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Abstract. We investigate pairs of surfaces in Euclidean 3-space with the same Weingarten
operator in case that one surface is given as surface of revolution. Our local and global results
complement global results on ovaloids of revolution from [S-V-W-W].

Introduction. In [S-V-W-W] we studied global uniqueness results of the following
type:

Theorem A. Let x, x#:M → E3 be ovaloids in Euclidean 3-space with nowhere
dense umbilics and with the property that, at any p ∈M , the Weingarten operators S, S#
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and the spherical volume forms ω(III), ω(III#) coincide:

S = S#, ω(III) = ω(III#).

Then x, x# are congruent.

Corollary B. Let x, x#:M → E3 be ovaloids such that S = S# and ω(III) = ω(III#).
If x is analytic then x, x# are congruent up to a reparametrization.

The basic idea for the proof of Theorem A is to consider the unique, I-selfadjoint,
positive definite operator L defined by

I#(v, w) =: I(Lv, Lw)

and to study its algebraic and analytic properties. A second tool is to use the Codazzi
equations for S = S# in terms of the two Levi-Civita connections ∇ = ∇(I) and ∇# =
∇(I#) to get relations for the symmetric (1,2) difference tensor (∇ − ∇#) between the
connections which finally lead to PDEs for the operator L.

If one follows the proof it seems that one might drop the assumption on the volume
forms. We would like to state the following

Conjecture. Let x, x#:M → E3 be ovaloids with nowhere dense umbilics and with
S = S# at corresponding points. Then x, x# are congruent.

An affirmative answer to this conjecture would be an extrinsic counterpart to the
intrinsic rigidity result of Cohn-Vossen [COHN-V] which states that two isometric ovaloids
in E3 are congruent. In Section 4 of [S-V-W-W] we gave the following partial answer to
our conjecture.

Theorem C. Let x : M → E3 be an ovaloid of revolution with nowhere dense umbilics
and let x# : M → E3 be another ovaloid with S = S# at corresponding points. Then
x, x# are congruent.

At the end of [S-V-W-W] we showed by an explicit example that there exists a non-
trivial 1-parameter family of complete surfaces of revolution xc : M → E3 having the
same Weingarten operator. It is the aim of this paper (Sections 2–4) to give a complete
discussion of the local situation of a pair of surfaces x, x#:M → E3, where x is a surface
of revolution and where the Weingarten operators coincide for any p ∈ M . In Section 5
we state the local results, in Section 6 we extend Theorem C.

2. Surfaces of revolution. We summarize well known properties of surfaces of rev-
olution which we will need for our discussion.

Consider a surface of revolution given in terms of parameters (u1, u2) by

x(u1, u2) = (r(u1) cosu2, r(u1) sinu2, s(u1)), r ≥ 0, (2.0.1)

where u1 parametrizes the meridians as arc length parameter and u2 parametrizes the
parallels of latitude with radius r(u1) and r and s are differentiable functions. For a
function f = f(u1) we write f ′ := df/du1; thus we have

r′(u1)2 + s′(u1)2 = 1. (2.0.2)
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u1, u2 are curvature line parameters for all points with r(u1) > 0. In case that the
functions r(u1) > 0, s(u1) are defined for 0 < u1 < Λ and also for u1 = 0 or u1 = Λ such
that

r(0) = 0, r′(0) = 1 or r(Λ) = 0, r′(Λ) = −1,

we call such points “poles” PS or PN (u1 = 0 or u1 = Λ); for symmetry reasons they are
umbilics. Near a pole, x1 = r(u1) cosu2, x2 = r(u1) sinu2 are parameters for the surface.
In general, the parameter u2 will be taken modulo 2π, i.e. u2 ∈ S1; but there will be cases
where one has to pass to a covering surface by taking u2 ∈ R. In every case, according to
the domain of the parameters, there is a manifold M of dimension two such that (2.0.1)
defines an immersion x:M → E3.

It follows by a straightforward computation that the first fundamental form I =: g
has the representation on M\{PN , PS}:

g11 = 1, g12 = 0, g22 = r2,

and r and s satisfy

S∂1 = (r′s′′ − r′′s′)∂1 and S∂2 = s′

r ∂2,

where {∂1, ∂2} denotes the Gauß basis associated to the local parameters.
The equation (r′)2 +(s′)2 = 1 suggests introducing the function σ = σ(u1) by cosσ :=

r′ and sin σ := s′. The Weingarten operator is represented by the matrix

S :
(
k1 0
0 k2

)
=

(
σ′ 0
0 1

r sinσ

)

with k1, k2 as principal curvatures. The Codazzi equations reduce to the equation

k′2 =
r′

r
(k1 − k2), (Cod)

while the Gauß integrability condition reads

r′′ +Kr = 0. (Gauß)

3. Pairs of surfaces with the same Weingarten operator. At the beginning
of this section we recall some local results from [S-V-W-W]. For a moment, let M be a
connected, oriented C∞-manifold of dimension two; later again, we will restrict to M as
given in Section 2. Let x, x#:M → E3 be a pair of surfaces with first fundamental forms
g, g# and associated Levi-Civita connections ∇ := ∇(g), ∇# := ∇(g#) and Weingarten
operators S = S#. We have the following facts from section 2 in [S-V-W-W].

3.1. Facts.

(i) There exists a unique g-self-adjoint, positive definite operator L such that

g#(u, v) = g(Lu,Lv) (3.1.1)

for tangent vectors u, v. Denote the positive eigenvalue functions of L by λ1, λ2;
they are continuous on M and, if λ1 6= λ2, differentiable.

(ii) The operator L and the Weingarten operator S = S# commute.
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(iii) If x, x# admit a common curvature line parametrization on an open set U ⊂ M ,
then the eigendirections of S are eigendirections of L, and we have the following
local matrix representations:

g :
(
g11 0
0 g22

)
, g# :

(
λ2

1g11 0
0 λ2

2g22

)
,

L :
(
λ1 0
0 λ2

)
, S = S# :

(
k1 0
0 k2

)
.

(iv) If λ1, λ2 are differentiable, their partial derivatives in terms of curvature line pa-
rameters satisfy

∂2λ1 = 0 = ∂1λ2.

These equations are consequences of the Codazzi equations for S = S# in terms of
∇ and ∇#, resp.; they are an essential tool for our discussion below.

3.2. Codazzi equations. In curvature line parameters and with associated Gauß basis
{∂1, ∂2}, the Codazzi equations for x read:

2 ∂2k1 = −∂2 log(g11)(k1 − k2),

2 ∂1k2 = ∂1 log(g22)(k1 − k2).

4. The local discussion. Let x:M → E3 be a surface of revolution as given in
Section 2 and x#:M → E3 a second surface with the same parameter domain M . Let
U ⊂ M be open, connected and assume that x is without umbilics on U . Then we can
apply the parametrization and matrix representations from 3.1(iii); moreover, λ1 and λ2

are differentiable on U .
We discuss the consequences of the integrability conditions in terms of the representa-

tions in 3.1(iii). One easily verifies that there is no further information from the Codazzi
equations. The Gauß equation and K = detS = detS# = K# lead to an ODE which is
crucial for our discussion; see Section 4 in [S-V-W-W].

4.1. Proposition. The functions r = r(u1) and τ := (λ1)−2 − 1 = τ(u1) satisfy

r′′τ +
1
2
r′τ ′ = 0;

thus there exists c ∈ R such that
(r′)2τ = c. (4.1.1)

4.2. Consequences.

(i) If c = 0, then r = const or λ1 = 1.
(ii) If c 6= 0, then r′ 6= 0 and

λ1 =
|r′|√

(r′)2 + c
6= 1.

4.3. Discussion of the case c = 0.

(a) If r =: r0 = const then (r′)2 + (s′)2 = 1 implies s = u1 and x lies on a circular
cylinder

x = (r0 cosu2, r0 sin u2, u1).
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Choosing arbitrary positive functions λ1(u1), λ2(u2), the invariants g# and S# are
given by 3.1 (iii); thus the surface x# is uniquely determined.
Reparametrize

ū1 :=
∫ u1

λ1(u)du, ū2 :=
∫ u2

λ2(v)dv. (4.3.1)

One verifies that the solution x# is given by

x# = (r0 cos ū2, r0 sin ū2, ū1),

thus x# is another parametrization of the same circular cylinder and the diffeomor-
phism (u1, u2) 7→ (ū1, ū2) preserves the Weingarten operator: S = S#.

(b) If λ1 = 1 we again reparametrize, using (4.3.1). Analogously to the foregoing we
arrive at

x# = (r(u1) cos ū2, r(u1) sin(ū2), s(u1)). (4.3.2)

x# is a modified parametrization of the same surface of revolution. Again the dif-
feomorphism (u1, u2) 7→ (u1, ū2) preserves the Weingarten operator.

4.4. Discussion of the case c 6= 0. For fixed c, the function λ1 is given by 4.2(ii); we
reparametrize x#

c by

ū1
c :=

∫ u1

λ1(u)du, ū2
c := a

∫ u2

λ2(v)dv, 0 <
√

1 + c =: a ∈ R. (4.4.1)

Introduce the functions

r̄(ū1
c) :=

1
a
r(u1) and s̄(ū1) :=

1
a

∫ u1 √
(aλ1)2 − (r′)2du. (4.4.2)

Choosing the constant a as given in (4.4.1) and using 4.2(ii), we get:

4.5. Proposition. In terms of the coordinates (ū1
c , ū

2
c), which both depend on the

constant c, the surface x#
c is given by

x#
c (ū1, ū2) = (r̄(ū1) cos ū2, r̄(ū1) sin ū2, s̄(ū1));

in particular, x#
c is a surface of revolution; moreover S = S#

c in corresponding points
(u1, u2) 7→ (ū1

c , ū
2
c) for any c 6= 0. x#

c is also defined for c = 0; the choice λ2 = a−1 (i.e.
ū2 = u2) yields x#

0 = x.

4.6. Remark. (a) Recall (r′)2 ≤ 1 from (2.0.2). According to 4.2(ii) the inequality
c 6= 0 implies λ1 6= 1, in particular:

(i) c > 0⇔ λ1 < 1; in this case we have λ1 ≤ 1√
1+c

;

(ii) c < 0⇔ λ1 > 1; in this case we have −1 < c and λ1 ≥ 1√
1+c

.

In both cases we have λ1 6=
√

1 + c.
(b) We discuss the special case c 6= 0, λ1 = const 6= 1 and λ1λ2 = 1 for (4.1.1). Inte-

grating (4.1.1), we get r = λ1

√
c(1− λ2

1)−1 u1 and s =
√

(1− λ2
1)−1{1− (1 + c)λ2

1} u1

from (2.0.2); thus we have a two-parameter family of circular cones

xc,λ1 = u1
√

c

1− λ2
1

(
λ1 cosu2, λ1 sin u2,

√
1− (1 + c)λ2

1

c

)
.
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For fixed c, λ1, λ2 = λ−1
1 , (4.4.1) and (4.4.2) yield the corresponding family of cones

x#
c,λ1

= λ1u
1
√

c

(1 + c)(1− λ2
1)

(
cos ū2, sin ū2,

√
1− (1 + c)λ2

1

c

)

having the same Weingarten operator and the same Riemannian volume form at (u1, u2),
but being non-isometric (and thus non-congruent). Especially s

r 6= s#

r# and ū2 =
√

1+c
λ1

u1 6=
u1 since λ1 6=

√
1 + c.

(c) In [S-V-W-W] we illustrated Proposition 4.5 by the example of the elliptic para-
boloid

x(u, v) =
(
u cos v, u sin v,

1
2
u2
)

having the same Weingarten operator as any surface of the one-parameter family of
strongly convex surfaces of revolution

xc(u, v) =
(

u√
1 + c

cos v,
u√

1 + c
sin v,

1
c

[√
1 + c

u2

1 + c
− 1
])
.

For the curve m: u 7→ (r(u), s(u)), the equation c2(s + 1
c )2 − cr2 = 1 holds: In case

c > 0, m is the part of a hyperbola given by s > 0 and the surfaces xc are complete. For
−1 < c < 0, xc is half an ellipsoid.

5. Local results. In this section we state a series of consequences of the local discus-
sion in Section 4. As before, x:M → E3 is a surface of revolution with the representation

x(u1, u2) = (r(u1) cosu2, r(u1) sinu2, s(u1))

on M ; we assume that the umbilics are nowhere dense. Moreover, let x#:M → E3 be a
surface with S# = S.

The detailed discussion in Section 4 admits the following implications.

5.1. Let x, x#:M → E3 be given as before; then there exist coordinates ū1, ū2 in M ,
and differentiable functions r̄ = r̄(ū1), s̄ = s̄(ū1), such that x# has the representation
(modulo congruences in E3):

x#(ū1, ū2) = (r̄(ū1) cos ū2, r̄(ū1) sin ū2, s̄(ū1));

in particular, x# again is a surface of revolution.

Proof. Sections 4.2 - 4.6 give a discussion of all possible cases.

5.2. There exists a non-trivial one-parameter family of strongly convex surfaces of
revolution xc:M → E3 having the same Weingarten operator at corresponding points.
For c > 0, the examples in 4.6(c) are complete and admit a bijective orthogonal mapping
onto the plane (x1, x2, 0) ⊂ R3.

5.3. There exist non-isometric two-parameter families x = xc,λ1 , x# = x#
c,λ1

of
surfaces of revolution (see 4.6(b)) with the properties

(i) the surfaces x, x#, have the same Weingarten operator and nowhere dense umbilics;
(ii) the surfaces x, x# have the same Riemannian volume.

Such surfaces necessarily are circular cones.
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Proof. Almost everywhere we can introduce the local parameters from 3.1. (ii) implies
1 = detL = λ1 · λ2 which together with ∂2λ1 = 0 = ∂1λ2 gives λ1 = const 6= 1, λ2 =
const 6= 1 (as x, x# are assumed to be non-isometric). Then c 6= 0 in (4.1.1), and 4.6(b)
describes the solution.

Remark. The foregoing result in particular implies that both metrics g, g# must
be flat. Thus any pair x, x#:M → E3, where x is a non-flat surface of revolution with
nowhere dense umbilics which satisfies (i) and (ii) in 5.3, must be congruent.

5.4. Let x, x# be given as in the beginning of this section. Let p ∈ M be a pole for
x. Then p is also a pole for the surface of revolution x#. Using 3.1(i), we have λ1 = λ2

at p.

Proof. 4.3(b) or 4.4; other cases are excluded.

5.5. Corollary. Let D ⊂M be a geodesic disc for x (open or closed) with the pole
p as center; then λ2 = const on D.

Proof. See the proof of Theorem 4.1 in [S-V-W-W].

5.6. Corollary. Assume r 6= const and let the disc D from Corollary 5.5 contain a
point (and then a parallel of latitude) with the property r′(p) = 0 (or limq→p r′(q) = 0).
Then x and x# are congruent on D.

Proof. Proposition 4.1 and Corollary 5.5 imply 1 = λ1 = λ2 and thus g = g#.

6. Global results. In Section 4 of [S-V-W-W] we considered ovaloids of revolution
x, x#:M → E3 with nowhere dense umbilics and S = S#. We proved that x, x# must
be congruent (see Theorem C). The comments in 5.2 show that, for a rigidity result,
one cannot weaken the assumptions and consider x to be a complete convex surface of
revolution instead. Nevertheless, we can generalize Theorem C as follows.

6.1. Theorem. Let M be a surface of genus zero and x, x#:M → E3 be immersions.
As before assume that x is a surface of revolution as given in (2.0.1) having nowhere
dense umbilics and r(u1) 6= const on open nonempty sets. Then S = S# implies the
congruence of x and x#.

Proof. Genus(M) = 0 implies that the curve u1 7→ (r(u1), s(u1)) is an arc with
r(u1) > 0 for 0 < u1 < Λ and r(0) = r(Λ) = 0; thus r′ has a zero between 0 and Λ, and
Corollaries 5.5 and 5.6 imply λ1 = λ2 = 1 on M .
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Addendum (August 30, 2001). We learned from discussions with R. Bryant and E. V.
Ferapontov about classical local results (due to E. Cartan, S. P. Finnikoff and B. Gambier) on
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