d′(d′((a))) = (e) + (f)− (e)− (f) = 0.

Proposition 4.6.
d′

2 = 0. (27)

Proof. Let us consider an arbitrary pairing u of Γk+2
n (L) (e.g., Fig. 25(f)). If we select

exactly two edges of u to be deleted, the unique pairing s (e.g., Fig. 25(a)) of Γkn(L) is
determined. For the pair (s,u), there exist exactly two pairings t and t′ (e.g., Figs. 25(c)
and (d), respectively), because we obtain u when one of the two deleted edges is added to
t or t′. Thus, d′(s), which is the linear sum of pairings, contains the two terms (s : t)t +
(s : t′)t′. By the definition of the incidence number (s : t), (s : t)(t : u) = −(s : t′)(t′ : u).
Then, d′(d′(s)) contains d′((s : t)t + (s : t′)t′), and we notice that if d′2(s) contains u,
u must come from either t or t′. Hence, for an arbitrary u contained d′(d′(s)) has the
coefficient (s : t)(t : u) + (s : t′)(t′ : u) and we have

d′
2(s) =

∑
u

{
(s : t)(t : u) + (s : t′)(t′ : u)

}
u = 0.
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5. Operators of Khovanov complex for cable diagrams

5.1. Homomorphisms ρ, f . As a preliminary, we recall or define three homomor-
phisms on the Khovanov complex {Ci,j(D), d} of a oriented link diagrams.

Definition 5.1. Let Sρ be the enhanced states defined as (a-i) + (b-i : p′ = m(p, q)
and q′ = 1) for i = 5, 7, and (a-i) + (b-i :

∑
p′ ⊗ r′ = ∆(p) and q′ = 1) for i = 6, 8.

The Khovanov complex generated by such {S} is denoted by Ci,j(Sρ). This is actually a
subcomplex, since d(Ci,j(Sρ)) ⊂ Ci,j(Sρ). There exists an isomorphism between Ci,j(Sρ)
and Ci,j(D∞0), where D∞0 is the link diagram given by neglecting two markers in (a-5)–
(a-6) of Fig. 18, i.e., smoothing as D∞ and D0 in Fig. 4. In the Z2-case, we can denote
these by Ci,j(Sρ;Z2) and Ci,j(D∞0;Z2).

The homomorphism ρ : Ci,j(D)→ Ci,j(Sρ) is defined by

For i = 5 or 7:
(a-i) = p⊗ q 7→ p⊗ q (= (a-i)) +m(p⊗ q)⊗ 1 (= (b-i)),

(b-i) = p′ ⊗ x 7→ −∆(p′) (= (a-i))−m(∆(p′))⊗ 1 (= (b-i)),
for i = 6 or 8:

(a-i) = p 7→ p (= (a-i)) + ∆(p)⊗ 1 (= (b-i)),
(b-i) = p′ ⊗ x⊗ r′ 7→ −m(p′ ⊗ r′) (= (a-i))−∆(m(p′ ⊗ r′))⊗ 1 (= (b-i)),

otherwise 7→ 0.

(28)

In the Z-case, to fix the signs of every term of (28), the last negative marker of each case
always appears in Fig. 18 of (a-i) and (b-i) for i = 5, 6, 7, and 8.

Here, the homomorphism ρ is the same map as that used in the retraction for proving
the invariance of the second Reidemeister move [3, (2.2)]. The homomorphism ρ satisfies
the following property.

Proposition 5.2.
ρ ◦ d = d ◦ ρ (29)

In particular,
ρ ◦ d(S) = 0 (30)

where S is an enhanced state that has a part appearing in the left or right of Fig. 28.

Proof. These formulae can be proved by a straightforward calculation as follows.

D S−+(p, q)

p q

S+−(p, q)

p

x

q
S+−,1(p, q)

p

1

q
S−−(p, q)

p

q
S++(p, q)

p

q

Fig. 26. Enhanced states generating Ci,j(D). Each of p and q is x or 1.
Every enhanced state appearing in this figure has a common ordering of negative markers

followed by a negative marker appearing in this figure.
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The local diagram D that we focus on in a link diagram and its enhanced states
S−+(p, q), S+−(p, q), S+−,1(p, q), S++(p, q), and S−−(p, q) are defined by Fig. 26 where
the symbols used follow Jacobsson [4, Section 3.3.3]. Indices ± (resp. 1) represent the
signs of markers (resp. label 1 for the center of the circle).

We also prepare the following notation as in Fig. 27 by following Jacobsson [4, Fig. 3].
The calculus of Fig. 7 shows that one circle connects with another or one circle splits into
two circles. We describe the calculus using an abstract symbol: we use (p : q) and (q : p)
for p and q, where each of p and q is an x or a 1. For example, the case ∆(1) = 1⊗x+x⊗1
in Fig. 7 corresponds to p = q = 1 and (p : q, q : p) = (1, x) + (x, 1).

p q

p : q

q : p

Fig. 27. Abstract symbols p : q and q : p.

The definition (28) of ρ is presented as

S−+(p, q) 7→ S−+(p, q) + S+−,1(p : q, q : p),
S+−(p, q) 7→ −S−+(p : q, q : p)− S+−,1((p : q) : (q : p), (q : p) : (p : q)),

otherwise 7→ 0.
(31)

� �
?

a

b

� �
?

b

a

Fig. 28. Enhanced states S, in order from the left, S such that d(S) may possibly contain (a-5),
(a-6), (b-5), or (b-6) and S such that d(S) may possibly contain (a-7), (b-7), (a-8), or (b-8).

Let St∗(p, q) ∈ Ci,j(D) be an enhanced state such that t is the last negative marker
changed and St∗(p, q) ∈ Ci−1,j(D) is available by producing the new negative marker t
from an enhanced state S∗(p, q). The sum

∑
t S

t
∗(p, q) denotes the large sum where the

index t runs over the new negative markers.

1. dρ(S−+(p, q)) = d(S−+(p, q) + S+−,1(p : q, q : p)) =∑
t(St−+(p, q) + St+−,1(p : q, q : p)) = ρ(

∑
t S

t
−+(p, q)) = ρd(S−+(p, q)),

2. dρ(S+−(p, q)) = −d(S−+(p : q, q : p) + S+−,1((p : q) : (q : p), (q : p) : (p : q))) =
−
∑
t(St−+(p : q, q : p) + St+−,1((p : q) : (q : p), (q : p) : (p : q))) =

− ρ(
∑
t S

t
−+(p : q, q : p)) = ρ(

∑
t S

t
+−(p, q)) = ρd(S+−(p, q)),

3. dρ(S++(p, q)) = 0 = ρ(S−+(p : q, q : p) + S+−(p, q)) = ρd(S++(p, q)),
4. dρ(S+−,1(p, q)) = 0 = ρd(S+−,1(p, q)).

This proves (29). In particular, the latter two formulae of S++(p, q) and S−−(p, q) im-
ply (30).
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Here, we comment that Ci,j(Sρ) is generated by {S−+(p, q)+S+−,1(p : q, q : p)} using
the convention in the proof of Proposition 5.2.

From the next section, we will consider the homomorphism such as
⊕

s∈Ik
ρ on

Ck,i,j(D) for the set Ik consisting of k-pairings. We can denote the homomorphism
⊕

m ρ

for some m by ρ if there would be no confusion.
The homomorphism f : Ci,j(D)→ Ci,j(D) is defined by

(b-i) 7→ corresponding Type 1j to (b-i) as Type 2j for each i ∈ {1, 2, 3, 4},
S 7→ S otherwise.

(32)

5.2. Case of knots and the coefficient Z2. In this section, we define the coboundary
operator between tri-graded complexes. We consider the simplest case: knots and the
coefficient Z2 fixing an integer n of the colored Jones polynomial Jn. Let us recall the
map d′2 from a k-pairing s to the summation of (k + 1)-pairings

∑
t of Γk+1

n (D;Z2).
For an enhanced state S and k-pairing s, we consider the tensor product S ⊗ s ∈

Ci,j(Dn−2k;Z2)⊗Γkn(D;Z2). In this section, an enhanced state of Type 1j or Type 2j is
denoted by S̃. Set Ck,i,jn (D;Z2) = Ci,j(Dn−2k;Z2)⊗ Γkn(D;Z2).

For S̃ of Type 1j , if we delete all contracted circles of S̃ of Ci,j(Dn−2k;Z2), we have an
enhanced state S of Ci,j(Dn−2(k+1);Z2) (cf. Fig. 12). This deletion of contracted circles
implies a homomorphism defined by S̃ 7→ S for S̃: Type 1j and S̃ 7→ 0 otherwise, which
is denoted by d′1. We define the operator

d′k,i,j2 : Ck,i,jn (D;Z2)→ Ck+1,i,j
n (D;Z2)

by

S̃ ⊗ s 7→ ρd′1f(S̃)⊗ d′2(s) if S̃ : Type 1j or (b-1)–(b-4) of Type 2j ,

T̃ ⊗ s 7→ ρd′1ρ(T̃ )⊗ d′2(s) if T̃ : (b-5)–(b-8) of Type 2j ,
otherwise 7→ 0

(33)

where d′2(s) is the map defined by (19). Here, we used the maps Ci,j(Sρ;Z2) '
Ci,j(D∞0;Z2) ↪→ Ck+1,i,j(D;Z2).

Proposition 5.3. d′k+1,i,j
2 ◦ d′k,i,j2 = 0.

Proof. Let us show that d′k+1,i,j
2 (d′k,i,j2 (S ⊗ s)) = 0. If S is neither Type 1j nor Type 2j ,

d′k+1,i,j
2 (d′k,i,j2 (S ⊗ s)) = d′k+1,i,j

2 (0) = 0. If S is Type 1j or Type 2j , we have

d′2
k+1,i,j(d′k,i,j2 (S)) = d′2

k+1,i,j(g1(S)⊗ d′2(s)) (34)

where g1 = ρd′1f or ρd′1ρ. By the definition of g1, g1(S) = mT , where m is a nonnegative
integer and T is an enhanced state of Ci,j(D∞0;Z2) ' Ci,j(Sρ;Z2). If T is neither Type 1j
nor Type 2j or m = 0, the right-hand side of (34) is 0. If m 6= 0 and T is either Type 1j
or Type 2j , the right-hand side of (34) is g2g1(S)⊗ d′2

2(s), where g2 is ρd′1f or ρd′1ρ. By
Proposition 4.1, we have d′2

2 = 0, and then

d′2
k+1,i,j(d′1g1(S)⊗ d′2(s)) = g2g1(S)⊗ d′2

2(s) = 0.
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S1

S̃1 1
x

x

1

S2

1
1

x

x

⊗ ⊗
S̃2

x

1

1 x

x

1
1 x

⊗ ⊗

S1 ⊗ S2 ⊗

Fig. 29. Examples of Type 1 are on the first line. On the second line, S̃1 ⊗ s and S̃2 ⊗ s are
enhanced states of Type 1j in C0,0,0(D). On the third line, S1 ⊗ t and S2 ⊗ t in C1,0,0(D).

On the fourth line, S1 ⊗ t′ and S2 ⊗ t′ in C1,0,0(D).

5.3. Case of links and the coefficient Z. We now extend the discussion of Section 5.2
to the case of links and the coefficient Z fixing a tuple of nonnegative integers n of the
colored Jones polynomial Jn. To extend our argument to Z, we must fix the order of
negative markers of Type 1j , as we hope to define such a map as formula (33). Markers
are placed on a cable of a link diagram, as in Fig. 30, where they depend on the directions
of contracted strands.
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(a)

?

(b)

?

(c)

?

(d)

?

Fig. 30. (a), (b): Two crossings generated by two contracted strands and one non-contracted
strand. (c), (d): Four crossings generated by contracted strands only.

Definition 5.4 (The order of negative markers of Type 1j). Embed a cable of a link
diagram in R2 such that there is only one maximum point along the vertical axis (deform
the diagram if necessary). Let this maximum point be the base point and let the direction
of the contracted strands correspond to the orientation of the strand of the lower dot.
Let y be the word corresponding to alternate negative markers along the direction of the
contracted strands, starting from the base point. Let x be an arbitrary word consisting of
the other negative markers. We permit only the word xy to show the order and orientation
of negative markers for the orientation of negative markers of Type 1j .

Note that either the right or left crossing has a negative marker, as in Figs. 30(a)–(d),
when we proceed along contracted strands and encounter another strand.

Remark 5.5. By the above definition, the homology groups Hk,i,j((D)) of Definition 1.3,
which are equivalent to homology groups Hk(Hi(C∗,∗,jn (D))) of Theorem 1.2, do not
depend on the choice of the base point for the following reason. The fixing orientation
depends on the fixing signs of enhanced states for Type 1j ; then, the difference is −d′
or d′ on every Ck,i,jn (·), and this sign does not depend on (k, i, j) because the number of
contracted strands is always even.

Here, we define ⊕-terms and 	-terms.

Definition 5.6. Let us consider an enhanced state S of Type 1j and Type 2j . For the
k-th panel corresponding to either (a-i) or (b-j) (1 ≤ i, j ≤ 4), we consider its sign εk = 1
(−1) if the ⊕ (	) is marked in Tables 1–16. The enhanced state S is called the ⊕-term
(	-term) if the product

∏
k εk = 1 (= −1), where the product is taken over all parts (a-i)

or (b-j) (1 ≤ i, j ≤ 4) of the contracted strands.

Assume that D is an oriented l-component link diagram. Let ki be the number of i-th
edges in the vertical line of the pairing s, k = (k1, k2, . . . , kl), |k| =

∑l
i=1 ki, and let Ik be

the set of k-pairings, where “k-pairings” are defined as pairings with |k| = k (Section 4.3).
Set Ck,i,jn (D) =

⊕
s∈Ik

Ci,j(Dn−2k) ⊗ Γkn(D) and recall the map d′ : Γkn(D) → Γk+1
n (D)

defined by (26). Let S be an enhanced state formed by deleting contracted circles from S̃.
This deletion implies the homomorphism defined by S̃ 7→ S for S̃ : Type 1j and S̃ 7→ 0
otherwise, which is denoted by d′1. We define the operator d′k,i,j : Ck,i,jn (D)→ Ck+1,i,j

n (D)
as

S̃ ⊗ s 7→ ερd′1f(S̃)⊗ d′(s) if S̃ : ⊕-term or 	 -term,

T̃ ⊗ s 7→ ρd′1ρ(T̃ )⊗ d′(s) if T̃ : (b-5)–(b-8) of Type 2j ,
otherwise 7→ 0

(35)
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where ε = 1 (−1) if S̃ is ⊕-term (	-term). Here, we used the following maps Ci,j(Sρ) '
Ci,j(D∞0) ↪→ C |k|+1,i,j .

Proposition 5.7. d′k+1,i,j ◦ d′k,i,j = 0.

Proof. The discussion is similar to the proof of Proposition 5.3. Let us show that
d′
k+1,i,j(d′k,i,j(S⊗ s)) = 0. If S is neither Type 1j nor Type 2j , d′k+1,i,j(d′k,i,j(S⊗ s)) =

d′
k+1,i,j(0) = 0. If S is Type 1j or Type 2j ,

d′k+1,i,j(d′k,i,j(S ⊗ s)) = d′k+1,i,j(ηg1(S)⊗ d′(s)) (36)

where g1 = ρd′1f or ρd′1ρ and η = −1 or 1. The g1(S) is represented as mT , where m is a
nonnegative integer and T is an enhanced state of Ci,j(D∞0) ' Ci,j(Sρ). If T is neither
Type 1j nor Type 2j , the right-hand side of (36) is 0. If m 6= 0 and T is either Type 1j
or Type 2j , the right-hand side of (36) is ζηg2g1(S) ⊗ d′2(s), where g2 = ρd′1f or ρd′1ρ
and ζ = −1 or 1. By Proposition 27, d′2 = 0. Then

d′k+1,i,j(ηg1(S)⊗ d′(s)) = ζηg2g1(S)⊗ d′2(s) = 0.

6. Proof of Theorem 1.2. Since it is easy for readers to reduce the case of coeffi-
cient Z2, we next provide the proof of Theorem 1.2 in the case of the coefficient Z.

Assume that D is an l-component link diagram. We denote the Z-module generated
by a single element, i.e., pairing s, as 〈s〉. By definition, there exists an integer k such
that 〈s〉 becomes a subgroup of Γkn(D). Let us recall the differential d : Ci,j(Dn−2k) →
Ci+1,j(Dn−2k) of the Khovanov homology defined in Section 2. For an arbitrary pairing s,
we consider the homomorphism Ci,j(Dn−2k) ⊗ 〈s〉 → Ci+1,j(Dn−2k) ⊗ 〈s〉 defined by
S ⊗ s 7→ d(S) ⊗ s, which is denoted by di,js . By this definition, di+1,j

s ◦ di,js = 0 since
di+1,j

s (di,js (S ⊗ s)) = d2(S)⊗ s = 0.
For the tuple of nonnegative integers k = (k1, k2, . . . , kl), let Ik be the set of

|k|-pairings, where each ki is the number of edges in the i-th vertical line of its pair-
ing s. The homomorphism d′′k,i,j is defined by setting d′′k,i,j := (−1)k

⊕
s∈Ik

di,js on⊕
s∈Ik

Ci,j(Dn−2k)⊗ s.

Lemma 6.1. d′′k,i,j is a coboundary operator on Ck,i,jn (D).

Proof. By definition, d′′k,i,j is a homomorphism from⊕
s∈Ik

Ci,j(Dn−2k)⊗ 〈s〉 →
⊕
s∈Ik

Ci+1,j(Dn−2k)⊗ 〈s〉.

Then, from the definitions of Γkn(D) and Ck,i,jn (D), we have the isomorphism and the
equality ⊕

s∈Ik

Ci,j(Dn−2k)⊗ 〈s〉 ' Ci,j(Dn−2k)⊗ Γkn(D) def= Ck,i,jn (D).

The homomorphism (−1)k
⊕

s∈Ik
dsi,j is then homomorphism Ck,i,jn (D) → Ck,i+1,j

n (D).
Since d′′k,i+1,j ◦ d′′k,i,j =

⊕
s∈Ik

di+1,j
s ◦ di,js = 0, d′′k,i,j is a coboundary operator from

Ck,i,jn (D) to Ck,i+1,j
n .
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We now have two coboundary operators d′k,i,j (see Section 5) and d′′k,i,j on Ck,i,jn (D).
For these differentials d′′k,i,j and d′k,i,j , d′′k+1,i,j◦d′k,i,j+d′k,i+1,j◦d′′k,i,j = 0 (Proposition
6.2). This shows the existence of the desired bicomplex.

Proposition 6.2. d′′k+1,i,j ◦ d′k,i,j + d′k,i+1,j ◦ d′′k,i,j = 0.

Proof. Let S be an enhanced state and s be a pairing. The set of generators of Ck,i,j(D)
is taken as {S ⊗ s}.

In only this proof, we use the symbols d′(S) and d′′(S). By the definitions of d′k,i,j
and d′′k,i,j , d′k,i,j(S ⊗ s) can be written as d′(S) ⊗ d′(s), and d′′(S ⊗ s) can be written
as d′′(S)⊗ d′(s), where d′(s) is as defined in (26) in Section 4.3. Using this notation, we
notice that it is sufficient to show that d′′d′S+d′d′′S = 0 for an enhanced state S, which
is a generator of Ci,j(Dn−2k) with |k| = k. This is because (d′′k+1,i,j ◦ d′k,i,j + d′k,i+1,j ◦
d′′k,i,j)(S ⊗ s) = (d′′ ◦ d′ + d′ ◦ d′′)(S)⊗ d′(s).

We first look at an enhanced state S to prove the relation d′′d′S + d′d′′S = 0 by
considering the following three cases:

Case 1: S is neither Type 1j nor 2j . In this case, the definition of d′ implies d′′d′S = 0.
By looking at the definition of Type 1j and Type 2j , we can check that d′′S is the sum of
enhanced states of the form d′′S =

∑
m±S0,m +

∑
n±(S1,n +S2,n) +

∑
n′(S1,n′ +S2,n′),

where for each n (for each n′) and i ∈ {5, 6, 7, 8}, S1,n (S1,n′) is an enhanced state of
⊕-term ((a-i)) and S2,n (S2,n′) is the enhanced state of 	-term ((b-i)), and for each m,
S0,m is the enhanced state that is neither Type 1j nor Type 2j . Again using the definition
of d′ and setting T1,n = d′(S1,n), we obtain d′(

∑
n(S1,n + S2,n)) =

∑
n(T1,n − T1,n) = 0,

as seen in Lemmas 3.5–3.7. On the other hand, for S1,n′ , there exists an enhanced state U
(see Fig. 28) such that d′′(U) = S1,n′ + S2,n′ +

∑
m′ ±S0,m′ . Using the definition of ρ

and (30), we get ρ(S1,n′ + S2,n′) = ρ(d′′(U)) = 0. Then, using the definition of d′, we
get d′(

∑
n′(S1,n′ + S2,n′)) = ±ρ

(∑
n′ d
′
1(S1,n′) + d′1(ρ(S2,n′))

)
, where d′1 is defined as in

Section 5.3. We can see that ρd′1ρ(S1,n′) = ρd′1(S1,n′), and so, ρ
(
d′1(S1,n′)+d′1(ρ(S2,n′))

)
=

ρd′1(ρ(S1,n′ + S2,n′)) = ρd′1(ρ(S1,n′ + S2,n′ +
∑
m′ S0,m′)) = ρd′1(ρ(d′′(U))) = ρd′1(0) = 0.

By definition of d′, d′(S0,m) = 0; thus, from the above discussion, d′d′′S = d′
(∑

m±S0,m+∑
n±(S1,n + S2,n) +

∑
n′ ±(S1,n′ + S2,n′)

)
= 0.

Case 2: S is Type 1j . In this case, we can write d′′S as

d′′S = d′′1S + d′′2S, (])

where d′′1S consists of all terms in d′′S that are obtained from S by changing the resolution
of a crossing between two non-contracted strands, and d′′2S consists of all other terms.
Since S is Type 1j , none of the terms in d′′2S can be Type 1j or 2j , and hence, d′d′′2S = 0.
On the other hand, because d′ is given by removing contracted circles (and multiplying
by a sign), we have d′d′′1S = −d′′d′S (since d′′ preserves the sign

∏
k εk of Type 1j

defined in Definition 5.6 and the orientation of negative markers of Type 1j was fixed
(Definition 5.4)). Hence, d′d′′S = −d′′d′S.

Case 3: S is (b-1)–(b-4) of Type 2j . In this case, the definition of d′ implies that
d′S = ερd′1fS, where ε is 1 (−1) if S is⊕-term (	-term). First, we consider S to be⊕-term
of Type 2j . In this case, fS is	-term (see Tables 1–12). Before we show d′′d′S+d′d′′S = 0,
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we define some symbols. We can write d′′S as the sum

d′′S = d′′2S + d′′0S, (?)

where d′′2S consists of all terms in d′′S that are obtained from S by changing the resolution
of a crossing between two non-contracted strands, and d′′0S consists of all other terms.
Since S is (b-1)–(b-4) of Type 2j , d′′2S is also (b-1)–(b-4) of Type 2j and none of the
terms in d′′0S can be Type 1j or 2j , and hence,

d′d′′0S = 0. (??)

We now start to show the desired result.
d′′d′S = d′′ρd′1fS (definition of d′)

= −d′′d′(fS) (fS : 	-term and Type 1j)
= d′d′′(fS) (Case 2)
= d′(d′′1(fS)) (Case 2)
= −ρd′1f(d′′1fS) (d′′1fS : 	-term and Type 1j)
= −ρd′1(d′′1fS) (definition of f)
= −ρd′1(d′′fS) ((]) and definition of d′1)
= −ρd′1(fd′′S) (Lemma 6.3)
= −ρd′1f(d′′2S + d′′0S) (using (?))
= −ρd′1(fd′′2S + d′′0S) (using the property f)
= −d′d′′S (d′′S : ⊕-terms which is survived by d′) and (??).

(37)

Next, we consider the case in which S is 	-term. In this case, fS is ⊕-term.

d′′d′S = −d′′ρd′1fS (definition of d′)
= −d′′d′(fS) (fS : ⊕-term and Type 1j)
= d′d′′(fS) (Case 2)
= d′d′′1(fS) (Case 2)
= ρd′1f(d′′1fS) (d′′1fS : ⊕-term and Type 1j)
= ρd′1(d′′1fS) (definition of f)
= ρd′1(d′′fS) (]) and definition of d′1
= ρd′1(fd′′S) (Lemma 6.3)
= ρd′1f(d′′2S + d′′0S) (using (?))
= ρd′1(fd′′2S + d′′0S) (using the property f)
= −d′d′′S (d′′S : 	-terms will be survived by d′ and (??)).

(38)

Case 4: S is (b-5)–(b-8) of Type 2j . Before we begin the proof of d′d′′S + d′′d′S = 0,
we define some additional symbols. By the property of ρ, we can write ρS as the sum

ρS = ρ1S + ρ2S, (�)

where ρ1S consists of all terms in ρS that Type 1j in
⊕

i,j C
i,j(Sρ) and ρ2S consists of
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the other terms. Then, by definitions of d′1 and ρ, we have
d′1(ρ2S) = 0 (��)

and d′1(d′′ρ2S) = 0. (���)
d′′d′S = d′′ρd′1ρS (definition of d′)

= d′′ρd′1(ρ1S + ρ2S) (�)
= d′′ρd′1ρ1S (��)
= ρd′′d′1ρ1S (29)
= −ρd′1d′′ρ1S (40)
= −ρd′1d′′(ρ1S + ρ2S) (���)
= −ρd′1d′′(ρS) (�)
= −ρd′1ρ(d′′S) (29)
= −d′d′′S (only the terms of Type 2j are survived by ρ)

(39)

where
d′′d′(ρ1S) = −d′1d′′(ρ1S) (ρ: Type 1j and Case 2)

⇐⇒ d′′ερd′1f(ρ1S) = −ερd′1f(d′′ρ1S) (definition of d′)
⇐⇒ d′′ρd′1(ρ1S) = −ρd′1d′′(ρ1S) (definition of f)
⇐⇒ ρd′′d′1(ρ1S) = −ρd′1d′′(ρ1S).

(40)

The following lemma completes the proof of Theorem 1.2.
Lemma 6.3. The formula d′1d′′fS = d′1fd

′′S for S : (b-1)–(b-4) : Type 2j.

fS S
Fig. 31. fS : Type 1j and S : Type 2j in the case of (a-1) and (b-1) and the case of Fig. 32(a),

where the two exteriors of these neighborhoods are the same. The pictures in this figure are
preserved even after changing the smoothing between non-contracted strands.

Proof. Let S be an enhanced state of (b-1)–(b-4) of Type 2j . Then, d′′S =
∑
m±S0,m +∑

n±S2,n where for each n, S2,n is an enhanced state of Type 2j , and for each m, S0,m is
an enhanced state that is neither Type 1j nor Type 2j . Then, d′1fd′′S =

∑
n±(d′1fS2,n).

On the other hand, d′′fS =
∑

0,m′ S0,m′+
∑
n′ ±(fS)1,n′ where for each n′ above, (fS)1,n′

is an enhanced state of Type 1j , and for each m′, S0,m′ is an enhanced state that is neither
Type 1j nor Type 2j . Then, d′1d′′fS =

∑
n′ ±d′1(fS)1,n′ . The terms S0,m and S0,m′ were

changed at one marker of a crossing between one contracted strand and another strand.
S2,n or (fS)1,n′ was then produced from Type 2j by changing one marker of a crossing
between both two non-contracted strands. The situation is illustrated in Fig. 31, and the
correspondences are confirmed from Tables 1–16. Then, by changing the order of {n′}, if
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necessary, we can assume n′ = n, and under this condition, we have (fS)1,n = f(S2,n);
hence, d′1d′′fS = d′1fd

′′S.
Remark 6.4. If we try to show the invariance of Hk(Hi(C∗,∗,jn (D), d′′), d′) under Reide-
meister moves, we desire to have the map d′∗ :Hi(Ck,∗,jn (D))→ Hi(Ck+1,∗,j

n (D)) which is
fixed under these moves. We often describe each of Reidemeister moves as a composition
of an inclusion map and a retraction (for the first move, see [10, p. 336], and for the
second and third moves, see [3, formulae (2.2), (2.6)]), denoted here by in ◦ ρi, i = 1, 2,
and 3, respectively. Then, at least, we need the commutativity of d′ and in◦ρi up to chain
homotopy. The map d′ essentially consists of ρ and f . Since ρ is ρ2, one can show the
commutativity in ◦ ρi and ρ for each i up to chain homotopy. For the map f , though this
map f sends Type 1j to Type 2j , which seems to induce some relation between S+−(p, q)
and S−+(p, q) of (31) in some cases, more research of the property of d′ is required to
contribute to demonstrating the Reidemeister invariance.
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A. Tables of Lemmas 3.5–3.7.

(a) (b) (c) (d)
Fig. 32. Types (a-i) of Table 1–16. (a): Tables 1, 5, 9, and 13. (b): 2, 6, 10, and 14. (c): 3, 7, 11,

and 15. (d): 4, 8, 12, and 16. The arrows indicate the direction of contracted strands.

S ⊕ (a-1) : p⊗ 1⊗ x⊗ q 	 (b-1) : p⊗ q(= r)
⊕ (a-2) : p⊗ x⊗ 1⊗ q

a⊗ b⊗ c(= d) (a-1) or (a-2) in a⊗ b⊗∆(c) a⊗m(b⊗ c)
x⊗ 1⊗ x (a-1) : x⊗ 1⊗ x⊗ x (b-1) : x⊗ x

x⊗ 1⊗ 1 (a-1) : x⊗ 1⊗ x⊗ 1 (b-1) : x⊗ 1
1⊗ 1⊗ x (a-1) : 1⊗ 1⊗ x⊗ x (b-1) : 1⊗ x

1⊗ 1⊗ 1 (a-1) : 1⊗ 1⊗ x⊗ 1 (b-1) : 1⊗ 1
x⊗ x⊗ 1 (a-2) : x⊗ x⊗ 1⊗ x (b-1) : x⊗ x

1⊗ x⊗ 1 (a-2) : 1⊗ x⊗ 1⊗ x (b-1) : 1⊗ x

x⊗ x⊗ x none 0
1⊗ x⊗ x none 0

Table 1. (a-1) and (a-2) from Fig. 32(a). The table shows that d(S) = (a-i) + (b-1) + other
terms for i = 1 or 2 and for S as in the left figure of Fig. 13.
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S ⊕ (a-1) : (p =)1⊗ x⊗ q 	 (b-1) : (p = r =)q
⊕ (a-2) : (p =)x⊗ 1⊗ q

(a =)b⊗ c(= d) (a-1) or (a-2) in a⊗∆(c) m(a⊗ c)
x⊗ 1 (a-2) : x⊗ 1⊗ x (b-1) : x

1⊗ x (a-1) : 1⊗ x⊗ x (b-1) : x

1⊗ 1 (a-1) : 1⊗ x⊗ 1 (b-1) : 1
x⊗ x none 0

Table 2. (a-1) and (a-2) from Fig. 32(b). The table shows that d(S) = (a-i) + (b-1) + other
terms for i = 1 or 2 and for S as in the left figure of Fig. 13.

S ⊕ (a-1) : p⊗ 1⊗ x(= q) 	 (b-1) : p⊗ r ⊗ q
⊕ (a-2) : p⊗ x⊗ 1(= q)

a⊗ b⊗ c⊗ d (a-1) or (a-2) in a⊗ b⊗m(c⊗ d) a⊗m(b⊗ c)⊗ d

x⊗ 1⊗ x⊗ 1 (a-1) : x⊗ 1⊗ x (b-1) : x⊗ x⊗ 1
x⊗ 1⊗ 1⊗ x (a-1) : x⊗ 1⊗ x (b-1) : x⊗ 1⊗ x

1⊗ 1⊗ x⊗ 1 (a-1) : 1⊗ 1⊗ x (b-1) : 1⊗ x⊗ 1
1⊗ 1⊗ 1⊗ x (a-1) : 1⊗ 1⊗ x (b-1) : 1⊗ 1⊗ x

x⊗ x⊗ 1⊗ 1 (a-2) : x⊗ x⊗ 1 (b-1) : x⊗ x⊗ 1
1⊗ x⊗ 1⊗ 1 (a-2) : 1⊗ x⊗ 1 (b-1) : 1⊗ x⊗ 1
x⊗ x⊗ x⊗ x none 0
x⊗ x⊗ x⊗ 1 none 0
x⊗ x⊗ 1⊗ x none x⊗ x⊗ x

x⊗ 1⊗ x⊗ x none x⊗ x⊗ x

x⊗ 1⊗ 1⊗ 1 none x⊗ 1⊗ 1
1⊗ x⊗ x⊗ x none 0
1⊗ x⊗ x⊗ 1 none 0
1⊗ x⊗ 1⊗ x none 1⊗ x⊗ x

1⊗ 1⊗ x⊗ x none 1⊗ x⊗ x

1⊗ 1⊗ 1⊗ 1 none 1⊗ 1⊗ 1
Table 3. (a-1) and (a-2) from Fig. 32(c). The table shows that d(S) = (a-i) + (b-1) + other

terms for i = 1 or 2 and for S as in the left figure of Fig. 13.

S ⊕ (a-1) : (p =)1⊗ x(= q) 	 (b-1) : (r =)p⊗ q
⊕ (a-2) : (p =)x⊗ 1(= q)

(a =)b⊗ d⊗ c (a-1) or (a-2) in a⊗m(d⊗ c) m(a⊗ c)⊗ d

x⊗ 1⊗ 1 (a-2) : x⊗ 1 (b-1) : x⊗ 1
1⊗ x⊗ 1 (a-1) : 1⊗ x (b-1) : 1⊗ x

1⊗ 1⊗ x (a-1) : 1⊗ x (b-1) : x⊗ 1
x⊗ x⊗ x none 0
x⊗ x⊗ 1 none x⊗ x

x⊗ 1⊗ x none 0
1⊗ x⊗ x none x⊗ x

1⊗ 1⊗ 1 none 1⊗ 1
Table 4. (a-1) and (a-2) from Fig. 32(d). The table shows that d(S) = (a-i) + (b-1) + other

terms for i = 1 or 2 and for S as in the left figure of Fig. 13.
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S ⊕ (a-1) : q ⊗ p⊗ 1⊗ x 	 (b-2) : p⊗ q
⊕ (a-2) : q ⊗ p⊗ x⊗ 1

a⊗ b(= d)⊗ c (a-1) or (a-2) in a⊗∆(b)⊗ c a⊗m(b⊗ c)
x⊗ 1⊗ x (a-1) : x⊗ x⊗ 1⊗ x (b-2) : x⊗ x

1⊗ 1⊗ x (a-1) : 1⊗ x⊗ 1⊗ x (b-2) : 1⊗ x

x⊗ x⊗ 1 (a-2) : x⊗ x⊗ x⊗ 1 (b-2) : x⊗ x

x⊗ 1⊗ 1 (a-2) : x⊗ 1⊗ x⊗ 1 (b-2) : x⊗ 1
1⊗ x⊗ 1 (a-2) : 1⊗ x⊗ x⊗ 1 (b-2) : 1⊗ x

1⊗ 1⊗ 1 (a-2) : 1⊗ 1⊗ x⊗ 1 (b-2) : 1⊗ 1
x⊗ x⊗ x none 0
1⊗ x⊗ x none 0

Table 5. (a-1) and (a-2) from Fig. 32(a). The table shows that d(S) = (a-i) + (b-2) + other
terms for i = 1 or 2 and for S as in the right figure of Fig. 13.

S ⊕ (a-1) : q ⊗ (p =)1⊗ x 	 (b-2) : q ⊗ b⊗ p
⊕ (a-2) : q ⊗ (p =)x⊗ 1

a⊗ b⊗ d⊗ c (a-1) or (a-2) in a⊗m(b⊗ d)⊗ c a⊗ b⊗m(d⊗ c)
x⊗ 1⊗ 1⊗ x (a-1) : x⊗ 1⊗ x (b-2) : x⊗ 1⊗ x

1⊗ 1⊗ 1⊗ x (a-1) : 1⊗ 1⊗ x (b-2) : 1⊗ 1⊗ x

x⊗ 1⊗ x⊗ 1 (a-2) : x⊗ x⊗ 1 (b-2) : x⊗ 1⊗ x

1⊗ x⊗ 1⊗ 1 (a-2) : 1⊗ x⊗ 1 (b-2) : 1⊗ x⊗ 1
1⊗ 1⊗ x⊗ 1 (a-2) : 1⊗ x⊗ 1 (b-2) : 1⊗ 1⊗ x

x⊗ x⊗ 1⊗ 1 (a-2): x⊗ x⊗ 1 x⊗ x⊗ 1
x⊗ x⊗ x⊗ x none 0
x⊗ x⊗ 1⊗ x none x⊗ x⊗ x

x⊗ 1⊗ x⊗ x none 0
x⊗ x⊗ x⊗ 1 none x⊗ x⊗ x

x⊗ 1⊗ 1⊗ 1 none x⊗ 1⊗ 1
1⊗ x⊗ x⊗ x none 0
1⊗ x⊗ 1⊗ x none 1⊗ x⊗ x

1⊗ 1⊗ x⊗ x none 0
1⊗ x⊗ x⊗ 1 none 1⊗ x⊗ x

1⊗ 1⊗ 1⊗ 1 none 1⊗ 1⊗ 1
Table 6. (a-1) and (a-2) from Fig. 32(b). The table shows that d(S) = (a-i) + other terms for

i = 1 or 2 and for S as in the right figure of Fig. 13.

S ⊕ (a-1) : x(= q)⊗ 1⊗ p 	 (b-2) : p(= q)
⊕ (a-2) : 1(= q)⊗ x⊗ p

a(= c)⊗ b(= d) (a-1) or (a-2) in a⊗∆(b) m(a⊗ b)
x⊗ 1 (a-1) : x⊗ 1⊗ x (b-2) : x

1⊗ x (a-2) : 1⊗ x⊗ x (b-2) : x

1⊗ 1 (a-2) : 1⊗ x⊗ 1 (b-2) : 1
x⊗ x none 0

Table 7. (a-1) and (a-2) from Fig. 32(c). The table shows that d(S) = (a-i) + (b-2) + other
terms for i = 1 or 2 and for S as in the right figure of Fig. 13.
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S ⊕ (a-1) : q(= 1)⊗ x(= p) 	 (b-2) : p(= q)⊗ b
⊕ (a-2) : q(= x)⊗ 1(= p)

a(= c)⊗ b⊗ d (a-1) or (a-2) in a⊗m(b⊗ d) m(a⊗ d)⊗ b

x⊗ 1⊗ 1 (a-2) : x⊗ 1 (b-2) : x⊗ 1
1⊗ x⊗ 1 (a-1) : 1⊗ x (b-2) : 1⊗ x

1⊗ 1⊗ x (a-1) : 1⊗ x (b-2) : x⊗ 1
x⊗ x⊗ x none 0
x⊗ x⊗ 1 none x⊗ x

x⊗ 1⊗ x none 0
1⊗ x⊗ x none x⊗ x

1⊗ 1⊗ 1 none 1⊗ 1
Table 8. (a-1) and (a-2) from Fig. 32(d). The table shows that d(S) = (a-i) + (b-2) + other

terms for i = 1 or 2 and for S as in the right figure of Fig. 13.

S ⊕ (a-3) : x⊗ p⊗ q ⊗ 1 ∗ (b-3) ∗ (b-4)
	 (a-4) : 1⊗ p⊗ q ⊗ x p⊗ q (r =)p⊗ q

a⊗ b⊗ d (a-3) or (a-4) m(a⊗ b)⊗ d a⊗m(b⊗ d)
(b = c) in a⊗∆(b)⊗ d

x⊗ x⊗ 1 ⊕ (a-3) : x⊗ x⊗ x⊗ 1 0 	 (b-4) : x⊗ x

x⊗ 1⊗ 1 ⊕ (a-3) : x⊗ 1⊗ x⊗ 1 	 (b-3) : x⊗ 1
⊕ (a-3) : x⊗ x⊗ 1⊗ 1 	 (b-4) : x⊗ 1

1⊗ x⊗ x 	 (a-4) : 1⊗ x⊗ x⊗ x ⊕ (b-3) : x⊗ x 0
1⊗ 1⊗ x 	 (a-4) : 1⊗ 1⊗ x⊗ x ⊕ (b-3) : 1⊗ x

	 (a-4) : 1⊗ x⊗ 1⊗ x ⊕ (b-4) : 1⊗ x

x⊗ x⊗ x none 0 0
x⊗ 1⊗ x none ⊕ (b-3) : x⊗ x 	 (b-4) : x⊗ x

1⊗ x⊗ 1 none 	 (b-3) : x⊗ 1 ⊕ (b-4) : 1⊗ x

1⊗ 1⊗ 1 none 1⊗ 1 1⊗ 1
Table 9. (a-3) and (a-4) from Fig. 32(a). The table shows that d(S) contains the same number

of ⊕-terms as 	-terms for S as in Fig. 15.

S ⊕ (a-3) : x⊗ 1⊗ q ∗ (b-4) : q = p
	 (a-4) : 1⊗ x⊗ q

a⊗ d(= b = c) (a-1) or (a-2) in a⊗∆(d) a⊗∆(d)
x⊗ 1 ⊕ (a-3) : x⊗ 1⊗ x 	 (b-4) : x⊗ 1⊗ x

1⊗ x 	 (a-4) : 1⊗ x⊗ x ⊕ (b-4) : 1⊗ x⊗ x

1⊗ 1 	 (a-4) : 1⊗ x⊗ 1 ⊕ (b-4) : 1⊗ x⊗ 1
x⊗ x none x⊗ x⊗ x

Table 10. (a-3) and (a-4) from Fig. 32(b). The table shows that d(S) contains the same number
of ⊕-terms as 	-terms for S as in Fig. 15.

S ⊕ (a-3) : q(= x)⊗ 1⊗ p ∗ (b-3) : p⊗ r ⊗ q
	 (a-4) : q(= 1)⊗ x⊗ p

a(= b = c)⊗ d (a-3) or (a-4) in a⊗∆(d) ∆(a)⊗ d

x⊗ 1 ⊕ (a-3) : x⊗ 1⊗ x 	 (b-3) : x⊗ 1⊗ x

1⊗ x 	 (a-4) : 1⊗ x⊗ x ⊕ (b-3) : 1⊗ x⊗ x

1⊗ 1 	 (a-4) : 1⊗ 1⊗ x ⊕ (b-3) : 1⊗ 1⊗ x

x⊗ x none x⊗ x⊗ x

Table 11. (a-3) and (a-4) from Fig. 32(c). The table shows that d(S) contains the same number
of ⊕-terms as 	-terms for S as in Fig. 15.
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S ⊕ (a-3) : (p =)1⊗ x(= q) ∗ (b-4) : (q =)p⊗ r
	 (a-4) : (p =)x⊗ 1(= q)

a(= b = c = d) (a-3) or (a-4) in ∆(a) (b-4) : ∆(a)
1 ⊕ (a-3) : 1⊗ x 	 (b-4) : 1⊗ x

	 (a-4) : x⊗ 1 ⊕ (b-4) : x⊗ 1
x none x⊗ x

Table 12. (a-3) and (a-4) from Fig. 32(d). The table shows that d(S) contains the same number
of ⊕-terms as 	-terms for S as in Fig. 15.

S ⊕ (a-3) : p⊗ 1⊗ x⊗ q 	 (a-4) : p⊗ x⊗ 1⊗ q

a⊗ b⊗ c (a-3) in a⊗∆(b)⊗ c (a-4) in a⊗∆(b)⊗ c

x⊗ 1⊗ x x⊗ 1⊗ x⊗ x x⊗ x⊗ 1⊗ x

x⊗ 1⊗ 1 x⊗ 1⊗ x⊗ 1 x⊗ x⊗ 1⊗ 1
1⊗ 1⊗ x 1⊗ 1⊗ x⊗ x 1⊗ x⊗ 1⊗ x

1⊗ 1⊗ 1 1⊗ 1⊗ x⊗ 1 1⊗ x⊗ 1⊗ 1
x⊗ x⊗ x none none
x⊗ x⊗ 1 none none
1⊗ x⊗ x none none
1⊗ x⊗ 1 none none

Table 13. (a-3) and (a-4) are as in Fig. 32(a). The table shows that d(S) contains the same
number of (a-3) as (a-4) for S as in Fig. 16.

S ⊕ (a-3) : p(= 1)⊗ x⊗ q 	 (a-4) : p(= x)⊗ 1⊗ q

a(= b)⊗ c (a-3) in ∆(a)⊗ c (a-4) in ∆(a)⊗ c

1⊗ x 1⊗ x⊗ x x⊗ 1⊗ x

1⊗ 1 1⊗ x⊗ 1 x⊗ 1⊗ 1
x⊗ x none none
x⊗ 1 none none

Table 14. (a-3) and (a-4) are as in Fig. 32(b). The table shows that d(S) contains the same
number of (a-3) as (a-4) for S as in Fig. 16.

S ⊕ (a-3) : p⊗ (q =)1⊗ x 	 (a-4) : p⊗ (q =)x⊗ 1
a⊗ b(= c) (a-3) in a⊗∆(b) (a-4) in a⊗∆(b)

x⊗ 1 x⊗ 1⊗ x x⊗ x⊗ 1
x⊗ 1 x⊗ 1⊗ x x⊗ x⊗ 1
1⊗ x none none
1⊗ 1 none none

Table 15. (a-3) and (a-4) are as in Fig. 32(c). The table shows that d(S) contains the same
number of (a-3) as (a-4) for S as in Fig. 16.

S ⊕ (a-3) : (1 =)p⊗ q(= x) 	 (a-4) : (x =)p⊗ q(= 1)
a(= b = c) (a-3) in ∆(a) (a-4) in ∆(a)

1 1⊗ x x⊗ 1
x none none

Table 16. (a-3) and (a-4) are as in Fig. 32(d). The table shows that d(S) contains the same
number of (a-3) as (a-4) for S as in Fig. 16.
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